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Computing Quantum Bound States on Triply Punctured Two-Sphere Surface
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We are interested in a quantum mechanical system on a triply punctured two-sphere surface with hyperbolic
metric. The bound states on this system are described by the Maass cusp forms (MCFs) which are smooth square
integrable eigenfunctions of the hyperbolic Laplacian. Their discrete eigenvalues and the MCF are not known
analytically. We solve numerically using a modified Hejhal and Then algorithm, which is suitable to compute
eigenvalues for a surface with more than one cusp. We report on the computational results of some lower-lying
eigenvalues for the triply punctured surface as well as providing plots of the MCF using GridMathematica.

PACS: 03.65.Ge, 02.40.−k, 02.60.−x DOI: 10.1088/0256-307X/33/9/090301

In 1924, Emil described the geodesic motion of
free particle on a non-compact Riemann surface, Γ∖ℋ,
where ℋ is the upper half plane, and Γ is the mod-
ular group.[1] Such non-compact Riemann surfaces of
finite area have vertices that are located infinitely far
away (i.e., cusps) and they can be used as mathemati-
cal models for many physical situations such as in the
scattering problem where a particle enters and exits a
cavity via the cusp. Of particular interest is the quan-
tum version of such scattering problems.[2] Studies of
classical and quantum billiards on hyperbolic surfaces
have attracted wide attention of both mathematicians
and physicists as these systems are connected to prob-
lems in number theory, differential geometry, group
theory[3] as well as in quantum chaos.[4−6] Such sys-
tems can also be realized experimentally via hyper-
bolic optical and microwave cavities.[7−9]

In this Letter, we are interested in a triply punc-
tured two-sphere surface (surface of genus zero and
three cusps)[10] which is formed from the quotient of
the upper half plane by a discrete subgroup of the
modular group, that is, the principal congruence sub-
group of level two. Since this hyperbolic surface is
strongly chaotic, ergodic and with multiple cusps, it
is therefore an interesting candidate for the study of
chaotic scattering with multi-scattering channels.[11]

It is also known that systems of particle on noncom-
pact finite area hyperbolic surfaces exhibit both dis-
crete and continuous spectra.[12] The scattering states
are described by the Eisenstein series, which is known
analytically,[13−15] while the bound states have to be
computed numerically. For a triply punctured two-
sphere surface, the bound states have not been explic-
itly calculated and thus are our main concern here.

In solving a bound state problem on a triply
punctured two-sphere surface, we need to solve the
Schrödinger equation 𝐻𝜓 = 𝐸𝜓, where Hamiltonian
𝐻 = −Δ, and Δ = 𝑦2(𝜕2𝑥 + 𝜕2𝑦) is the Laplace-

Beltrami operator (~ = 2𝑚 = 1), and 𝐸 is dis-
crete. The solution to this quantum system is known
as the Maass cusp forms (MCFs).[13] There are spe-
cial boundary conditions (automorphy condition) to
be satisfied by MCFs, i.e., 𝜓(𝑧) = 𝜓(𝑇𝑧) = 𝜓(𝑧*) for
all 𝑇 ∈ Γ (2) and 𝑧 ∈ ℋ. We report here on some
computed low-lying eigenvalues using an adapted al-
gorithm of Hejhal and Then.[16−18] Eigenvalues com-
puted from this surface are then checked by using se-
lected procedures such as the Hecke relation and the
Ramanujan–Petersson conjecture for their authentic-
ity. These eigenvalues are particularly useful for find-
ing the renormalized time delay of the chaotic system.
We later exploit the graphical capability of GridMath-
ematica to visualize the eigenstates of selected eigen-
values.
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Fig. 1. (a) Fundamental domain of the principal congru-
ence subgroup ℱ2. (b) Subdomains of ℱ2 subjected to
𝑁1 = 𝐼.

Mathematically, the triply punctured two-sphere
surface is represented by the fundamental domain of
the principal congruence subgroup of level two, i.e.,

Γ (2) =

(︂
𝑎 𝑏
𝑐 𝑑

)︂
∈ 𝑆𝐿(2,Z) such that 𝑏 ≡ 𝑐 ≡ 0mod2

and 𝑎 ≡ 𝑑 ≡ 1mod2. The subgroup has two genera-

tors 𝐴 =

(︂
1 2
0 1

)︂
and 𝐵 =

(︂
1 0
−2 1

)︂
[10] and their

Möbius transformation are given as 𝐴 : 𝑧 → 𝑧+2 and
𝐵 : 𝑧 → 𝑧

−2𝑧+1 . Fundamental domain ℱ2 for the punc-

tured sphere[10,19] as shown in Fig. 1(a) is formed with
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side identifications by using transformations 𝐴 and 𝐵.
Through the identification process, we obtain a sphere
with three inequivalent cusps, that is, the points at
∞, 0 and 1 where they are mathematically referred
to as parabolic fixed points (the scattering channels).
Parabolic transformations {𝐴,𝐵,𝐵−1𝐴−1} are used
to fix the cusps {∞, 0, 1}, respectively.[18]

The fundamental domain is then partitioned into
three subdomains (Fig. 1(b)), that is, 𝑁𝑗ℱ𝐼 , 𝑁𝑗ℱ𝑆

and 𝑁𝑗ℱ𝑆𝑇−1

with respect to the inequivalent cusp
classes. Here 𝐼 refers to identity, 𝑇 : 𝑧 → 𝑧 + 1
and 𝑆 : 𝑧 → − 1

𝑧 . The location of these subdo-
mains can be changed to their equivalent ones when
they are subjected to different cusp normalizing maps
𝑁𝑗 = {𝐼, 𝑆, 𝑆𝑇−1}, respectively.[18] This process is im-
portant due to the fact that the group-theoretic fea-
tures of the fundamental domain enable us to simplify
the MCF expansion as well as the pullback algorithm
which is used to map evenly spaced points given as
𝑧𝑘 = 𝑥𝑘 + 𝑖𝑦 = 𝐿

2𝑄 (𝑘 − 0.5) + 𝑖𝑦 ∈ ℋ for 1 ≤ 𝑘 ≤ 𝑄
and 𝑦 < 𝑦0 into the fundamental domain from its ex-
terior. The number 𝑄 ∈ Z is the total number of
sampling points, and 𝑦0 is the minimal height for the
fundamental domain. For each 𝑗 and 𝑘, pullback of
𝑁−1

𝑗 (𝑧𝑘) is computed by applying a map 𝑇𝑘𝑗 ∈ Γ (2)

such that 𝑤 = 𝑇𝑘𝑗𝑁
−1
𝑗 (𝑧𝑘) ∈ ℱ2. Hence, the complete

pullback is given as

𝑧*𝑘𝑗 = 𝑥*𝑘𝑗 + 𝑦*𝑘𝑗 = 𝑁𝐼(𝑤)𝑈𝑤(𝑤), (1)

where 𝐼(𝑤) refers to indices {1, 2, 3}, and 𝑈𝑤(𝑤) is a
map that maps vertex of ℱ2 to its nearest inequivalent
cusp. Location of each pullback point at different ver-
tices inside the fundamental domain can be identified
by using a point locater algorithm (details in Ref. [18]).
Based on the complete pullback, some important pull-
back relations between points in each subdomain are

ℱ𝐼 =𝑆ℱ𝑆 = 𝑆𝑇−1ℱ𝑆𝑇−1

, (2)

ℱ𝑆 =𝑆ℱ𝐼 , (3)

𝑆ℱ𝑆𝑇−1

=𝑆𝑇−1ℱ𝑆 . (4)

The algorithm to compute MCF for this punctured
surface is based on the adapted algorithm of Hejhal
and Then,[16,17] but now expanded to several cusps.
This modification is inspired by the algorithm created
by Ref. [19] where they used Hejhal’s algorithm on
several cusps in the study of holomorphic cusp forms
and also work from Ref. [20] for Hecke congruence sub-
group. Since the surface has three cusps, the numeri-
cal method requires Fourier expansions at all cusps of
ℱ2 which is given as

𝜓𝑗(𝑥+ 𝑖𝑦) =
∑︁
|𝑛|≥1

𝑎𝑗(𝑛)𝑘𝑛(𝑦)𝑒
( 2𝜋𝑖𝑛𝑥

𝐿 ), 𝑗 ∈ {1, 2, 3},

(5)
where 𝑘𝑛(𝑦) = 𝑦1/2𝐾𝑖𝑟(

2𝜋𝑛𝑦
𝐿 ), 𝑗 represents the in-

equivalent cusps, and 𝐾𝑖𝑟 is the K-Bessel function.
[13]

Truncating Eq. (5) and applying the reflection sym-
metry at the imaginary axis 𝑦, we obtain

𝜓𝑗(𝑧) =

𝑀∑︁
𝑛=1

𝑎𝑗(𝑛)𝑘𝑛(𝑦)cs
(︁2𝜋𝑛𝑥

2

)︁
+ [[𝜖]], (6)

where cs( 2𝜋𝑛𝑥2 ) represents either 2 sin( 2𝜋𝑛𝑥2 ) or
2 cos( 2𝜋𝑛𝑥2 ) for odd and even classes, respectively,
while 𝑀 = 𝑀(𝑟, 𝑦) is the truncating point, and [[𝜖]]
represents the error term. To make the algorithm sta-
ble, we have to expand MCF at different subdomains
(ℱ𝐼 , ℱ𝑆 and ℱ𝑆𝑇−1

). Taking the finite Fourier trans-
form for Eq. (6) and applying the special boundary
conditions, we obtain

𝑎𝑗(𝑚)𝑘𝑚(𝑦) =
1

2𝑄

2𝑄∑︁
𝑘=1

𝜓𝐼(𝑗,𝑘)(𝑧
*
𝑘𝑗)cs

(︁
−2𝜋𝑚𝑥𝑘

2

)︁
+[[𝜖]].

(7)
As long as we choose 𝑦 < 𝑦0, we can use the trun-

cation points 𝑀0 = 𝑀(𝑦0) for all series. With given
values of 𝑟 and 𝑦, we set the truncating points 𝑀0 by

using 𝑀0 = 𝐿(𝑟+𝐷𝑟1/3)
2𝜋𝑦0

, where constant 𝐷 is chosen

among 8, 12 and 15[20,21] depending on the required
accuracy. Hence we obtain the following relation for
the Fourier coefficients

𝑎𝑗(𝑚)𝑘𝑚(𝑦) =

3∑︁
𝑖=1

𝑀0∑︁
𝑛=1

𝑎𝑖(𝑛)𝑉
𝑗𝑖
𝑚𝑛 + 2[[𝜖]], (8)

where

𝑉 𝑗𝑖
𝑚𝑛 =

1

2𝑄

2𝑄∑︁
𝑘=1,𝐼(𝑗,𝑘)=𝑖

𝑘𝑛(𝑦
*
𝑘𝑗)

· cs
(︁2𝜋𝑛𝑥*𝑘𝑗

2

)︁
cs
(︁−2𝜋𝑚𝑥𝑘

2

)︁
. (9)

Note that 𝐼(𝑗, 𝑘) = 𝑖 denotes that the summation
is restricted to those values of 𝑘 for which 𝐼(𝑤) =
𝐼(𝑇𝑘𝑗𝑁

−1
𝑗 (𝑧𝑘𝑗)). In other words, summation is car-

ried out only to pullback points located on the par-
ticular 𝑖 subdomains. By neglecting the error term
2[[𝜖]] and taking pullback relations (Eqs. (2)–(4)) into
consideration, we reduce Eq. (8) into a linear imho-
mogeneous equation for which the Fourier coefficients
can be solved. To locate the eigenvalues, we compute
𝑔𝑚 values defined as

𝑔𝑚 =

3∑︁
𝑖=1

𝑀0∑︁
𝑛=1

𝑎#1
𝑖 (𝑛)̃︀𝑉 𝑗𝑖

𝑚𝑛(𝑟, 𝑦2), (10)

where 𝑦2 = 0.9𝑦1 is considered as a choice of indepen-
dent 𝑦 value,[13] while 𝑎#1

𝑖 (𝑛) are coefficients obtained
by solving Eq. (8). We look for simultaneous changes
of sign in 𝑔𝑚 to determine the candidate interval for
the eigenvalues.

The computational work in this study is based on
an existing GridMathematica program for the mod-
ular group[17] which is now modified for the sphere
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with three cusps. Writing 𝐸 = 1/4 + 𝑟2, we com-
pute eigenvalues for the triply punctured two-sphere
surface for the 𝑟-interval[1,14] on a quad core proces-
sor CPU of 3.07GHz and 4GB of memory. In this
interval, we found 20 eigenvalues of which 11 be-
long to the odd class and nine to the even class as
shown in Table 1. We have set the tolerance to be
𝜖 = 10−6 in our bisection module and as such our
eigenvalues are estimated to be accurate at least up
to five decimal places. The smallest true eigenvalue is
𝐸 = 13.96448866 with 𝑟 = 3.7033078, which belongs
to the odd class. For the even class, the smallest true
eigenvalue is 𝐸 = 34.81680463 with 𝑟 = 5.8793541. A
mixture of eigenvalues belonging to eigenfunctions of
the modular group, i.e., oldforms (eigenvalue with an
asterisk in Table 1) and new ones directly correspond-
ing to Γ (2), i.e., newforms can be seen from the com-
puted eigenvalues for both classes. The appearance of
both oldforms and newforms is a positive indication
that our computation is correct.

To check on the authenticity of the eigenvalues,
we need to compute the Fourier coefficients for the
odd and even MCFs for all Hecke operators 𝑇𝑛 with
gcd(𝑛, 2) = 1. One can show that 𝑇𝑛𝜓(𝑧) = 𝑡𝑛𝜓(𝑧),
which means that the eigenvalue of any wave func-
tion for the 𝑛th Hecke operator is the 𝑛th Fourier
coefficients of the expansion of 𝜓(𝑧). Tables 2 and 3
list some of the Fourier coefficients for selected odd
and even classes’ eigenvalues. Such arithmetic struc-
tures are expected,[3] since principal congruence sub-

group and the modular group are arithmetic groups.
In Ref. [22], it is mentioned that for any arithmetic
group or subgroup, all Fourier coefficients must satisfy
the Ramanujan–Petersson conjecture i.e., |𝑎𝑝| < 2 for
all primes 𝑝. Based on the results from Tables 2 and
3, all the prime coefficients from both classes agree
well with the conjecture, which further support the
authenticity of the eigenvalues.

Other supporting evidence is the use of the Hecke
relation, i.e., multiplicative relation for the Fourier
coefficients, 𝑎𝑚𝑝 = 𝑎𝑚𝑎𝑝 − 𝑎𝑚

𝑝
, where 𝑝 is a prime

with the convention 𝑎𝑚
𝑝

= 0 if 𝑝 does not divide
𝑚. This method is only applicable to the arithmetic
group (or its subgroups).[22] As an example, we use
𝑟 = 6.6204223 and 𝑟 = 10.9203917 from the odd and
even classes respectively to check on their coefficients’
multiplicative relation. From Table 3, we can see that
coefficients 𝑎15 and 𝑎21 agree with the multiplicative
relation. The value on the left-hand side coincides
with the right-hand side up to a minimum of four dec-
imal places.

Table 1. The eigenvalues of the Laplacian for the triply punc-
tured two-sphere surface. Listed are odd and even 𝑟-values re-
lated to the true eigenvalues via 𝐸 = 1

4
+ 𝑟2.

Odd 𝑟-values Even 𝑟-values

3.7033078 9.5336951* 5.8793541 12.8776165

5.4173348 9.9349198 8.0424776 13.1720749

6.6204223 11.3176796 9.8598964 13.7797514*

7.2208719 11.9727767 10.9203917

8.2736658 12.1730084* 11.4930046

8.5225029 12.0929949

Table 2. Fourier coefficients for selected eigenvalues of odd and even MCFs.

Odd 𝑟-values Even 𝑟-values

𝑎𝑛 7.2208719 9.5336951 11.4930046 13.7797514

𝑎1 1 1 1 1

𝑎3 −0.94935041 −0.456196732 0.177099498 0.246899572

𝑎5 −0.86971293 −0.290672326 −0.527814612 0.737060671

𝑎7 −0.061359596 −0.744941725 1.123057613 −0.261230404
𝑎9 −0.098733545 −0.791883223 −0.968637269 −0.939041371
𝑎11 −0.074141641 0.166163363 −1.015447918 −0.953563505
𝑎13 −0.086312577 −0.586688754 −1.807538347 0.278827573

𝑎15 0.825663215 0.132604065 −0.093469832 0.181979499

𝑎17 −1.694902025 0.57069581 −0.000328076 1.30734199

𝑎19 1.423495076 −0.98193619 −0.961584897 0.092558161

𝑎21 0.058252337 0.339840249 0.198893507 −0.064544679

Table 3. Fourier coefficients for 6.6204223 (odd 𝑟-value) and 10.9203917 (even 𝑟-value) together with their multiplication relation.

𝑎𝑛 6.6204223 𝑎𝑚𝑎𝑝 10.9203917 𝑎𝑚𝑎𝑝
𝑎3 1.210255527 −1.401733778
𝑎5 1.288538066 0.852892885

𝑎7 −0.351110172 0.324097545

𝑎9 0.464704585 0.96485517

𝑎11 0.217644948 0.223766949

𝑎13 −1.229192055 1.308385204

𝑎15 1.559440896 1.559460316 −1.195526775 −1.195528766
𝑎17 −0.570260658 1.329613996

𝑎19 −0.259181147 −0.404857209
𝑎21 −0.424933716 −0.424933026 −0.454293413 −0.454298477
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Fig. 2. (a)–(d) Eigenstates for odd eigenvalue 𝑟 =
12.1730084 and even eigenvalue 𝑟 = 13.7797514 in the
form of contour plot and density plot, respectively. The
illustrated region is [−1.1, 1.1]× [0.05, 3].
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Fig. 3. (a)–(b) Nodal lines for odd (𝑟 = 12.1730084) and
even (𝑟 = 13.7797514) eigenvalues, respectively. The illus-
trated regions are [−1.1, 1.1]× [0.05, 3].

Topography of the MCF on the triply punctured
two-sphere surface are visualized by using contour
plot and density plot functions of the GridMathemat-
ica. Figure 2 shows the topography of eigenstates
for odd and even eigenvalues, 𝑟 = 12.1730084 and
𝑟 = 13.7797514, respectively. Based on Fig. 2, we
manage to identify the minimum (dark colour) and
maximum spots (bright color) as well as the nodal
lines (𝜓 = 0) for the MCF for each eigenstates. Nodal
lines for the odd and even classes are shown in Fig. 3.
The blue dashed lines in Fig. 3(b) indicate the bound-
ary of the fundamental domain. The density plots
show the probability function associated to 𝜓 (i.e.
|𝜓|2). The bright (dark) regions in Figs. 2(b) and
2(d) actually show regions of higher (lower) proba-
bility of finding the particle associated to the corre-
sponding MCF. As the eigenvalues increase, more and
more bright spots appear implying that the quantum
particle is less localized at higher energies. It is inter-
esting to note that one can make comparisons between

the present case of triply punctured two-sphere surface
and the earlier work for a singly punctured two-torus
surface[16] since they have the same fundamental do-
main (see Fig. 1(a)) but with different side identifica-
tions. Comparing the eigenvalues of both cases, one
finds that the lowest bound eigenvalue is lower in the
case of the singly punctured two-torus surface. In ad-
dition, the punctured torus has degenerate eigenvalues
implying additional symmetries within the structure.
It is still not particularly clear how the underlying ge-
ometry affects these eigenvalues.

In summary, we have successfully computed 20
low-lying eigenvalues for the triply punctured two-
sphere surface using a modified Hejhal and Then algo-
rithm for several cusps. Eigenvalues from both classes
satisfy the Ramanujan–Petersson conjecture and also
the Hecke relation and hence support their authen-
ticity. These eigenvalues may find use in obtaining
the renormalized time delay of the chaotic system
as stated in Refs. [11,23]. With further computation
of these eigenvalues, one can also study the spectral
statistics indicating fingerprints of quantum chaos.[1]

In addition to the eigenvalues, we have shown that
the topography of the eigenstates can be visualized
by using contour plot and density plot functions of
the GridMathematica. This may further aid under-
standing of the underlying quantum chaotic system
with multiple scattering channels.
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