
12 Lecture 12: Holomorphic functions

For the remainder of this course we will be thinking hard about how the

following theorem allows one to explicitly evaluate a large class of Fourier

transforms. This will enable us to write down explicit solutions to a large

class of ODEs and PDEs.

The Cauchy Residue Theorem:

Let C ⊂ C be a simple closed contour. Let f : C→ C be a complex function

which is holomorphic along C and inside C except possibly at a finite num-

ber of points a1, . . . , am at which f has a pole. Then, with C oriented in an

anti-clockwise sense, ∫
C

f(z) dz = 2πi
m∑
k=1

res(f, ak), (12.1)

where res(f, ak) is the residue of the function f at the pole ak ∈ C.

You are probably not yet familiar with the meaning of the various components

in the statement of this theorem, in particular the underlined terms and what

is meant by the contour integral
∫
C
f(z) dz, and so our first task will be to

explain the terminology. The Cauchy Residue theorem has wide application

in many areas of pure and applied mathematics, it is a basic tool both in

engineering mathematics and also in the purest parts of geometric analysis.

The idea is that the right-side of (12.1), which is just a finite sum of complex

numbers, gives a simple method for evaluating the contour integral; on the

other hand, sometimes one can play the reverse game and use an ‘easy’

contour integral and (12.1) to evaluate a difficult infinite sum (allowing m→
∞). More broadly, the theory of functions of a complex variable provides

a considerably more powerful calculus than the calculus of functions of two

real variables (‘Calculus II’).

As listed on the course webpage, a good text for this part of the course is:

H A Priestley, Introduction to Complex Analysis (2nd Edition) (OUP)

We start by considering complex functions and the sub class of holomorphic

functions.

12.1 Complex functions

Although as (real) vector spaces

C = {a+ ib | a, b ∈ R, i2 = −1}
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and R2 are indistinguishable, the complex numbers C are crucially differ-

ent from R2 because C comes with a natural commutative multiplication

structure, as well as addition. That is,

C = R2 + “structure of complex multiplication′′. (12.2)

Moreover,

C∗ = C\{0}

is a abelian multiplicative group – meaning that complex multiplication is

commutative and (for non-zero numbers) invertible. Specifically, for z =

a+ ib, w = α + iβ ∈ C one has

z + w = (a+ α) + i(b+ β), zw = (aα− bβ) + i(aβ + bα) = wz,

z−1 =
a

a2 + b2
+ i

−b
a2 + b2

=
z

|z|2
for z ∈ C∗.

Here we have used complex conjugation

C→ C, z = a+ ib 7−→ z := a− ib

and the identity |z|2 = a2 + b2; note, in particular, that z = a+ ib = 0 if and

only if a = 0 and b = 0.

It is often convenient to use ‘polar coordinates’

z = r ei θ (12.3)

where we define (or use power series to equate)

ei θ := cos θ + i sin θ. (12.4)

From the double-angle formulae we then have

ei θei φ = ei (θ+φ), and so
1

ei θ
= e−i θ, (ei θ)m = eimθ, m ∈ R. (12.5)

We will be interested in complex functions — meaning maps

f : C −→ C, z 7→ f(z), (12.6)

so

z = x+ iy 7→ f(z) = u(x, y) + iv(x, y) for some u, v : R2 → R1.

Here are some examples of the type of complex function with which we shall

be working:
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f(z) = z (12.7)

f(z) = z2 f(z) = zm with m ∈ Z (12.8)

f(z) = z (12.9)

f(z) = |z|2 := zz. (12.10)

f(z) = z + z. (12.11)

f(z) = (z + z)2. (12.12)

f(z) = amz
m + am−1z

m−1 + · · ·+ a1z + a0, aj ∈ C, (12.13)

f(z) =
β−m

(z − 2)m
+

β−m+1

(z − 2)m−1
+ · · · +

β−1
(z − 2)

+ β0 + b1z + ez, βj ∈ C,

(12.14)

f(z) = ez
defn
:= ex · eiy = ex (cos y + i sin y) , (12.15)

where z = x+ iy. Notice that

ezew = ez+w, z, w ∈ C, and so eze−z = 1. (12.16)

f(z) = sin z :=
1

2i

(
eiz − e−iz

)
(12.17)

f(z) = cos z :=
1

2

(
eiz + e−iz

)
(12.18)

f(z) = sinh z :=
1

2

(
ez − e−z

)
(12.19)

f(z) = cosh z :=
1

2

(
ez + e−z

)
(12.20)

It is important to know the following identities, or be able to quickly

derive them:

sin iz = i sinh z or i sin z = sinh iz (12.21)

and

cos iz = cosh z or cos z = cosh iz (12.22)

Note these reduce to the ‘usual’ formulae when z = x ∈ R. Also note that,

as usual,

cos(z +w) = cos z cosw− sin z sinw, sin(z +w) = sin z cosw+ cos z sinw.

(12.23)

However, notice that unlike the case of real variable trigonometric functions

it is not the case that cos(z) and sin(z) are bounded (a complex function f is

bounded if there exists a positive real number M > 0 such that |f(z)| ≤ M

for all z).
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Clearly, as is already evident from some of the examples above, we may

compose complex functions just as with real functions. That is, from

f : C −→ C and g : C −→ C (12.24)

we may form

f ◦ g : C −→ C or g ◦ f : C −→ C. (12.25)

In general, these will not be the same. If it so happens that f is bijective

(one-to-one and onto) then there exists a function we denote f−1 : C −→ C
and called the inverse function to f and which is characterized by

f ◦ f−1 = ι and f−1 ◦ f : ι. (12.26)

Be careful not to confuse f−1 (if it exists!) with 1
f

(if it exists!). (For

example, if f(z) = 1− z, then 1/f(z) = 1/(1− z) while f−1(z) = 1− z.) In

fact, ‘reciprocal’ functions like, for example,

f(z) =
1

z − a
and g(z) =

1

z2 − 4
=

1

4

(
1

z − 2
− 1

z + 2

)
(12.27)

will be playing a central role in everything that follows. Notice that these

reciprocal functions are not defined everywhere on C, but rather on C minus

those points where the denominator function vanishes.

Of course ,we can also add and multiply functions together which, unlike

taking the reciprocal, can be done without further thought

f + g : C −→ C and gf = fg : C −→ C. (12.28)

and also define the quotient

z 7−→ f(z)

g(z)
provided g(z) 6= 0. (12.29)

That is, we may regard f/g as a function on C which has singularities at

those points z0 ∈ C where g(z0) = 0 (meaning the function is not defined at

those points).

12.2 Holomorphic functions

Within the space of all functions f : C → C there is a distinguished sub-

space of holomorphic functions, often also called analytic functions. Being
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holomorphic is just a local property, meaning that whether a function is holo-

morphic at a point a ∈ C depends only on the value of f at a and, for some

small real number ε > 0, and its behaviour in a small disc

Bε(a) : {z ∈ C | |z − a| < ε}

around a. (By definition, Bε(a) consists of those complex numbers whose

distance from a is less than ε.)

Working definition: A function is holomorphic at a ∈ C if it is in-

dependent of z near a and has no singularity at z = a (meaning it is well

defined at all points near a and is differentiable (smooth) in z) there.

In practise, those are the properties we look for in order to identify

whether function is holomorphic at a given point: it must be a function

of z alone and must be differentiable, the latter meaning (in practise) that if

you replace z by a real variable x then you recognize the resulting function

as differentiable in the usual (real variable) sense.

Specifically, in the above examples of functions f : C → C, each of the

functions in (12.9), (12.10), (12.11), (12.12) is not holomorphic at any z ∈ C,

but all the others are holomorphic everywhere in C except (12.14) which is

holomorphic at all points of C\{2} – that is, it is not holomorphic at z = 2,

because it has a singularity there, but it is holomorphic everywhere else. In

particular, for any given b ∈ C the exponential function

f(z) = ebz

is holomorphic at all z ∈ C. That immediately implies, from (12.17) –

(12.20), that all the trigonometric and hyperbolic functions

f(z) = sin z, f(z) = cos z, f(z) = sinh z, f(z) = cosh z, (12.30)

are all holomorphic at all z ∈ C. The implication is immediate because of the

following properties which tell us we can build many holomorphic functions

just by knowing a few simple ones:

f, g , : C→ C holomorphic at a ∈ C ⇒ f.g, f+g, f◦g holomorphic at a ∈ C.
(12.31)

and
f

g
holomorphic at a ∈ C provided g(a) 6= 0. (12.32)

Thus, as another example, because f(z) = z is holomorphic (everywhere)

then so is any polynomial

f(z) = amz
m + am−1z

m−1 + · · ·+ a1z + a0, aj ∈ C. (12.33)
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On the other hand,

f(z) =
ez

z − b
(12.34)

is holomorphic at all points except at z = b.

When we have a function which is holomorphic at a ∈ C then its deriva-

tive

f ′(a) :=
∂f

∂z

∣∣∣∣
z=a

∈ C

at a is defined and we may compute it in the usual way — as a partial

derivative with respect to z. All the usual identities hold:

∂

∂z
zn = nzn−1 (if n < 0 then for z 6= 0).

For any fixed λ ∈ C,
∂

∂z
eλz = λ ez

and hence from (12.17) – (12.20)

∂

∂z
cos z = − sin z,

∂

∂z
sin z = cos z,

∂

∂z
cosh z = sinh z,

∂

∂z
sinh z = cosh z.

‘Hence’ because all the usual properties of (partial) differentiation hold:

if f, g : C→ C are holomorphic at z ∈ C then

(f + g)′(z) = f ′(z) + g′(z), (λf)′(z) = λf ′(z),

(fg)′(z) = f(z)g′(z) + f ′(z)g(z), (f ◦ g)
′
(z) = g

′
(z) f

′
(g(z)),

and also (f(z)/g(z))′ = (g(z)f ′(z)− f(z)g′(z))/(g2(z)) provided g(z) 6= 0.

A more mathematically rigorous definition of holomorphic: Let

a ∈ C and let ε > 0 be a positive real number. A function is holomorphic at

a ∈ C if there exists an ε > 0 such that there is a power series expansion

f(z) =
∞∑
n=0

cn (z − a)n valied for all z with |z − a| < ε. (12.35)

Thus the expansion must hold for all z in an ‘open disc’ of radius ε centred

at a, that is, for the set of points which have distance less than ε from a.

In fact, when this holds it is just the complex ‘Taylor series’ expansion:

the coefficients are given by

cn =
1

n!
f (n)(a), where f (n)(a) :=

∂nf

∂zz

∣∣∣∣
z=a

. (12.36)
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For example, the exponential is can be expanded around a = 0 into the

Taylor power series

ez =
∞∑
n=0

1

n!
zn (12.37)

This particular expansion, in fact, holds for all z, i.e. we can take ε arbitrarily

large. We can likewise compute its expansion (12.35) around any other a ∈ C
using the multiplicative property (12.16) to see that

ez = eaez−a
(12.37)

= ea ·
∞∑
n=0

1

n!
(z − a)n =

∞∑
n=0

ea

n!︸︷︷︸
= cn

(z − a)n. (12.38)

As another example,

f(z) :=
1

1− z
=
∞∑
n=0

zn valied for all z with |z| < 1. (12.39)

That is, (12.35) holds for f(z) = 1/(1− z) at a = 0 with ε = 1; that is, the

expansion is valid for all z which distance less than 1 from the origin. This

expansion follows by the ‘same’ proof as for real variable functions — one

has

1− zn+1 = (1− z)(1 + z + · · ·+ zn)

so that
1

1− z
= 1 + z + · · ·+ zn +

zn+1

1− z
. (12.40)

But, writing z in polars z = Reiθ we have∣∣∣∣ zn+1

1− z

∣∣∣∣ ≤ Rn+1

1− |R|︸ ︷︷ ︸
> 0

−→ 0 as n→∞︸ ︷︷ ︸
provided R<1

. (12.41)

Hence letting n→∞ in (12.40) gives (12.39).

Exercise: Justify the estimate in (12.41).

Thus (12.39) shows (rigorously) that 1/(1−z) is holomorphic at the origin

a = 0.

We can immediately deduce from (12.39) that there is a power series

expansion around any a ∈ C\{1} — indeed, as you can see (12.39) implies

the power series expansion

1

1− z
=
∞∑
n=0

1

(1− a)n+1
(z − a)n valied for all |z − a| < |1− a|, (12.42)
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that is, valid provided z is closer to a that a is to 1 – which makes sense,

does it not?

Of course, it is ‘obvious’ from (12.32) that f(z) = 1
1−z is holomorphic

everywhere except at z = 1 because it is the quotient of two functions (1 and

1− z) which really are obviously holomorphic everywhere, so the only points

where f will fail to be holomorphic are where the denominator has zeroes,

i.e. at z = 1.

12.2.1 Some revision (from Calculus I)— Roots of unity:

Let n be a positive integer. We want to find the n roots in C of the equation

zn = 1. To this end write z = reiθ, r = |z|, θ = arg(z). Substitution gives

rn(eiθ)n = 1 and therefore rneniθ = (1)ei(0+2kπ), where k is any integer. It

follows that rn = 1, so that r = 1 (since r is real), and that nθ = 2kπ. We

can choose k = 0, 1, 2, 3, . . . (n − 1) to generate the required n roots; other

values of k merely give repetitions, as one easily checks. We conclude that

the n solutions of zn = 1 are given by

z = zk = ei(2kπ/n), k = 0, 1, 2, 3, . . . , (n− 1).

The n values zk, k = 0, 1, 2, 3, . . . , (n−1) are referred to as the n-th roots of

unity. k = 0 gives the obvious real root z = z0 = 1. Geometrically the n-th

roots of unity lie on the unit circle centre 0; the angular separation between

consecutive roots is clearly 2π/n. As an illustration consider the following

example.

For example, the roots of the equation z7 = 1 are given by

z = zk = ei(2kπ/7) = cos(2kπ/7) + i sin(2kπ/7), k = 0,±1,±2,±3.

(It’s convenient to choose these values of k rather than k = 0, 1, 2, 3, 4, 5, 6.

to generate the 7 roots) Now

(z7 − 1) = (z − 1)(z − z1)(z − z−1)(z − z2)(z − z−2)(z − z3)(z − z−3).

Since (z − zk)(z − z−k) = z2 − z(zk + z−k) + zkz−k = z2 − 2z cos(2kπ/7) + 1

we deduce that

z7 − 1

z − 1
= (z2−2z cos(2π/7)+1)(z2−2z cos(4π/7)+1)(z2−2z cos(6π/7)+1), z 6= 1.

The left-hand side is equal to 1 + z + z2 + · · · + z6 and if we now let z → 1

we obtain the formula

7 = 23(1−cos(2π/7))(1−cos(4π/7))(1−cos(6π/7)) = 2323sin2(π/7)sin2(2π/7)sin2(3π/7).
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Equivalently

sin2(π/7)sin2(2π/7)sin2(3π/7) = 7/64.

This result can obviously be generalized by applying the same considerations

to the equation z(2n+1) = 1.
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13 Lecture 13: Elements of the Cauchy Residue

Theorem

Here we are going to put in place some more of the elements that make up the

statement of the Cauchy-Residue Theorem – as stated as the beginning of the last

lecture. Remember that the point of all this is to enable us to compute Fourier

transforms explicitly and hence provide exact solutions to PDEs.

13.1 The Cauchy-Riemann equations.

Recall that φ : C → C is said to be holomorphic at a ∈ C (note: this is also

often alternatively referred to as being “analytic at a”) if there is a power series

expansion

φ(z) =
∑
n

βn (z − a)n, βn =
φ(n)(a)

n!
, for all z ‘near′ a. (13.1)

More precisely, ‘near’ means that there exists an ε > 0 such that (13.5) holds for

z ∈ Dε(a) := {w ∈ C : |w − a| < ε}.

At any rate, (13.5) says that φ has an expansion valid for z sufficiently near to a

φ(z) = β0 + β1 (z − a) + β2 (z − a)2 + β3 (z − a)3 + · · · (13.2)

in positive powers of z − a.

Another characterization of holomorphic is as follows:

Suppose that

f : C→ C, z = x+ iy 7→ f(z) = u(x, y) + iv(x, y),

is differentiable at a ∈ C — meaning that the partial derivatives ux = ∂u/∂x, uy,

vx vy exist and are continuous. Then f is holomorphic at a ∈ C if and only if in

some small enough disc Dε(a) centred at a ∈ C one has

∂f

∂z
= 0. (13.3)

An equivalent way to state (13.3) is

ux = vy and uy = −vx. (13.4)
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So (13.3) says that f is independent of z in Dε, which, since it is differentiable and

hence has no singularities, is what we said holomorphic intuitively means.

The equivalent form (13.4) (to (13.3)) are called the Cauchy Riemann equations.

To see why they are equivalent we can apply the Chain rule to the change of

coordinates

(x, y) 7→ (z = x+ iy, z = x− iy),

to obtain
∂

∂x
=
∂z

∂x

∂

∂z
+
∂z

∂x

∂

∂z
=

∂

∂z
+

∂

∂z
,

∂

∂y
=
∂z

∂y

∂

∂z
+
∂z

∂y

∂

∂z
= i

∂

∂z
− i ∂

∂z
,

which gives

∂

∂z
=

1

2

(
∂

∂x
− i ∂

∂y

)
,

∂

∂z
=

1

2

(
∂

∂x
+ i

∂

∂y

)
.

And hence (13.3) is the equality

0 =
∂f

∂z
=

1

2

(
∂

∂x
+ i

∂

∂y

)
(u(x, y) + iv(x, y))

=
1

2

(
∂u

∂x
− ∂v

∂y

)
+ i

1

2

(
∂u

∂y
+
∂v

∂x

)
which yields (13.4) on equating the real and imaginary parts to zero.

Example: Find, in terms of z = x + iy, the most general holomorphic function

whose real part is ex sin y.

Solution: Set f(z) = u + iv with u = ex sin y. The Cauchy-Riemann equations

state that
∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x

which gives

ex sin y =
∂v

∂y
,

∂v

∂x
= −ex cos y.

The first of these equations gives v = −ex cos y+ f1(x) and substituting this in the

second gives

−ex cos y + f ′1(x) = −ex cos y, f1(x) = C, C ∈ R.

Hence

f(z) = ex sin y + i(−ex cos y + C) = −iez + iC, C ∈ R.
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Example: Find, using the Cauchy-Riemann equations, the most general analytic

function f : C → C whose real part is given by u(x, y) = x − e−y sinx, ∀z =

x+ iy ∈ C. Express your answer in terms of z.

Solution: Since f is holomorphic is satisfies the Cauchy-Riemann equations

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x

from which we derive
∂v

∂y
= 1− e−y cosx (∗)

∂v

∂x
= −e−y sinx (∗∗)

Equation (*) then gives

v(x, y) = y + e−y cosx+ g(x)

and substitution in equation (**) shows that g must satisfy

−e−y sinx+ g′(x) = −e−y sinx, g′(x) = 0, g(x) = C

where C is real. Hence

f(z) = x+ iy − e−y sinx+ ie−y cosx+ iC = z + ieiz + iC.

Example: Show that if a holomorphic function has constant real part, then the

function is constant

Solution: With z = x + iy we have f(z) = c + iv(x, y) for some real constant c.

The Cauchy-Riemann equations therefore imply that

∂v

∂y
= 0,

∂v

∂x
= 0,

which says that v is independent of both x and y. Hence v(x, y) = c′ is a real

constant and thus f(z) = c+ ic′ is likewise constant.

13.2 Poles and residues

If φ : C → C is holomorphic a ∈ C (note: this is also often alternatively referred

to as being “analytic at a”) then there is a power series expansion

φ(z) =
∑
n≥ 0

βn (z − a)n, βn =
φ(n)(a)

n!
, for all z ‘near′ a. (13.5)
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That is, φ has an expansion valid for z sufficiently near to a

φ(z) = β0 + β1 (z − a) + β2 (z − a)2 + β3 (z − a)3 + · · · (13.6)

in positive powers of z − a.

On the other hand, if f : C → C, z 7→ f(z), has an isolated singularity at a ∈ C
(meaning that f is not holomorphic at a but it is holomorphic at those points

z ∈ C with 0 < |z − a| < ε some ε > 0) and the singularity at a looks like

f(z) =
β−m

(z − a)m
+ . . . +

β−1
(z − a)

+ φ(z), 0 < |z − a| < ε, (13.7)

with φ holomorphic for |z − a| < ε, then f is said to have a pole of order m at

a. Note that the complex numbers occuring in (13.7)

β−r = β−r(a)

will depend on the point a ∈ C. If (13.7) holds with m = 1, i.e. if for some ε > 0

f(z) =
β−1(a)

(z − a)
+ φ(z), 0 < |z − a| < ε, (13.8)

with φ holomorphic at a ∈ C, then f is said to have a simple pole at a.

If f has a pole at a (of some order) then the residue of f at a is defined by

res(f, a) = β−1(a). (13.9)

(13.7) can be equivalently written

f(a+ h) =
β−m(a)

hm
+ . . . +

β−1(a)

h
+ φ(a+ h), 0 < |h| < ε, (13.10)

which can sometimes be easier for computing (13.9); note also that (13.5) may be

similarly written

φ(a+ h) =
∑
n≥ 0

βn(a)hn, βn(a) =
φ(n)(a)

n!
, for all ‘small′ h. (13.11)

13.2.1 Computing residues

In order to use the Cauchy Residue Theorem effectively we need to have some

methods for computing residues. For particularly simple functions one can do this

directly, but more generally it is usually easier to resort to one of the following

formulae for computing residues.
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Suppose that

f(z) =
φ(z)

z − a
where φ is holomorphic at a. (13.12)

Then

res(f, a) = φ(a). (13.13)

We can use this to easily compute, for example, the following residues (which can

also be computed directly from the expansion (13.7) quite easily). So clearly we

have

if f(z) =
ez

z − 4
then res(f, 4) = e4,

for example. More subtle is the function

f(z) =
1

(z − 5)(z − 1)
.

This has two simple-poles, one at 1 and one at 5 – that’s because it’s the quotient

of two polynomials in z, and polynomials in z which are holomorphic everywhere,

so the only singular points can arise from the zeroes of the polynomial in the

denominator.

The pole at 1:

Direct computation: We have

f(z) = −1

4

1

(z − 1)
+

1

4

1

(z − 5)︸ ︷︷ ︸
holomorphic at z=1

. (13.14)

The crucial point here is that this φ(z) = 1
4

1
(z−5) is holomorphic at z = 1 — in

fact, it is holomorphic everywhere except at z = 5. So (13.14) is of the form (13.8)

from which we read-off

res

(
1

(z − 5)(z − 1)
, 1

)
= −1

4
. (13.15)

Alternatively, we may use (13.13): write

f(z) =
φ(z)

z − 1
with φ(z) =

1

z − 5
.

Again, this φ(z) is holomorphic at z = 1 so we can apply (13.13) and obtain

res

(
1

(z − 5)(z − 1)
, 1

)
= φ(1) =

1

1− 5
= −1

4
. (13.16)
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The pole at 5: Exercise – use a similar argument to show that

res

(
1

(z − 5)(z − 1)
, 5

)
=

1

4
. (13.17)

An easy generalization of (13.13) is:

Suppose

f(z) =
φ(z)

(z − a)m
, φ holomorphic at a, (13.18)

then

res(f, a) =
φ(m−1)(a)

(m− 1)!
. (13.19)

For example,

if f(z) =
sin(3z)

(z − 2i)3

then we can apply (13.19) with m = 3, a = 2i and φ(z) = sin(3z). Since, then,

φ(2)(z) = −9 sin(3z)

we have φ(2)(2i) = −9 sin(6i) = 9i sinh(6) and hence

res(f, 2i) =
9i

2
sinh(6).

But not all functions with a pole at a ∈ C look like (13.18) —for example

f(z) = cot(πz)

has a simple pole at each integer, but is not of the form (13.18). But in this case,

at least, we can use the following residue formula:
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Suppose that

f(z) =
φ(z)

ψ(z)
(13.20)

with φ and ψ holomorphic at a ∈ C, and that

ψ(a) = 0 and ψ
′
(a) 6= 0.

Then f has a simple pole at z = a and

res(f, a) =
φ(a)

ψ′(a)
. (13.21)

Notice that the requirement that ψ
′
(a) 6= 0 means that this formula does not apply

to (13.18) if m > 1.

Example For

f(z) = cot(πz) =
cos(πz)

sin(πz)

we can apply the formula with φ(z) = cos(πz) and ψ(z) = sin(πz); for, both

these functions are holomorphic everywhere and so the only poles of f are where

sin(πz) = 0, which occurs when z = n ∈ Z is an integer and then ψ′(n) =

π cos(πn) 6= 0 and we have

res(cot(πz), n) =
1

π
. (13.22)
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14 Lecture 14: Computing more residues

In this lecture we saw how to derive the formulae below for residues and saw some

more examples.

14.1 Formulae for computing residues

Suppose that

f(z) =
φ(z)

z − a
where φ is holomorphic at a. (14.1)

Then

res(f, a) = φ(a). (14.2)

Suppose

f(z) =
φ(z)

(z − a)m
, φ holomorphic at a, (14.3)

then

res(f, a) =
φ(m−1)(a)

(m− 1)!
. (14.4)

Suppose that

f(z) =
φ(z)

ψ(z)
(14.5)

with φ and ψ holomorphic at a ∈ C, and that

ψ(a) = 0 and ψ
′
(a) 6= 0.

Then f has a simple pole at z = a and

res(f, a) =
φ(a)

ψ′(a)
. (14.6)

Example To identify where f(z) = sinh(z)
z−3 has a pole, note that both φ(z) =

sinh(z) and ψ(z) = z−3 are holomorphic for all z and hence the quotient φ(z)/ψ(z)

is holomorphic except at any point where ψ(z) = 0. For the case here, there is

therefore a pole at 3 ∈ C. To compute its residue we may use (14.2) to see

res(f, 3) = φ(3) = sinh(3).
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We might, on the other hand, alternatively use (14.6), though (14.2) is simpler in

this case. Alternatively, we can compute directly

f(3 + h) =
sinh(3 + h)

h
=

1

h
· 1

2
(e3eh − e−3e−h)

and use e±h =
∑

n≥0(±h)n/n! to see that the coefficient of 1/h is 1
2
(e3 − e−3),

confirming what we have just computed using the formulae.

Note, though, if we instead want to know the residue of

g(z) =
sinh(z)

(z − 3)2

then neither (14.2) nor (14.6) can be used, but (14.4) can. So, what is

res

(
sinh(z)

(z − 3)2
, 3

)
?

Example For

f(z) =
1

z4 + 1

we can apply the formula with φ(z) = 1 and ψ(z) = z4 + 1. Both these functions

are holomorphic everywhere and so the only poles of f are where z4 + 1 = 0, that

is, where z4 = eiπ = e(2k+1)πi with k an integer. There are at most four distinct

solutions (being a polynomial of order four) and these occur for k = 0, 1, 2, 3; that

is, at

e
π
4
i, e

3π
4
i, e

5π
4
i, e

7π
4
i.

We have ψ′(e
(2k+1)

4
πi) = 4e

3
4
(2k+1)πi 6= 0, so we can apply the formula to get

res

(
1

z4 + 1
, e

(2k+1)
4

πi

)
=

1

4
e−

3
4
(2k+1)πi. (14.7)

For instance,

res

(
1

z4 + 1
, e

π
4
i

)
=

1

4
e−

3
4
πi = − 1

4
√

2
(1 + i). (14.8)

Exercise — compute in the form a+ ib the other three poles

Exercise: state where the poles of the function

f(z) =
eiz

z2 + a2

occur (there are two) and compute the residue at each point. See the Assignment

sheets for more examples.
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15 Evaluating integrals with the CRT

The Cauchy Residue Theorem:

Let C ⊂ C be a simple closed contour. Let f : C→ C be a complex function which

is holomorphic along C and inside C except possibly at a finite number of points

a1, . . . , am at which points f has poles. Then, with C oriented in an anti-clockwise

sense, ∫
C

f(z) dz = 2πi
m∑
k=1

res(f, ak), (15.1)

where res(f, ak) is the residue of the function f at the point ak ∈ C. If f has no

poles inside C (f is holomorphic inside C) then
∫
C
f(z) dz = 0.

15.1 The right-hand side of the Cauchy Residue Formula

(15.1): adding-up residues

If φ(z) is analytic at a, then from (15.1) and formula (14.2) of online lecture 14 we

have

∫
C

φ(z)

z − a
dz = 2πi res

(
φ(z)

z − a
, a

)
(15.2)

=

{
2πi φ(a), if a is inside C

0, if a is outside C.

Let

C(a,R) = circle centred at a ∈ C and with radius R > 0.

15.2 Example

Since the functions ez and z are holomorphic every where the only pole of f(z) = ez

z

is at z = 0 with, by (15.2), residue equal to e0 = 1. Hence∫
C(0,1)

ez

z
dz = 2πi. (15.3)
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15.3 Example

Evaluate ∫
γ

ez

(z − 1)(z − 3)
dz,

taken round the circle γ given by |z| = 2 in the positive (anti-clockwise) sense.

What is the value of the integral taken around the circle |z| = 1/2 in the positive

sense?

We have f(z) = φ(z)
z−a with φ(z) = ez/(z−3)

z−1 and a = 1; i.e. this φ(z) = ez/(z − 3) is

analytic everywhere inside the curve |z| = 2 — and, in particular, at z = 1. Hence

from (15.2) ∫
γ

ez

(z − 3)(z − 1)
dz = 2πi φ(1) = −πi e.

If the integral is taken around |z| = 1/2 then the CIF says that∫
|z|=1/2

ez

(z − 3)(z − 1)
dz = 0

as the integrand is analytic everywhere inside the contour (i.e. there are no poles).

Likewise, from (15.1) and (14.4) of online lecture 14 we can compute∫
C

φ(z)

(z − a)m
dz = 2πi res

(
φ(z)

(z − a)m
, a

)

=

{
2πi φ

(m−1)(a)
(m−1)! , if a is inside C

0, if a is outside C.

15.4 Example

Evaluate the contour integral ∫
C

sin(3z)

(z − 2i)2
dz. (15.4)

With φ(z) = sin(3z), a = 2i, m = 2, we have∫
C

sin(3z)

(z − 2i)2
dz = 2πi 3 cosh 6 = 6πi cosh 6.
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On the other hand, if g analytic at a ∈ C while

ψ(a) = 0 and ψ
′
(a) 6= 0,

from (15.1) and (14.6) of online lecture 14 we infer that if a is inside the contour

C then ∫
C

g(z)

ψ(z)
dz = 2πi

g(a)

ψ′(a)
. (15.5)

If there are two points a1, a2 ∈ C which are inside the contour C and which are

poles of this type, then∫
C

g(z)

ψ(z)
dz = 2πi

g(a1)

ψ′(a1)
+ 2πi

g(a2)

ψ′(a2)
, (15.6)

and so on.

15.5 Example

Evaluate ∫
C(0,5/2)

cot(πz) dz.

We saw in an earlier Insertion that cot(πz) has a simple pole at each integer n ∈ Z
with residue

res(cot(πz), n) =
1

π

(independent of n). Now, the contour C(0, 5/2) is the circle centred at the origin with

radius 5/2, and hence it contains within it only the integers −2,−1, 0, 1, 2 and hence

these are the only poles of cot(πz) which contribute to the integral. That is, using the

extension of (15.6) to the case of 5 poles of that type we obtain∫
C(0,5/2)

cot(πz) dz

= 2πi {res(cot(πz),−2) + res(cot(πz),−1) + res(cot(πz), 0) + res(cot(πz), 1) + res(cot(πz), 2)}

= 2πi

(
1

π
+

1

π
+

1

π
+

1

π
+

1

π

)
= 10 i.
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15.6 Example

Evaluate ∫
CR

1

z4 + 1
dz,

where CR is the union of the line segment [−R,R] on the x-axis and the semicircle

centre at 0 and radius R > 0 in the upper-half plane.

Write the integrand as

f(z) =
g(z)

φ(z)
, g(z) = 1, φ(z) = 1 + z4.

Since g and φ are analytic everywhere (‘entire’) the poles of f are precisely the zeroes

of φ — that is, at e±iπ/4, e±i3π/4. But only eiπ/4, ei3π/4 are inside CR and so only these

two poles contribute to the integral, i.e. by the CRF∫
CR

1

z4 + 1
dz = 2πi

{
res(f(z), eiπ/4) + res(f(z), ei3π/4)

}
.

We have φ
′
(z) = 4z3 and this is non-zero at the poles, i.e. φ

′
(eiπ/4) and φ

′
(ei3π/4) are

non-zero. Hence the poles are simple and using (15.5) we have

res(f(z), eiπ/4) =
1

4ei3π/4
=
e−3iπ/4

4
, res(f(z), e3iπ/4) =

1

4ei9π/4
=
e−iπ/4

4
.

Hence ∫
CR

1

z4 + 1
dz =

π√
2
.

15.7 Example

Evaluate ∫
S

eiz

z2 + a2
dz,

where S is the square with vertices at ±a± 2ia.

Write the integrand as

f(z) =
g(z)

φ(z)
, g(z) = eiz, φ(z) = z2 + a2.

Since g and φ are entire, the poles of f are precisely the zeroes of φ — that is, at ±ia.
Since both poles are are inside S we have by the CRF and (15.5)∫

S

eiz

z2 + a2
dz = 2πi {res(f(z), ia) + res(f(z),−ia)}
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= 2πi

{
e−a

2ia
+

ea

−2ia

}
.

= −2π sinh a

a
.
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16 Lecture 16: Integration along a contour

A path γ is a smooth function

γ : [a, b]→ C, t 7→ γ(t) = x(t) + iy(t)

for some a ≤ b. Here, ‘smooth’ means γ′(t) = x′(t)+iy′(t) exists for each t. We say

that γ is closed if γ(a) = γ(b) (it is like a loop of string). γ is said to be simple

if it does not cross itself i.e γ(t) = γ(t′) implies t = t′. γ is said to be closed and

simple if γ(t) = γ(t′) implies t = t′ for t ∈ (a, b) and also γ(a) = γ(b).

It can be important to distinguish between a path and the geometric curve in C it

traces out; for example, the paths

γ1(t) = e2πit, 0 ≤ t < 1 and γ2(t) = e−4πit, 0 ≤ t ≤ 1,

both describe the unit circle in C (or R2) of points with distance 1 from the origin,

but the first path goes around the circle just once (anti-clockwise) while the second

goes around four times and in the opposite sense (clockwise). Thus the second path

is not ‘simple’. The path γ(t) = e−5πit with 0 ≤ t ≤ 1, on the other hand, also

traces out the unit circle but γ is neither closed nor simple. We may, nevertheless,

sometimes refer to γ as a ‘curve’. The point is that if a path is simple then it

defines a coordinate for the geometric curve it describes and we can use that to

evaluate integrals along paths/curves.

Note that choosing a simple path γ : [a, b] → C describing a curve C ⊂ C deter-

mines a direction along the curve C — one can start at a and end at b, or vice-versa.

Given a choice of simple path γ describing C, the reverse path γ̃ describes C in

the opposite sense by

γ̃ : [a, b]→ C, γ̃(t) = γ(a+ b− t).

A contour is a piecewise smooth simple path. That is, it is a union of paths

which do not cross each other except possibly at the end points where they may

match-up — for example, (the perimeter of) a square is the union of four straight

lines coinciding pairwise at the corners. More formally, if γ : [a, b] → C is a

contour we can partition [a, b] by points a0, a1, . . . , am−1, am (for some m) such

that a = a0 < a1 < a2 < . . . < am−1 < am = b and for which γ : [ai, ai+1] → C is

smooth for 0 ≤ i ≤ m − 1. We denote the restriction of γ to [ai, ai+1] by γi and

write in an obvious notation γ = γ0 + γ1 + · · · + γm−1. we may refer to the image

C = γ([a, b]) ⊂ C as the geometric contour described by C — note any geometric

contour C ⊂ C can be described by infinitely many different paths – that is, a

path γ is a choice of function, or coordinate, to describe C and there are many
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such choices (just as there are for an navigational atlas); the point is that γ is

a means to evaluate integrals along C, but the numerical answer is independent

of the particular choice of γ. The choice of γ = γ0 + γ1 + · · · + γm−1 is called a

parametrization of the geometric contour C ⊂ C.

16.1 Integration along a contour

We begin by noting that if g : [a, b] → C is a continuous complex valued function

such that g(t) = g1(t) + ig2(t), where g1, g2 are real valued on [a, b], then∫ b

a

g(t) dt =

∫ b

a

g1(t) dt+ i

∫ b

a

g2(t) dt.

Note that it is immediate from the definition that∫ b

a

g′(t) dt = g(b)− g(a) (16.1)

since we know this holds for the real valued functions g1 and g2.

Now let γ : [a, b]→ C be a smooth curve and suppose that f : C→ C is a function

which is continuous in a region containing the path traced out by γ. We wish to

define the integral of f along the curve γ,∫
γ

f(z) dz

A natural way to proceed is to partition [a, b] as above by points t0, t1, . . . tn−1, tn
such that a = t0 < t1 < t2 < . . . < tn−1 < tn = b. The points zj = γ(tj) define a

polygon with vertices at z0, z1, . . . , zn. We may form the sum

n∑
j=1

f(tj)(zj − zj−1) =
n∑
j=1

f(tj)
γ(tj)− γ(tj−1)

tj − tj−1︸ ︷︷ ︸
γ′ (tj) + o(t)

(tj − tj−1)︸ ︷︷ ︸
δtj

.

(Note, f could be evaluated at any point sj ∈ [tj−1, tj]. As we take finer and finer

partitions we can take the limit of these sums and as the length of the longest

interval tends to zero, it tends to
∫ b
a
f(γ(t))γ′(t) dt.
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We will take this integral as our definition of
∫
γ
f(z) dz. To be precise:

Definition 16.1 Let γ : [a, b] → C be a smooth curve and suppose that f is a

function which is continuous in a region containing the path of γ. Then∫
γ

f(z) dz =

∫ b

a

f(γ(t))γ′(t) dt.

Since z = γ(t) it may perhaps appeal to our intuition if we write the integral in

the equivalent notation ∫ b

a

f(z(t))
dz

dt
dt, z(t) = γ(t).

If, in the usual notation, we write f(z) = u(x, y) + iv(x, y), z(t) = γ(t) we have∫
γ

f(z) dz =

∫ b

a

{
u
(
x(t), y(t)

)
+ iv

(
x(t), y(t)

)}
(x′(t) + iy′(t)) dt

=

∫ b

a

{
u
(
x(t), y(t)

)
x′(t)− v

(
x(t), y(t)

)
y′(t)

}
dt

+ i

∫ b

a

{
v
(
x(t), y(t)

)
x′(t) + u

(
x(t), y(t)

)
y′(t)

}
dt.

If γ is a contour we make the definition:

Definition 16.2 ∫
γ

f(z) dz =
n∑
j=1

∫
γj

f(z) dz,

where the γj are the smooth parts of γ. We also often write this indicating only the

path C (resp. Cj) traced out by γ (resp γj)∫
C

f(z) dz =
n∑
j=1

∫
Cj

f(z) dz.

In this case it is assumed that γ (resp. γj) is a parametrization of the path C (resp.

Cj).

It will be useful to note the following basic properties: Let γ be a contour. For

constants α, β ∈ C
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• ∫
γ

(αf(z) + βg(z)) dz = α

∫
γ

f(z) dz + β

∫
γ

g(z) dz, (16.2)

• ∫
γ̃

f(z) dz = −
∫
γ

f(z) dz, (16.3)

where γ̃ is the reverse curve to γ

• Let

γ : [a, b] −→ C, t 7→ γ(t), µ : [c, d] −→ C, s 7→ µ(s),

be two parametrizations of a path C ⊂ C. Then if they both have the same

direction ∫
γ

f(z) dz =

∫
µ

f(z) dz. (16.4)

That is,
∫
C
f(z) dz is independent of the choice of parametrization (up to

sign).

16.2 Some Examples

16.2.1 Example

Let us evaluate
∫
C

2z dz where C is the portion of the circle with centre at 1 and

of radius 2 with Re(z) ≥ 0 and Im(z) ≥ 0

We have to choose a parametrization of C and an easy one is

γ(t) = 1 + 2eit, 0 ≤ t ≤ π.

So ∫
C

2z dz =

∫ π

0

(1 + 2eit) 2ieit dz = −8,

where for the final equality we make use of (16.1).

16.2.2 Example

Evaluate
∫
γ
z dz, where γ = γ1 + γ2, γ1 being the line segment from 1 to 0 and γ2

being the line segment from 0 to 2 + 2i.

In this case the contour consists of two lines and we need to parametrize them

separately by, for example,

γ1 : [0, 1]→ C, γ1(t) = 1− t,
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and

γ2 : [0, 1]→ C, γ2(t) = t(2 + 2i)

So ∫
C

z dz =

∫
γ1

z dz +

∫
γ2

z dz.

We have in each case ∫
γj

z dz =

∫ 1

0

γj(t) γ
′
j(t) dt

from which we find
∫
γ1
z dz = −1/2 and

∫
γ2
z dz = 4, so that∫

γ

z dz =
7

2
.

16.2.3 Example

Evaluate
∫
C
z2 dz, where C = C1 + C2 with C1 the line segment from −2 to 2

on the real axis, and C2 the semi-circle of radius 2 and centre 0 in the upper-half

plane from 2 to −2.

The contour consists of two pieces which we need to parametrize separately. Parametrize

C1 by, for example,

γ1 : [−2, 2]→ C, γ1(t) = t,

and C2 by, for example,

γ2 : [0, π]→ C, γ2(t) = 2eit.

So ∫
C

z2 dz =

∫ 2

−2
t2 dt +

∫ π

0

4e2it · 2ieit dt = 0.

Make sure you can see why.

16.2.4 Useful parametrization formulae

Here are some general formulae one can always use (in case no better choice of

parametrization is obvious):

To parametrize a straight line which begins at a ∈ C and ends at b ∈ C:

γ : [0, 1]→ C, γ(t) = a(1− t) + tb = a+ t(b− a). (16.5)

To parametrize a circle C(a, r) centred at a ∈ C and of radius r > 0:

γ : [0, 2π]→ C, γ(t) = a+ r eit. (16.6)
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Likewise, one can parametrize an arc of the circle by suitably restricting t — what

happens, for example, if we restrict t to [π/2, 3π/2]?

16.2.5 A particularly important Example

This example is one of the key elements that goes into the Cauchy Residue theorem.

Let C(a, r) be the circle of radius r > 0 with centre at a ∈ C. Then

∫
C(a,r)

1

(z − a)n
dz =

{
0 n 6= 1

2πi n = 1.
(16.7)

Let us emphasize
1

2πi

∫
C(a,r)

1

(z − a)
dz = 1 (16.8)

for any r > 0. This says, in fact, that this integral is measuring a ‘topological’

(look it up) property of the complex plane with a hole at a (in the sense that the

function being integrated is only holomorphic on C\{a}, i.e. it is in some sense

detecting there is a hole in the punctured plane C\{a} – it does not matter which

particular contour you use to detect it (as long as a is inside the contour).

Exercise: use the parametrization (16.6) to see (16.7).
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17 Lecture 17: FTC and the CRT

Here, we will outline the argument for the Cauchy Residue Theorem (CRT), based

on a certain Fundamental Theorem of Calculus (FTC) for contour integrals.

In practise, we evaluate real integrals analytically by ‘reverse differentiation’, using

the FTC for real integrals. A similar result is true for certain types of contour

integration:

Theorem 17.1 Let f : C → C be a complex function, and let C be a contour

beginning at p ∈ C and ending at q ∈ C. If f = F ′ is the derivative of a function

F which is holomorphic at each point of C (recall here F ′(z) := ∂F/∂z) then∫
γ

f(z) dz = F
(
q
)
− F

(
p
)
. (17.1)

In particular, if C is a closed contour and f = F ′ then∫
C

f(z) dz = 0. (17.2)

(Recall, a ‘closed contour’ is a contour which looks something like a circle, or a

loop of string, it has no end points.)

Non-examinable: To see this, assume we have a smooth parametrisation of C

γ : [a, b]→ C ⊂ C, t 7→ γ(t), p = γ(a), q = γ(b).

Then along the contour f(z) = F ′(z) and so∫
C

f(z) dz :=

∫ b

a

f(γ(t)) γ̇(t) dt

=

∫ b

a

F ′(γ(t)) γ̇(t) dt

=

∫ b

a

d

dt
F (γ(t)) dt

= F (γ(b))− F (γ(a))

= F (q)− F (p),

where γ̇ = dγ/dt and the Chain rule for derivatives is used in the third equality.

The FTC can greatly simplify the evaluation and analysis of contour integrals.

Example: As a simple example, let f(z) = (z− a)m, where m is an integer. If C

is a smooth curve which does not pass through a ∈ C and which starts at p and
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ends at q then∫
C

(z − a)m dz =
1

m+ 1

[
qm+1 − pm+1

]
provided m 6= −1 (17.3)

since F (z) = 1
m+1

(z−a)m+1 is a primitive for (z−a)m on C if m ≥ 0 and on C\{a}
if m < −1. In particular if C = Cclosed is a closed contour then∫

Cclosed

(z − a)m dz = 0 provided m 6= −1 (17.4)

On the other hand, when m = −1 and Cclosed is a simple (no self-crossings) closed

contour then∫
Cclosed

(z − a)−1 dz =

{
2πi, if a is inside the contour

0, if a is outside the contour.
(17.5)

We can write (17.5) for the case of a circle C(a, r) centred at a of radius r > 0 as∫
C(a,r)

(z − a)−1 dz = 2πi. (17.6)

Exercise: How about
∫
C(b,r)

(z − a)−1 dz where b 6= a? (Your answer will depend

on |a− b|).

The identities (17.5) and (17.6) hold because although on proper subsectors of C
the function (z − a)−1 does have a primitive

(z − a)−1 =
∂

∂z
Log(z − a) ‘locally’

there does not exist a function F (z) defined on along all of the circle C(a, r)

with derivative equal to (z − a)−1; hence the FTC Theorem 17.1 does not apply,

the actual evaluation 2πi was done in the previous lecture. The logarithm Log

(z-a) above is only defined along proper sub-arcs of the circle C(a, r), not all

the way around (in fact, logarithms are amazing functions and give rise to some

extraordinary invariants of punctured space, allowing us to say mathematically

why, for example, a sphere is different from flat space or from a torus).

In fact, (17.5) follows from the simpler fact (17.6) because of the following funda-

mental theorem:

Theorem 17.2 (Cauchy’s Theorem) Let f : C → C be a complex function, and

let Cclosed ⊂ C be a simple closed contour. Then if f is holomorphic along and at

all points inside Cclosed, then ∫
Cclosed

f(z) dz = 0. (17.7)
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The proof of this theorem essentially involves showing that if f is holomorphic

along and at all points inside Cclosed that f then has a primitive; there exists a

holomorphic function F in the same region with F ′(z) = f(z). We can then apply

(17.2) of the FTC to infer the result. The proof is given in full detail in the course

6CCM322A Complex Analysis which is a 3rd year mathematics option.

You need to know the statement of the above theorems, but not the proofs.

Cauchy’s Theorem 17.2 combined with (17.6) yields the Cauchy Residue Theo-

rem 17.3 (CRT), as is explained below.

Theorem 17.3 (Cauchy Residue Theorem) Let Cclosed ⊂ C be a simple closed

contour which is positively oriented (anti-clockwise). Let f : C → C be a complex

function which is holomorphic along C and inside Cclosed except possibly at a finite

number of points a1, . . . , am inside Cclosed at which points f has poles. Then∫
Cclosed

f(z) dz = 2πi
m∑
k=1

res(f, ak), (17.8)

where res(f, ak) is the residue of the function f at the point ak.

The identity (17.8) is sometimes referred to as the Cauchy residue formula (CRF).

Example: Suppose Cclosed encloses a point a ∈ C, and let φ(z) be a function

which holomorphic along and inside Cclosed (including at a ∈ C) then the only pole

of f(z) = φ(z)
z−a is at a ∈ C with (from equation (15.9) of online lecture 15 “Poles

and residues”) residue φ(a). Hence (17.8) yields∫
Cclosed

φ(z)

z − a
dz = 2πi φ(a). (17.9)

in terms of φ(a). (This is known as the Cauchy integral formula.) For example, we

can apply (17.9) to
∫
C(0,1)

ez

z
dz with φ(z) = ez and a = 0 to obtain∫

C(0,1)

ez

z
dz = 2πi. (17.10)

Moreover, if we then evaluate this integral using the parametrisation

γ : [0, 2π]→ C(0, 1) ⊂ C, t 7→ eit,

and equate the real and imaginary parts of the result to the real and imaginary

parts of the right-hand side of (17.10) (respectively equal to 0 and 2π) then we

obtain the interesting evaluation of real integrals∫ 2π

0

ecos(t) cos(sin(t)) dt = 2π,

∫ 2π

0

ecos(t) sin(sin(t)) dt = 0. (17.11)

Exercise: Make sure you can derive (17.11).
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17.1 Proof of (17.8): Non-examinable

First, let us see how Theorem 17.2 combined with (17.6) yields (17.5).

If a is outside the contour Cclosed then f(z) = (z−a)−1 is holomorphic along Cclosed

and at all points inside it, hence Theorem 17.2 says that
∫
Cclosed

(z − a)−1 dz = 0

and we are done.

If a is inside Cclosed we use the following deformation argument. We have, then,

the following situation:

So we drill a hole in Cclosed and construct the following ‘key hole’ contour Γε for

some small ε > 0:

The point a is outside of the closed contour Γε and so f(z) = (z−a)−1 is holomor-
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phic along and at all points inside Γε so that Theorem 17.2 implies∫
Γε

(z − a)−1 dz = 0 ∀ ε > 0. (17.12)

We next let ε = 0 and infer from (17.12) by continuity that also∫
Γ0

(z − a)−1 dz = 0 (17.13)

where Γ0 is the contour

Γ0 = Cclosed

⋃
L+

⋃
C−(a, r)

⋃
L− (17.14)

and C−(a, r) is the same circle as C(a, r) but traversed negatively (clockwise)

From (17.13) and (17.14) (and definition (17.2)) we have

0 =

∫
Cclosed

(z − a)−1 dz +

∫
L+

(z − a)−1 dz +

∫
C−(a,r)

(z − a)−1 dz +

∫
L−

(z − a)−1 dz

(17.15)

But from the identity (17.3) of online lecture notes 17∫
L+

(z − a)−1 dz = −
∫
L−

(z − a)−1 dz

and hence from (17.15) that∫
Cclosed

(z − a)−1 dz =

∫
C(a,r)

(z − a)−1 dz (17.16)

again using (17.3) to note that
∫
C−(a,r)

= −
∫
C(a,r)

.



6

Hence we have used Theorem 17.2 (in (17.12)) to see that (17.6) implies (17.5).

Now consider (17.8) in the case where k = 1; there is a single pole a1 = a. Then

exactly the same argument as the one we have just used but with (z−a)−1 replaced

by f(z) shows that ∫
Cclosed

f(z) dz =

∫
C(a,r)

f(z) dz. (17.17)

This holds for any r > 0 (so this is really a topological fact), so we may take r

sufficiently small that it is inside a disc small enough for the Laurent expansion of

f at a to hold (see earlier lectures)

f(z) =
β−m

(z − a)m
+ . . . +

β−1

(z − a)
+ φ(z) (17.18)

with φ holomorphic everywhere inside the disc. So we can substitute this into the

right-hand side of (17.17) to obtain∫
Cclosed

f(z) dz =
m−1∑
j=0

β−m+j

∫
C(a,r)

(z − a)−m+j dz +

∫
C(a,r)

φ(z) dz. (17.19)

But
∫
C(a,r)

φ(z) dz = 0 by Theorem 17.2 while
∫
C(a,r)

(z−a)−m+j dz is only non-zero

when −m+ j = −1 in which case it is equal to 2πi. That is,∫
Cclosed

f(z) dz = β−1 2π i, (17.20)

which is (17.8) for the case of a single pole.

The case for multiple poles is easily obtained by interating the above argument,

this is left to you as an exercise.
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18 Evaluating real integrals using the Cauchy

Residue theorem

The Cauchy Residue Theorem states:

Let C ⊂ C be a simple closed contour. Let f : C→ C be a complex function which

is holomorphic along C and inside C except possibly at a finite number of points

a1, . . . , am at which points f has poles. Then, with C oriented in an anti-clockwise

sense, ∫
C

f(z) dz = 2πi
m∑
k=1

res(f, ak), (18.1)

where res(f, ak) is the residue of the function f at the point ak ∈ C.

This provides us with a powerful method of computing real integrals which would

be impossible to evaluate using standard real integration techniques on R.

In fact, every time we evaluate a contour integral using (18.1) we evaluate two real

integrals. For, if γ : [a, b]→ C ⊂ C is a parametrisation of C then since∫
C

f(z) dz =

∫ b

a

f(γ(t)) γ′(t) dt (18.2)

while f(γ(t)) γ′(t) = α(t) + iβ(t) for some real valued functions α, β : [a, b] → R
so that ∫

C

f(z) dz =

∫ b

a

α(t) dt + i

∫ b

a

β(t) dt. (18.3)

On the other hand, we can also write the right-hand side 2πi
∑m

k=1 res(f, ak) of

(18.1) as

2πi
m∑
k=1

res(f, ak) = A+ iB for some real numbers A,B ∈ R, (18.4)

and hence we obtain the evaluations∫ b

a

α(t) dt = A (18.5)

and ∫ b

a

β(t) dt = B. (18.6)
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18.0.1 Example:

Parametrise Cab the ellipse x2

a2
+ x2

b2
= 1, where a, b ∈ (0,∞), by γ(t) = a cos t +

ib sin t, 0 ≤ t ≤ 2π. Then the Cauchy residue theorem tells us that∫
Cab

1

z
dz = 2πi. (18.7)

On the other hand, using the parametrization we have∫
C

1

z
dz =

∫ 2π

0

1

a cos t+ ib sin t
(−a sin t+ ib cos t) dθ

= Real Part + i

∫ 2π

0

ab

a2 cos2 t+ b2 sin2 t
dt. (∗)

Equating the imaginary parts of this with that of (18.7) we obtain the evaluation∫ 2π

0

1

a2 cos2 t+ b2 sin2 t
dt =

2π

ab
.

What does equatng the real parts yield? (You will need to compute the “Real

Part” in (*) to find out!

18.0.2 Exercise:

By considering the contour integral
∫
C(0,1)

1
z2+4z+1

dz show that∫ 2π

0

1

2 + cos(t)
dt =

2π√
3
.
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18.1 Evaluating integrals
∫∞
−∞ f(x) dx over the whole real

line

Specifically this will provide us with a method of evaluating Fourier transforms

and hence obtaining explicit solutions to a given ODE or PDE.

The idea is to compute
∫
CR
f(z) dz over a simple closed contour, typically, of the

form

CR = [−R,R] ∪ AR
where f is holomorphic on and inside CR except possibly at poles a1, . . . , amR

inside

CR, and then allow R→∞. Since∫
CR

f(z) dz =

∫
[−R,R]

f(z) dz +

∫
AR

f(z) dz

=

∫ R

−R
f(x) dx +

∫
AR

f(z) dz,

the aim is to choose AR so that

lim
R→∞

∫
AR

f(z) dz = 0 (18.8)

and hence that by the Cauchy Residue Theorem infer that∫ ∞
−∞

f(x) dx = lim
R→∞

2πi

mR∑
k=1

res(f, ak). (18.9)

Note that the right-hand side must in this case be a real number. This method

depends on the convergence of all the limits and the existence of the integrals and

so forth — but it works for large classes of functions.

18.1.1 Estimating contour integrals

The following fact is useful in showing properties like (18.8).

We know that for continuous real valued functions f : [a, b]→ R that∣∣∣∣∫ b

a

f(x) dx

∣∣∣∣ ≤ ∫ b

a

|f(x)| dx.

This extends to complex integrals in the following way.

Theorem 18.1 Let C be a contour in C. Then∣∣∣∣∫
C

f(z) dz

∣∣∣∣ ≤ ∫ b

a

|f
(
γ(t)

)
| · |γ′(t)| dt, (18.10)
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where γ : [a, b]→ C ⊂ C is a parametrisation of C.

Note that if |f(z)| ≤ M, ∀ z ∈ C (f is bounded by M along C, this implies

|
∫
C
f(z) dz| ≤MLC, where LC is the length of C.

Proof (non-examinable): To prove this result we first note that if
∫
C
f = 0 then

there is nothing to prove. We therefore suppose that
∫
C
f 6= 0 and let θ =

arg
∫
C
f. (Recall if w = reiθ then arg(w) = θ ∈ [0, 2π).) We then have

∫
C
f =

eiθ
∣∣∫
C
f
∣∣, so that∣∣∣∣∫
C

f

∣∣∣∣ = e−iθ
∫
C

f =

∫ b

a

e−iθf
(
γ(t)

)
γ′(t) dt

=

∫ b

a

Re
(
e−iθf

(
γ(t)

)
γ′(t)

)
dt+ i

∫ b

a

Im
(
e−iθf

(
γ(t)

)
γ′(t)

)
dt

The integral on the left is a real number, as is the first integral on the right (being

the integral of a real function), so it follows that the second integral on the right

must be zero. We then have∣∣∣∣∫
C

f

∣∣∣∣ =

∫ b

a

Re
(
e−iθf

(
γ(t)

)
γ′(t)

)
dt ≤

∫ b

a

∣∣( e−iθf(γ(t)
)
γ′(t)

)∣∣ dt
since |Rez| ≤ |z| for any complex number z. We therefore obtain (18.10). The last

part follows at once since if |f | ≤M | on γ then∣∣∣∣∫
C

f(z) dz

∣∣∣∣ ≤ ∫ b

a

M |γ′(t)| dt = M

∫ b

a

|γ′(t)| dt = ML(γ).

18.1.2 Example:

By considering the contour integral∫
CR

eiz

z − ia
dz,

where CR = [−R,R] ∪ AR and AR is the semicircle centre at 0 and radius R > a

in the upper-half plane, show that∫ ∞
−∞

x sinx+ a cosx

x2 + a2
dx = 2πe−a

and ∫ ∞
−∞

x cosx− a sinx

x2 + a2
dx = 0.
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To see this, we first note that f(z) = eiz/(z− ia) has a single simple pole at z = ia

with residue e−a. So an application of Cauchy’s residue theorem to the contour CR
now gives ∫

CR

eiz

z − ia
dz = 2πie−a. Why?

Writing out the contour integral using the parametrization γ(x) = x of [−R,R],

we therefore have ∫ R

−R

eix

x− ia
dx+

∫
AR

eiz

z − ia
dz = (2πe−a) i.

Assuming that
∫
AR
f(z) dz → 0 as R→∞ then, letting R→∞, we obtain∫ ∞

−∞

eix

x− ia
dx = (2πe−a) i. (18.11)

we obtain the asserted identities by equating the real part of the left-hand side of

(18.11) with the real part of the right-hand side of (18.11), and the imaginary part

of the left-hand side of (18.11) with the imaginary part of the right-hand side of

(18.11).

Exercise: Make sure you can do this.

It remains to see that
∫
AR
f(z) dz → 0 as R → ∞ and next time we will why

(18.10) tells us that that does indeed hold true.
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19 Using the Cauchy Residue Theorem and the

Fourier Transform to compute exact solutions

to ODEs

At the end of last time we were contemplating the contour integral

∫
CR

eiz

z − ia
dz (19.1)

where CR = [−R,R]∪AR and AR is the semicircle centre at 0 and radius R > a > 0

in the upper-half plane.

f(z) = eiz/(z − ia) has a single simple pole at z = ia with residue e−a (since a is

real and positive the pole is inside CR), so the Cauchy residue theorem gives∫
CR

eiz

z − ia
dz = 2πie−a. (19.2)

Writing out the contour integral using the parametrization γ(x) = x of [−R,R],

we therefore have ∫ R

−R

eix

x− ia
dx+

∫
AR

eiz

z − ia
dz = (2πe−a) i. (19.3)

We claim that that
∫
AR
f(z) dz → 0 as R → ∞. To see this, we use the basic

estimate (proof in last lecture notes):∣∣∣∣∫
γ

f(z) dz

∣∣∣∣ ≤ ∫ b

a

|f
(
γ(t)

)
| · |γ′(t)| dt, (19.4)

where γ is a contour.

Precisely, from the parametrization γ2(x) = Reiθ of AR we have using (19.4)∣∣∣∣∫
AR

f(z) dz

∣∣∣∣ =

∣∣∣∣∫ π

0

ei[R cos θ+iR sin θ]Rieiθ dθ

Reiθ − ia

∣∣∣∣ ≤ ∫ π

0

Re−R sin θ dθ

|Reiθ − ia|
.

From the inequality ||α| − |β|| ≤ |α− β| we have

|Reiθ − ia| ≥ ||Reiθ| − | − ia|| = R− a,

using R > a for the final equality. Therefore∣∣∣∣∫
AR

f(z) dz

∣∣∣∣ ≤ ∫ π

0

R

R− a
e−R sin θ dθ =

2R

R− a

∫ π/2

0

e−R sin θ dθ.
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Since sin θ ≥ 2θ/π ∀θ ∈ [0, π/2] we thus obtain∣∣∣∣∫
AR

f(z) dz

∣∣∣∣ ≤ 2R

R− a

∫ π/2

0

e−2Rθ/π dθ =
π

R− a
(1−e−R)→ 0 as R→∞. (19.5)

Consequently, letting R→∞ in (19.3) we conclude that∫ ∞
−∞

eix

x− ia
dx = (2πe−a) i. (19.6)

Now contemplate the ODE (with a as before)

− df
dx

+ af(x) = g(x) (19.7)

on R1 with boundary conditions at infinity

f(x)→ 0 and g(x)→ 0 as |x| → ∞.

The object is to determine f for a given g. Given the boundary conditions, we

may use the Fourier Transform method to obtain the solution

f(x) =

∫ ∞
y=−∞

k(x, y)g(y) dy (19.8)

with

k(x, y) =
1

2πi

∫ ∞
ξ=−∞

ei(y−x)ξ

ξ − ia
dξ. (19.9)

This is almost the same as the left hand side of (19.6): it has the form∫ ∞
−∞

eiαx

x− ia
dx, α ∈ R1, (19.10)

times a constant (α is equal to y−x in the case of interest). We just need to check if

including α changes anything that led to (19.6). Just as before, to evaluate (19.10)

we replace ξ by z and consider the contour integral

IR(α) :=

∫
CR

eiαz

z − ia
dz. (19.11)

We saw in the lecture that provided α > 0, then everything goes through as before

to give ∫ ∞
−∞

eiαx

x− ia
dx = 2πi e−aα if α > 0. (19.12)

In particular, by setting α = y − x we obtain that

k(x, y) = ea(x−y) if y > x. (19.13)
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The reason for the restriction on α is that in the estimate to show the integral

along the semicircle goes to zero as R→∞, one has, as before,∣∣∣∣∫
AR

eiαz

z − ia
dz

∣∣∣∣ ≤ ∫ π

0

R

R− a
e−Rα sin θ dθ =

2R

R− a

∫ π/2

0

e−Rα sin θ dθ.

Crucially, since αR sin θ ≥ 0 then e−Rα sin θ has modulus never greater than 1 and

exponentially decreasing as R → ∞ for θ not zero or π. But if α < 0 then

−αR sin θ ≥ 0 and so e−Rα sin θ then has modulus exponentially increasing as R→
∞ for θ not zero or π – so the integral cannot converge to zero (or any other

number) as R→∞.

One can also deduce (19.12) by making the substitution αz for z and αa for a.

Exercise!

The problem with α < 0 can be readily solved by instead considering the contour

which is CR reflected in the real axis, so with the semicircle below the real axis.

Next time we will do this next time to conclude that

k(x, y) =

{
ea(x−y) if y > x,

0 if y < x,
(19.14)

and thus from (19.8) that the final solution to (19.7) is

f(x) =

∫ ∞
x

ea(x−y)g(y) dy = eax
∫ ∞
x

e−ayg(y) dy. (19.15)

Exercise: Check that this solution really does satisfy (19.7) – i.e. compute the

derivative of (19.15). Check also what condition on g is needed in order that

(19.15) satisfies the boundary condition f(x)→ 0 as |x| → ∞.

What changes if we take a < 0?
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20 More on computing exact solutions to ODEs

using the Cauchy Residue Theorem and the

Fourier Transform

Last time we were investigating the ODE (with a ∈ R)

− df
dx

+ af(x) = g(x) (20.1)

on R1 with boundary conditions at infinity

f(x)→ 0 and g(x)→ 0 as |x| → ∞.

The object, recall, is to determine f for a given g. We may then use the Fourier

Transform method to obtain the solution

f(x) =

∫ ∞
y=−∞

k(x, y)g(y) dy (20.2)

with

k(x, y) =
1

2πi

∫ ∞
ξ=−∞

ei(y−x)ξ

ξ − ia
dξ. (20.3)

To evaluate (20.3) we considered the contour integral

IR(α) :=

∫
CR

eiαz

z − ia
dz, (20.4)

where CR = [−R,R]∪AR and AR is the semicircle centre at 0 of radius R > a > 0

in the upper-half plane, to obtain∫ ∞
−∞

eiαx

x− ia
dx = 2πi e−aα provided that α > 0, (20.5)

and so by setting α = y − x that

k(x, y) = ea(x−y) provided that y > x. (20.6)

The reason for the restriction on α is that in the estimate to show the integral

along the semicircle goes to zero as R→∞, one has∣∣∣∣∫
AR

eiαz

z − ia
dz

∣∣∣∣ ≤ ∫ π

0

R

R− a
e−Rα sin θ dθ =

2R

R− a

∫ π/2

0

e−Rα sin θ dθ. (20.7)

Crucially, since αR sin θ ≥ 0 is a non-negative real number then e−Rα sin θ has

modulus never greater than 1 and exponentially decreasing (for θ not zero or π)
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as R → ∞. But if α < 0 then −αR sin θ ≥ 0 and so e−Rα sin θ then has modulus

exponentially increasing as R → ∞ for θ not zero or π – so the integral cannot

converge to zero (or any other number) as R→∞.

To get around this we observe that sin(φ) ≤ 0 for π ≤ φ ≤ 2π, and hence that

αR sinφ ≥ 0 (since also α < 0) meaning the estimate (20.7) again holds but now

with α < 0. But taking π ≤ φ ≤ 2π means we are travelling along the semicircle

of radius R which lies below the real axis; that is, to deal with α < 0 we must

consider the contour integral

JR(α) :=

∫
BR

eiαz

z − ia
dz (20.8)

where BR = [−R,R]∪DR and DR is the semicircle centre at 0 and radius R > a > 0

in the lower-half plane — traversed anti-clockwise.

But now ia is not inside the contour BR and so the Cauchy theorem gives∫
BR

eiαz

z − ia
dz = 0. (20.9)

On the other hand, using the parametrisation we obtain an estimate very similar

to (20.7) showing that∫
DR

eiαz

z − ia
dz −→ 0 as R→∞ provided that α < 0. (20.10)

Can you provide the details? (They are almost the same as for α ≥ 0 — solution

to follow shortly, possibly in the video for this lecture.)

Putting it altogether, then,∫ ∞
−∞

eiαx

x− ia
dx = 0 if α < 0. (20.11)

We hence end up with the answer

k(x, y) =

{
ea(x−y) if y > x,

0 if y < x,
(20.12)

and thus from (20.2) that the final solution to (20.14) is

f(x) =

∫ ∞
x

ea(x−y)g(y) dy = eax
∫ ∞
x

e−ayg(y) dy. (20.13)
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20.1 Solving a 4th order ODE

The example we just looked at shows that our methods coincide with a solution

we could equally well deduce using direct elementary methods (how?)

Here, we are going to start seeing how to find the general solution to the ODE

d4f

dx4
+ f = g (20.14)

provided that

dkf

dxk
→ 0 and g → 0 as |x| → ∞ for k = 0, 1, 2, 3. (20.15)

Thus the function g : R1 → R1 is assumed to be given, and the objective is to

determine f : R1 → R1.

This is a much harder case, not amenable to elementary methods, but our general

FT + CRT methods mean it is technically no more difficult than the previous case

(obtaining the estimate as R→∞ needed, in fact, is easier).

20.2 Applying Fourier transform

The assumption (20.15) means that we can apply the Fourier transform to the ODE

(20.14). Recall that the Fourier transform f̂(ξ) = F(f)(ξ) :=
∫∞
−∞ e

iξtf(t) dt is

linear F(λf + µg)(ξ) = λF(f)(ξ) + µF(g)(ξ) and

F(f ′)(ξ) = −iξ F(f)(ξ) provided that f(x)→ 0 as |x| → ∞, (20.16)

and hence F(f (m))(ξ) = (−iξ)m F(f)(ξ) provided f (k)(x) → 0 as |x| → ∞ for

k = 0, 1, . . . ,m− 1. Applied to (20.14) linearity yields

F(f (4))(ξ) + F(f)(ξ) = F(g)(ξ).

and because of (20.15) and (20.16) this is equivalent to the algebraic equation

f̂(ξ) =
ĝ(ξ)

p4(ξ)
,

where

p4(ξ) = ξ4 + 1.

Since p4 has no real zeroes this is well defined and we can apply Fourier inversion

to obtain

f(x) =
1

2π

∫ ∞
−∞

e−ixξf̂(ξ) dξ =
1

2π

∫ ∞
−∞

e−ixξ
ĝ(ξ)

p4(ξ)
dξ.
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Substituting ĝ(ξ) =
∫∞
−∞ e

iξyg(y) dy and rearranging yields

f(x) =

∫ ∞
−∞

k(x, y) g(y) dy

where

k(x, y) =
1

2π

∫ ∞
−∞

ei(y−x)ξ

ξ4 + 1
dξ. (20.17)

It remains, then, to evaluate the integral on the right-side of (20.17). To evalu-

ate this real integral previous examples suggest that we may get somewhere by

evaluating the contour integral

IR(α) =

∫
CR

eiαz

z4 + 1
dz

around the contour CR in the z-plane which consists of the portion of the real axis

from −R to R, together with the semi-circular arc γR parametrized by γR(θ) =

Reiθ, 0 ≤ θ ≤ π.

We assume that

α ∈ R1. (20.18)

For R > 1 f(z) = eiαz

z4+1
has two poles inside CR at z0 = eiπ/4 and z1 = ei 3π/4 and

one may use the Cauchy residue theorem to thus evaluate the integral.

Exercise: Do the evaluation. (We will see the details in the next lecture.)

On the other hand,

IR(α) =

∫ R

−R

eiαξ

ξ4 + 1
dξ +

∫
AR

eiαz

z4 + 1
dz

with AR the arc component of the contour. Using the estimate (18.10) from online

Lecture notes 18, we have∣∣∣∣∫
AR

eiαz

z4 + 1
dz

∣∣∣∣ =

∣∣∣∣∣
∫ π

0

eiαRe
iθ

R4ei4θ + 1
Reiθ dθ

∣∣∣∣∣
≤ R

∫ π

0

|eiαReiθ |
|R4ei4θ + 1|

dθ

= R

∫ π

0

e−αR sin(θ)

|R4ei4θ + 1|
dθ.

By the triangle inequality |R4ei4θ + 1| ≥ ||R4ei4θ| − 1| = |R4 − 1| = R4 − 1 for

R > 1. Since also 0 < e−αR sin(θ) ≤ 1 for α ≥ 0 we obtain therefore∣∣∣∣∫
AR

eiαz

z4 + 1
dz

∣∣∣∣ ≤ Rπ

R4 − 1
→ 0 as R→∞ if α ≥ 0. (20.19)
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We are therefore left with

provided α ≥ 0 lim
R→∞

∫
CR

eiαz

z4 + 1
dz = lim

R→∞

∫ R

−R

eiαξ

ξ4 + 1
dξ + lim

R→∞

∫
AR

eiαz

z4 + 1
dz︸ ︷︷ ︸

=0 by (20.19)

=

∫ ∞
−∞

eiαξ

ξ4 + 1
dξ.

That is,

provided α ≥ 0

∫ ∞
−∞

eiαξ

ξ4 + 1
dξ = 2πi × the sum of the residues. (20.20)

Exercise: Use your evaluation, above, of the residues to give the formula for

k(x, y) when y ≥ x.

We’ll carry on with this next time...
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21 Lecture 21: An application to ordinary

differential equations

In this lecture we are going to use a contour integral to help solve the 4th ODE

we began to look at at the end f the pervious lecture. This method we are going

to use is, in fact, very general and can be applied to partial differential equations

on Rm (recall that ODEs refer to differential equations on R1). As a warm up to

this you are encouraged to re-read Lecture 5: “ODEs and the FT”.

21.1 The ODE

Here, we are going to see how to find the general solution to the ODE

d4f

dx4
+ f = g (21.1)

provided that

dkf

dxk
→ 0 and g → 0 as |x| → ∞ for k = 0, 1, 2, 3. (21.2)

Thus the function g : R1 → R1 is assumed to be given, and the objective is to

determine f : R1 → R1.

21.2 Applying Fourier transform

The assumption (21.2) means that we can apply the Fourier transform to the ODE

(21.15). Recall that the Fourier transform f̂(ξ) = F(f)(ξ) :=
∫∞
−∞ e

iξtf(t) dt is

linear F(λf + µg)(ξ) = λF(f)(ξ) + µF(g)(ξ) and

F(f ′)(ξ) = −iξ F(f)(ξ) provided that f(x)→ 0 as |x| → ∞, (21.3)

and hence F(f (m))(ξ) = (−iξ)m F(f)(ξ) provided f (k)(x) → 0 as |x| → ∞ for

k = 0, 1, . . . ,m− 1. Applied to (21.15) linearity yields

F(f (4))(ξ) + F(f)(ξ) = F(g)(ξ).

and because of (21.2) and (21.3) this is equivalent to the algebraic equation

f̂(ξ) =
ĝ(ξ)

p4(ξ)
,
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where

p4(ξ) = ξ4 + 1.

Since p4 has no real zeroes this is well defined and we can apply Fourier inversion

to obtain

f(x) =
1

2π

∫ ∞
−∞

e−ixξf̂(ξ) dξ =
1

2π

∫ ∞
−∞

e−ixξ
ĝ(ξ)

p4(ξ)
dξ.

Substituting ĝ(ξ) =
∫∞
−∞ e

iξyg(y) dy and rearranging yields

f(x) =

∫ ∞
−∞

k(x, y) g(y) dy

where

k(x, y) =
1

2π

∫ ∞
−∞

ei(y−x)ξ

ξ4 + 1
dξ. (21.4)

It remains, then, to evaluate the integral on the right-side of (21.4).

21.3 Using the Cauchy residue theorem

To evaluate this real integral previous examples suggest that we may get somewhere

by evaluating the contour integral

IR(α) =

∫
CR

eiαz

z4 + 1
dz

around the contour CR in the z-plane which consists of the portion of the real axis

from −R to R, together with the semi-circular arc γR parametrized by γR(θ) =

Reiθ, 0 ≤ θ ≤ π.

We assume that

α ∈ R1. (21.5)

For R > 1 f(z) = eiαz

z4+1
has two poles inside CR at z0 = eiπ/4 and z1 = ei 3π/4. The

Cauchy residue theorem says that

IR(α) = 2πi(res(f, z0) + res(f, z1)), (21.6)

where the right-side refers to the residues. By a standard formula

res(f, zk) =
eiαzk

4z3k
.

So

res(f, z0) + res(f, z1) =
e
i α√

2
(1+i)

4z30
+
e
i α√

2
(−1+i)

4z31
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=
1

4
(e−i

3π
4 e

i α√
2 + e−i

π
4 e
−i α√

2 ) e
− α√

2

= − i

2
√

2

{
sin

(
α√
2

)
+ cos

(
α√
2

)}
e
− α√

2

= − i
2

sin

(
α√
2

+
π

4

)
e
− α√

2 .

Hence by (21.6)

IR(α) = π e
− α√

2 sin

(
α√
2

+
π

4

)
. (21.7)

Notice that this holds for any R > 1.

On the other hand,

IR(α) =

∫ R

−R

eiαξ

ξ4 + 1
dξ +

∫
AR

eiαz

z4 + 1
dz

with AR the arc component of the contour. Using the estimate (19.10) from online

Lecture notes 19, we have∣∣∣∣∫
AR

eiαz

z4 + 1
dz

∣∣∣∣ =

∣∣∣∣∣
∫ π

0

eiαRe
iθ

R4ei4θ + 1
Reiθ dθ

∣∣∣∣∣
≤ R

∫ π

0

|eiαReiθ |
|R4ei4θ + 1|

dθ

= R

∫ π

0

e−αR sin(θ)

|R4ei4θ + 1|
dθ.

By the triangle inequality |R4ei4θ + 1| ≥ ||R4ei4θ| − 1| = |R4 − 1| = R4 − 1 for

R > 1. Since also 0 < e−αR sin(θ) ≤ 1 for α ≥ 0 we obtain therefore∣∣∣∣∫
AR

eiαz

z4 + 1
dz

∣∣∣∣ ≤ Rπ

R4 − 1
→ 0 as R→∞ if α ≥ 0. (21.8)

We are therefore left with for α ≥ 0

π e
− α√

2 sin

(
α√
2

+
π

4

)
(21.7)
= lim

R→∞

∫
CR

eiαz

z4 + 1
dz

= lim
R→∞

∫ R

−R

eiαξ

ξ4 + 1
dξ + lim

R→∞

∫
AR

eiαz

z4 + 1
dz︸ ︷︷ ︸

=0 by (21.8)

=

∫ ∞
−∞

eiαξ

ξ4 + 1
dξ.
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That is,

provided α ≥ 0

∫ ∞
−∞

eiαξ

ξ4 + 1
dξ = π e

−α√
2 sin

(
α√
2

+
π

4

)
. (21.9)

From (21.4) we want to apply this with α = y− x. But y− x can take on any real

value, so we need to extend (21.9) to the case α ≤ 0. To do that we make use of

the fact that we have only used two of the four poles of f . So we now evaluate

IDR(α) =

∫
DR

eiαz

z4 + 1
dz

around the contour DR in the z-plane which consists of the portion of the real axis

from R to −R, together with the semi-circular arc BR parametrized by γR(θ) =

Reiθ, π ≤ θ ≤ 2π, (note this is positively oriented (anticlockwise) which means

the direction along the [−R,R]] is reversed!). We now assume that

α ≤ 0. (21.10)

We now repeat the above process with DR instead of CR. For R > 1 f(z) = eiαz

z4+1

has two poles inside DR at z2 = ei5π/4 and z3 = ei 7π/4. The Cauchy residue theorem

says that

IDR(α) = 2πi(res(f, z2) + res(f, z3)). (21.11)

As before, res(f, zk) = eiαzk
4z3k

so

res(f, z2) + res(f, z3) =
e
−i α√

2
(1+i)

4(z2)3
+
e
i α√

2
(1−i)

4(z3)3

= i
e
α√
2

2

(
cos

(
α√
2

)
1√
2
− sin

(
α√
2

)
1√
2

)
= i

e
α√
2

2
sin

(
− α√

2
+
π

4

)
.

Hence by (21.11)

IDR(α) = − π e
α√
2 sin

(
− α√

2
+
π

4

)
.

On the other hand,

IDR(α) = −
∫ R

−R

eiαξ

ξ4 + 1
dξ +

∫
BR

eiαz

z4 + 1
dz

with BR the arc component of the contour in the lower-half plane. Note the minus

sign in front of
∫ R
−R is there to take account of the fact that we traverse the interval
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[−R,R] in reverse: by starting at R and ending at −R. Then, similarly as before,

we obtain

provided α ≤ 0

∫ ∞
−∞

eiαξ

ξ4 + 1
dξ = π e

α√
2 sin

(
− α√

2
+
π

4

)
. (21.12)

Exercise: Make sure you can derive (21.12)!

But since

−|α| =
{
−α, if α ≥ 0,

α, if α ≤ 0,

then we can write down (21.9) and (21.12) in one go as

For any α ∈ R1

∫ ∞
−∞

eiαξ

ξ4 + 1
dξ = π e

−|α|√
2 sin

(
|α|√

2
+
π

4

)
. (21.13)

We now obtain from (21.4) and (21.13) that the general solution to (21.15) is given

by

f(x) =

∫ ∞
−∞

k(x, y) g(y) dy

with

k(x, y) =
1

2
e
− |x−y|√

2 sin

(
|x− y|√

2
+
π

4

)
.

21.4 Exercises:

Using the same contours as above:

[1] Find the general solution to the ODE

−d
2f

dx2
+ f = g (21.14)

provided that f, f ′ → 0 and g → 0 as |x| → ∞.

[1] Find the general solution to the ODE

d4f

dx4
− 2

d2f

dx2
+ f = g (21.15)

provided that f (k) → 0, k = 0, 1, 2, 3, and g → 0 as |x| → ∞.

Solutions will be posted on the web page shortly.
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1 The Transport Equation

Let’s consider the homogeneous (meaning v(x, y) = 0) constant coefficient Trans-

port Equation

a ux + b uy = 0. (1.1)

Assume a 6= 0. To simplify, divide through by a to rewrite (1.1) as

ux + c uy = 0 with c :=
b

a
6= 0. (1.2)

(1.2) can be solved using the Chain Rule. To see this, consider a smooth curve

passing through a given point (x, y) ∈ R2

(a, b) 7→ R2, t 7→ r(t) = (x(t), y(t)) with r(0) = (x(0), y(0)) = (x, y),

where we assume a < 0 < b , and the composite function

(a, b) 7→ R1, 7→ u(r(t)) = u(x(t), y(t)). (1.3)

The Chain rule says that

d

dt
u(x(t), y(t)) = x′(t)ux(x(t), y(t)) + y′(t)uy(x(t), y(t)). (1.4)

Consider specifically the case

r(t) = (x+ t, y + ct). (1.5)

Then (1.4) says
d

dt
u(x(t), y(t))

∣∣∣∣
t=0

= ux(x, y) + cuy(x, y). (1.6)

Hence, (1.6) may be written

d

dt
u(x(t), y(t))

∣∣∣∣
t=0

= 0 (1.7)

That is, if u solves the transport equation then the function t 7→ u(x(t), y(t)) is

constant along the curve (1.5). In other words for any two times t0 and t1 we have

u(x+ t0, y + ct0) = u(x+ t1, y + ct1).

Choosing, at a given point (x, y), the values t0 = 0 and t1 = −x gives us

u(x, y) = u(0, y − cx). (1.8)
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This says that u is determined by evaluation along the line x = 0, the y-axis, in

which the variable is replaced by y − cx; that is, u is a function of 1-variable w

with w = y − cx, so

u(x, y) = f(y − cx), f : R1 → R1, w 7→ f(w), (1.9)

for any differentiable function f of one variable. We could also write this family of

solutions as

u(x, y) = h(bx− ay), any h : R1 → R1, w 7→ h(w). (1.10)

An equivalent method for solving the PDE is to to make the change of variable

(x, y) 7→ (ξ, η) with ξ = bx− ay, η = ax+ by and the Chain Rule in 2 variables

∂u

∂x
=
∂ξ

∂x

∂u

∂ξ
+
∂η

∂x

∂u

∂η
,

∂u

∂y
=
∂ξ

∂y

∂u

∂ξ
+
∂η

∂y

∂u

∂η
,

reduces (1.1) to
∂u

∂η
= 0, u = u(ξ, η),

which has solution u(ξ, η) = f(ξ) some f : R1 → R1, which in (x, y) coordinates is

(1.10) once more.

1.1 For a specific solutions, impose impose ‘boundary’ con-

ditions

To get a specific solution we have to specify how the solution behaves along a

suitable curve in R2, just like in the cases with a 6= 0 discussed above.

For example, consider {
2ux + 3uy = 0

u(x, 0) = sin(x2).
(1.11)

Here, then, a = 2 and b = 3. From (1.9) we know that a general solution of

2ux + 3uy = 0 has the form

u(x, y) = f

(
y − 3

2
x

)
, any f : R1 → R1, w 7→ f(w).

(Check that it does!) The condition u(x, 0) = sin (x2) therefore says that

f

(
−3

2
x

)
= sin

(
x2
)
.
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Hence f is the function f(w) = sin ((−2w/3)2) = sin (4w2/9). Thus the solution

to (1.15) is

u(x, y) = sin

(
x2 − 4

3
xy +

4

9
y2
)
. (1.12)

We might generalize by specifying the boundary condition along the line y = αx

for some given α ∈ R, so that {
aux + buy = 0

u(x, αx) = h(x).
(1.13)

We know any solution has the form u(x, y) = f (bx− ay) for some function f of

one variable. The condition u(x, αx) = h(x) says that f (bx− αax) = h(x) and

hence the unique solution to (1.13) is

u(x, y) = h

(
bx− ay
b− αa

)
provided α 6= b

a
= c. (1.14)

For example, {
2ux + 3uy = 0

u(x,−5x) = sinh(x− 4).
(1.15)

has solution (check it!) u(x, y) = sinh
(

1
13

(3x− 2y)− 4
)
.

1.1.1 Uniqueness of (1.14)

This is the ‘same’ proof as we saw for the case b = 0: if u1, u2 : R2 → R1 are both

solutions of (1.13) then

z(x, y) := u1(x, y)− u2(x, y)

satisfies the PDE {
azx + bzy = 0

z(x, αx) = 0
(1.16)

(Why?)

We know that z(x, y) = f(bx − ay) some f : R → R. In order that it satisfy the

condition z(x, αx) = 0, we have that 0 = z(x, αx) = f(βx), with β := b− αa, and

hence f must be identically zero. That is, z(x, y) = 0 for all (x, y) ∈ R2. That is

u1 = u2.
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2 2nd order PDEs

A homogeneous, linear, constant coefficient, partial differential equation PDE of

second order on R2 is an equality of the form

Lu = 0, u : R2 → C, (x, y) 7→ u(x, y), (2.1)

with

L = a11
∂2

∂x2
+ 2a01

∂2

∂x∂y
+ a22

∂2

∂x2
+ b1

∂

∂x
+ b2

∂

∂y
+ c (2.2)

for some constants aij, bk, c.

Equivalently, (2.1) can be written with u = u(x, y)

a11
∂2u

∂x2
+ 2a01

∂2u

∂x∂y
+ a22

∂2u

∂y2
+ b1

∂u

∂x
+ b2

∂u

∂y
+ cu = 0, (2.3)

or, in alternative notation,

a11uxx + 2a01uxy + a22uyy + b1ux + b2uy + cu = 0. (2.4)

2.0.2 The wave equation

Let’s take a look at the wave equation, which is the special case a11 = −a22 6= 0

and all the other coefficients are zero, so that

∂2t u(x, t) = ∂2xu(x, t). (2.5)

This can also be written

Lu = 0 with L = ∂2t − ∂2x. (2.6)

L can be factorized into two first-order ‘transport’ operators

L := ∂2t − ∂2x := (∂t − ∂x) (∂t + ∂x) (2.7)

:= (∂t + ∂x) (∂t − ∂x) (2.8)

From (2.7) it follows that any z = z(x, t) which solves the transport equation

0 = (∂t + ∂x) z = zt + zx

will automatically define a solution for (2.5), and likewise, from (2.8) so will any

w = w(x, t) which solves the transport equation 0 = (∂t − ∂x)w = wt − wx. But

we already know these two ‘transport’ equations have general solutions of the
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form z(x, y) = g(x− t) and w(x, y) = f(x+ t) for any differentiable functions

f, g : R→ R. Hence one class of solutions to the wave equation is

u(x, t) = f(x+ t) + g(x− t). (2.9)

This is the most general solution to (2.5), for, making the change of coordinates

ξ = x+ t, η = x− t, (2.10)

the Chain Rule in two variables in (ξ, η)-coordinates the wave operator (??) be-

comes

L = −4 ∂ξ∂η (2.11)

For, the Chain Rule in two variables says that

∂x = ∂ξ + ∂η, ∂t = ∂ξ − ∂η,

and a simple rearrangement of this gives (2.11). So to solve the wave equation we

have to solve

∂ξ∂η u(ξ, η) = 0.

And we already know that

uξη = 0 =⇒ u(ξ, η) = f(ξ) + g(η) with f, g : R1 → R1. (2.12)

Hence substituting back (2.10) into (2.12) we obtain (2.9) resolving it into “left-

moving” and “right-moving” waves.

Exercise: check directly that (2.9) really does solve the wave equation

The solution (2.9) is general, but also rather vague. To get a more precise solution

we have to specify some initial (or ‘boundary’) conditions. To this end, we augment

the PDE to the initial value problem
utt − uxx = 0,

u(x, 0) = φ(x) (initial shape of the wave)

ut(x, 0) = ψ(x) (initial speed of the wave).

(2.13)

A direct computation shows that the solution (2.9) is refined in the case of (2.13)

to

u(x, t) =
1

2
(φ(x+ t) + φ(x− t)) +

1

2

∫ x+t

x−t
ψ(s) ds. (2.14)

This says that if we specify what the wave in the (x, t)-plane must look like along

the x-axis, and we specify its speed along that line, then the wave form ( = graph of
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(x, t) 7→ u(x, t) is determined throughout R2. This is much like what we discovered

with the transport equation –that PDE is first-order so it was enough just to specify

u(x, t) along a curve, while because here we are dealing with a 2nd order PDE we

also have to specify its first derivative.

For example, using (2.14), the solution to the PDE initial value problem
utt − uxx = 0,

u(x, 0) = e−x,

ut(x, 0) = cos x,

(2.15)

is

u(x, t) = e−x cosh(t) + cos(x) sin(t).

2.0.3 Example: Laplace equation

The Laplace equation is the 2nd order linear homogeneous PDE

∂2u

∂x2
+
∂2u

∂y2
= 0, (2.16)

or, in alternative notation,

uxx + uyy = 0. (2.17)

Easy solutions to spot just by observation are

u(x, y) = ax+ by + c, u(x, y) = x2 − y2, u(x, y) = xy. (2.18)

By the superposition principle (=“ if u and v solve the PDE then so does u+ v”)

it therefore follows that u(x, y) = λx2 + µxy − λy2 + ax+ by + c is also a solution

for any constants λ, µ, a, b, c. A less obvious polynomial solution is

u(x, y) = x3 − xy2 + 2xy2 (2.19)

and, in fact, there are particular polynomial solutions in each degree — one thing

we will shortly explain is how to find those polynomials. All of these solutions exist

on all of R2.

Another not so obvious solution is

u(x, y) = log(x2 + y2) valid on R2\{(0, 0)}. (2.20)

On the other hand, if we look for solutions to the Laplace equation PDE bvp: in

the punctured unit disc D = {(x, y) | 0 < x2+y2 < 1} with the boundary condition

u(x, y) = 0 for (x, y) ∈ S1 = {(x, y) | x2 + y2 = 1}, (2.21)



8

then none of the polynomials above are solutions, but (2.20) is a solution .

A rather different type of solution is

um(x, y) = sin(mx) sinh(my) any m ∈ R.

Likewise, um(x, y) = cos(mx) sinh(my), um(x, y) = sin(mx) cosh(my), um(x, y) =

cos(mx) cosh(my), are all solutions, and so by linearity so is any linear sum of

these solutions. This is useful for ‘fitting’ a solution to a given boundary problem;

for example, with X the solid rectangle X = [0, π] × [0, π] the Laplace equation

PDE bvp:
∂2u

∂x2
+
∂2u

∂y2
= 0 for (x, y) ∈ [0, π]× [0, π] (2.22)

subject to the boundary conditions

u(0, y) = 0, u(π, y) = 0, u(x, 0) = 0, and u(x, π) = sin3 x, (2.23)

has solution

u(x, y) =

(
3

4 sinhπ

)
sin(x) sinh(y) +

(
1

4 sinh(3π)

)
sin(3x) sinh(3y). (2.24)

Excercise: Check directly that (2.24) is a solution to the PDE bvp (2.22),

(2.23) – draw the region X and where the boundary conditions are being

imposed.

2.0.4 Example: heat equation

The heat equation is the 2nd order linear homogeneous PDE

∂2u

∂x2
− ∂u

∂u
= 0 for (x, t) ∈ R1 × (0,∞), (2.25)

or, in alternative notation,

ut = uxx for (x, t) ∈ R1 × (0,∞). (2.26)

Note that this is only specified in the half-plane t > 0 (this is needed for non-trivial

solutions to exist).

An easy ‘trivial’ solution to spot is

u0(x, t) = αx2 + βx+ γ + 2αt (2.27)

for any constants α, β, γ.
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An important less obvious solution is

u0(x, t) =
1√
4πt

e−
x2

4t , (2.28)

we will derive this later on.

On the other hand, in the half-infinite strip X = [0, π]×(0,∞) this is not a solution

to the heat equation PDE boundary value problem:

ut = uxx for (x, t) ∈ [0, π]× (0,∞) (2.29)

subject to

u(x, t)→ 0 as t 7→ ∞, u(π, t) = 0, u(0, t) = 0, and u(x, 0) = sin3 x,

(2.30)

(note that the first of these is a ‘boundary’ condition ‘at infinity’). But

u(x, t) =
3

4
e−t sinx− 1

4
e−9t sin(3x) (2.31)

is a solution to this PDE bvp!

Notice how the specific geometry of bvps radically changes the form of the solutions

in all the above example solutions — look again and try to identify the differences!

3 Fourier Transforms

The Fourier transform (FT) transforms an integrable function f : R → R
of one variable x into another function f̂ : R → R of one variable ξ, while the

inverse Fourier transform (IFT) reverses the transformation, provided f̂ is

integrable. This is an important process for studying differential equations (and

partial differential equations) because the FT turns differentiation of f with respect

to x into multiplication of f̂ by ξ, exchanging (hard) questions of differentiability

of f for (easier) questions of growth rates of f̂ at infinity (i.e. as |ξ| → ∞), which

turns (hard to solve) differential equations into (relatively easy to solve) algebraic

(polynomial) equations.

Let us denote the FT by F and the IFT by F−1. Then F is defined by

f : R→ R, x 7→ f(x),
F
 f̂ := F(f) : R→ R, ξ 7→ f̂(ξ),

with

f̂(ξ) :=

∫ ∞
−∞

eiξtf(t) dt. (3.1)
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The inverse Fourier transform is defined by

ğ(x) := F−1(g)(x) :=
1

2π

∫ ∞
−∞

e−iξxg(ξ) dξ. (3.2)

3.1 F and F−1 are inverse to each other (when defined!)

The notation and terminology suggest F−1 reverses what F does to f . This is true

provided all the integrals in question exist (we will assume they do!). That is,

I = F−1 ◦ F where I(f) = f (i.e. I(f)(x) = f(x) ∀x ∈ R). (3.3)

That is, f = F−1 (F(f)) or, equivalently, f = F−1
(
f̂
)
. From (5.5), this is the

equality

f(x) :=
1

2π

∫ ∞
−∞

e−iξx f̂(ξ) dξ :=
1

2π

∫ ∞
−∞

e−iξx
(∫ ∞
−∞

eiξtf(t) dt

)
dξ. (3.4)

3.1.1 Example: compute F(e−|x|)

We have

f̂(ξ) :=

∫ ∞
−∞

eiξte−|t| dt =

∫ ∞
0

eiξte−t dt+

∫ 0

−∞
eiξtet dt

=

[
1

iξ − 1
e(iξ−1)t

]∞
0

+

[
1

iξ + 1
e(iξ+1)t

]0
−∞

= lim
a→∞

[
1

iξ − 1
e(iξ−1)t

]a
0

+ lim
a→∞

[
1

iξ + 1
e(iξ+1)t

]0
−a

= − 1

iξ − 1
+

1

iξ + 1
,

since lima→∞ e
(iξ−1)a = 0 (for, here |e(iξ−1)t| = e−t), and similarly lima→∞ e

(iξ+1)(−a) =

0. Thus

f̂(ξ) =
2

1 + ξ2
. (3.5)

Perhaps what is more interesting is that applying the inverse FT now gives,

1

2π

∫ ∞
−∞

e−iξx
2

1 + ξ2︸ ︷︷ ︸
= f̂(ξ)

dξ = e−|x| (3.6)
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This is the identity (3.4) applied to f(x) = e−|x|. Thus,∫ ∞
−∞

e−iξx

1 + ξ2
dξ = π e−|x|. (3.7)

3.1.2 Example:

Let β > 0, and set

f(x) =

{
1, |x| ≤ β,

0, |x| > β.
(3.8)

Then

f̂(ξ) =

∫ β

−β
eiξt dt =

[
eiξt

iξ

]β
−β

=
eiβt

iξ
− e−iβt

iξ
=

2 sin(βξ)

ξ
.

3.1.3 Example: compute F(e−αx
2
), where α ∈ (0,∞).

In the following, for notational brevity, write
∫

=
∫∞
−∞. We have

f̂(ξ) :=

∫
eiξte−αt

2

dt =

∫
e−αt

2+iξt dt
w=
√
αt

=
1√
α

∫
e
−w2+ iξ√

α
w
dw.

We are aiming now to reduce this to ‘something’ times the integral
∫
e−r

2
dr =

√
π.

So we want to try and write the exponent as an exact square, well we have

w2 − iξ√
α
w =

(
w − iξ

2
√
α

)2

+
ξ2

4α
,

and so f̂(ξ) = e−
ξ2

4α√
α

∫
e
−
(
w− iξ

2
√
α

)2
dw. But

∫
e
−
(
w− iξ

2
√
α

)2
dw =

∫
er

2
dr, and hence

f̂(ξ) =

√
π

α
e−

ξ2

4α . (3.9)

4 ODEs and the FT

[1] Linearity: for (integrable) f, g : R1 → R1 and any λ, µ ∈ C, one has

F(λf + µg)(ξ) = λF(f)(ξ) + µF(g)(ξ) (4.1)

[2] The FT turns differentiation into multiplication:

F(f ′)(ξ) = −iξ F(f)(ξ). (4.2)
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Here, f ′(x) = df/dx is the derivative of f , and, crucially, we assume that

f(x)→ 0 as |x| → ∞. (4.3)

Iterating the latter property we get for m ∈ N

F(f (m))(ξ) = (−iξ)m F(f)(ξ) (4.4)

where f (m) = dmf/dxm. That iteration therefore requires from (5.9) that

f (k)(x)→ 0 as |x| → ∞ for k = 0, 1, . . . ,m− 1. (4.5)

4.1 Exact solutions to constant coefficient ODEs

If we combine the above two properties with the invertibility of the FT (i.e. that

F−1(F (f)) = f) then we can solve ‘any’ constant coefficient ODE

an f
(n)(x) + an−1 f

(n−1)(x) + · · ·+ a1 f
′(x) + a0f(x) = g(x), (4.6)

where an, . . . , a0 ∈ C are constants and where g : R1 → R1 is given, and the

objective is to determine the function f : R1 → R1.

Specifically, applying the FT to both sides of (4.6), and using Fourier inversion

gives

f(x) =
1

2π

∫ ∞
−∞

e−ixξf̂(ξ) dξ =
1

2π

∫ ∞
−∞

e−ixξ
ĝ(ξ)

pn(ξ)
dξ. (4.7)

Substituting

ĝ(ξ) =

∫ ∞
−∞

eiξyg(y) dy

into (4.7) and rearranging (in particular - changing the order of integration) we

get our solution

f(x) =

∫ ∞
−∞

k(x, y) g(y) dy, where k(x, y) =
1

2π

∫ ∞
−∞

ei(y−x)ξ

pn(ξ)
dξ. (4.8)

4.2 An example

For

−d
2f

dx2
+ f(x) = g(x) (4.9)

subject to f(x)→ 0 and f ′(x)→ 0 as |x| → ∞, our polynomial is p2(ξ) = ξ2 + 1.

Hence

k(x, y) =
1

2π

∫ ∞
−∞

ei(y−x)ξ

1 + ξ2
dξ.
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From equation (3.9) we have

k(x, y) =
1

2
e−|x−y| =

{
1
2
e−xey, for x ≥ y,

1
2
exe−y, for x ≤ y.

.

That is, the general solution to (4.9) is f(x) = 1
2

∫∞
−∞ e

−|x−y| g(y) dy, which we can

rewrite using (4.2) as

f(x) =
e−x

2

∫ x

−∞
ey g(y) dy +

ex

2

∫ ∞
x

e−y g(y) dy. (4.10)

5 PDEs and the FT

A general constant coefficient homogeneous linear PDE in R2 up to order 2 has

the form (recall)

a1
∂2u

∂x2
+ a2

∂2u

∂x∂y
+ a3

∂2u

∂y2
+ a4

∂u

∂x
+ a5

∂u

∂y
+ a6u(x, y) = v(x, y), (5.1)

for some constants ak ∈ C; if we took a1 = a2 = a3 = 0 this reduces to a first order

PDE. In alternative (rather lighter) notation,

a1uxx + a2uxy + a3uyy + a4ux + a5uy + a6u = v. (5.2)

Here, u and v are functions of two variables on R2

u : R2 −→ R1, (x, y) 7→ u(x, y), v : R2 −→ R1, (x, y) 7→ v(x, y),

(you studied such functions in Calculus II cm112a; for example, v(x, y) = x2 + y2).

We will restrict our attention is specific examples to the homogeneous case: v = 0.

5.0.1 Definition of û

We are going to Fourier transform just one of the variables: let us FT the x-variable,

F = Fx→ξ : functions on (x, y)− space︸ ︷︷ ︸
= R2

−→ functions on (ξ, y)− space︸ ︷︷ ︸
= R2

.

Specifically,

u : R2 → R1, (x, y) 7→ u(x, y),
F
 û := Fx→ξ(u) : R2 → R1, (ξ, y) 7→ û(ξ, y),

where

û(ξ, y) :=

∫ ∞
−∞

eiξtu(t, y) dt. (5.3)
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For notational convenience, we may use any of

û(ξ, y) = F(u)(ξ, y) = Fx→ξ(u)(ξ, y) = Fx→ξ,y→y(u)(ξ, y) (5.4)

to denote the x-FT of u. The last two can be useful in reminding us ‘what variable

is being changed into what’. The inverse Fourier transform

F−1ξ→x := F−1ξ→x,y→y : functions on (ξ, y)− space︸ ︷︷ ︸
= R2

−→ functions on (x, y)− space︸ ︷︷ ︸
= R2

,

is defined on w : R2 → R1, (ξ, y) 7→ w(ξ, y), by

w̆ (x, y) :=
1

2π

∫ ∞
ξ=−∞

e−iξxw(ξ, y) dξ. (5.5)

Again, for notational convenience, we may use any of

w̆ (x, y) = F−1(w)(x, y) = F−1ξ→x(w)(x, y) = F−1ξ→x,y→y(w)(x, y)). (5.6)

5.0.2 Basic properties of Fx→ξ,y→y :

As in the case of ODEs, the two principal properties needed to use the FT to solve

PDEs are:

[1] Linearity: for (integrable) u, v : R2 → R1 and any λ, µ ∈ C, one has

Fx→ξ,y→y(λu+ µv)(ξ, y) = λû(ξ, y) + µv̂(ξ, y). (5.7)

[2] Fx→ξ,y→y turns partial differentiation in x into multiplication by ξ:

ûx (ξ, y) = −iξ û(ξ, y). (5.8)

Here, ux(x, y) = ∂u/∂xand we must assume that

u(x, y)→ 0 as |x| → ∞. (5.9)

Iterating the latter property we get for m ∈ N

F

(
∂mu

∂xm

)
(ξ, y) = (−iξ)m û(ξ, y). (5.10)

provided that

∂ku

∂xk
(x, y)→ 0 as |x| → ∞ for k = 0, 1, . . . ,m− 1. (5.11)
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One of the differences in the R2 case is that there are now more types of derivative

to consider: mixed partial derivatives and partial derivatives in y alone. Plugging

uy = ∂u/∂y instead of u into (5.3) we easily see that

ûy (ξ, y) =
∂

∂y
û(ξ, y). (5.12)

And hence, combining (5.8) and (5.12),

ûxy (ξ, y) = (−iξ) ∂

∂y
û(ξ, y), (5.13)

(which is the same as ûyx (ξ, y) of course), whilst iterating (5.12) we have

ûyy (ξ, y) =
∂2

∂y2
û(ξ, y), (5.14)

and similarly for higher partial derivatives.

The other fact we need to know is how the FT affects initial conditions: if

u(x, 0) = f(x) (5.15)

for some specific one variable f : R1 → R1 (for example, u(x, 0) = sin(x)), then

û(ξ, 0) = f̂(ξ). (5.16)

5.0.3 Example: the transport equation

Recall from Lecture 2 that this is the first-order PDE{
ux + c uy = 0,

u(x, 0) = f(x),
(5.17)

where c is a constant, and that it has the unique solution

u(x, y) = f
(
x− y

c

)
. (5.18)

We deduced (5.18) by the good fortune of spotting that the Chain Rule could be

used. We will now derive (5.18) using FT methods; the point being that the FT is

a general method which applies to any PDE (we do not in general want to rely on

good fortune alone!). Applying the FT Fx→ξ,y→y in the x-variable to ux + c uy = 0

we have

ûx (ξ, y) + c ûy (ξ, y) = 0. (5.19)

From (7.10) (with m = 1) and (7.12) this is the same as (−iξ) û(ξ, y)+c ∂
∂y
û(ξ, y) =

0, provided (for the first summand) that u(x, y)→ 0 as |x| → ∞.
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By writing (??) as ∂
∂y
û(ξ, y) = iξ

c
û(ξ, y) we see it has solution

û(ξ, y) = û(ξ, 0) e
iξ
c
y. (5.20)

From (7.16), this is the same thing as

û(ξ, y) = f̂(ξ) e
iξ
c
y. (5.21)

So (5.21) is the solution in (ξ, y) space. We now have to apply the inverse FT to

the ξ variable to transform this back to the solution in (x, y) space

u(x, y) = F−1ξ→x,y→y (û) (x, y) =
1

2π

∫ ∞
ξ=−∞

e−iξ(x−
y
c ) f̂(ξ) dξ = f

(
x− y

c

)
,

where the final equality uses equation (3.4).

5.1 Example

Solve the following PDE using Fourier transforms:

∂6u

∂x6
− ∂2u

∂y2
= 0, u = u(x, y),

subject to the conditions

∂mu

∂xm
→ 0 as |x| → ∞ for m = 0, 1, 2, 3, 4, 5

and
∂u

∂y
(x, 0) = 0 and u(x, 0) =

1

1 + x2
. (5.22)

Applying the Fourier transform Fx→ξ,y→y in the x-variable to ∂6u
∂x6
− ∂2u

∂y2
= 0 gives

the ODE in y (
∂2

∂y2
+ ξ6

)
û(ξ, y) = 0. (5.23)

This has solution

û(ξ, y) = A(ξ) cos(ξ3y) +B(ξ) sin(ξ3y), (5.24)

with A(ξ), B(ξ) constants in y, but which may depend on ξ. In fact, we see

A(ξ) = û(ξ, 0) and so

A(ξ) = Fx→ξ(u(x, 0))(ξ), where, recall, u(x, 0) =
1

1 + x2
. (5.25)
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From Example 3.1.1

Fx→ξ

(
1

1 + x2

)
(ξ) = πe−|ξ|. (5.26)

On the other hand, we easily see B(ξ) = 0. So the solution in (ξ, y) space is

û(ξ, t) = πe−|ξ| cos(ξ3y). (5.27)

Applying the inverse FT transforms this back to the solution in (x, y) space

u(x, y) =
1

2π

∫ ∞
−∞

e−iξx πe−|ξ| cos(ξ3y) dξ, (5.28)

or, more neatly,

u(x, y) =

∫ ∞
0

e−|ξ| cos(ξx) cos(ξ3y) dξ. (5.29)

6 The method of separation of variables and Fourier

series

The second analytical method for solving PDEs we are going to consider computes

solutions to constant coefficient PDEs on certain symmetric regions of X ⊂ R2

which have bounded geometry, or semi-bounded geometry. The geometry

of X has a determining influence on the form of the solution to a PDE, and,

conversely, if we can solve a given PDE on X then the solutions will often tell us

about the geometry of X; this is an important idea used to study spaces which are

twisted in complicated ways which, particularly in higher dimensions, we cannot

easily understand by intuitive ideas alone.

The way in which the geometry of a flat region X of R2 is encoded into a PDE is

by specifying boundary conditions on the solution functions, meaning that the

solution is require to assume specified values along the edge of X. The idea, then,

is to look for solutions to a given PDE

a
∂2u

∂x2
+ 2b

∂2u

∂x∂y
+ c

∂2u

∂y2
+ p

∂u

∂x
+ q

∂u

∂y
+ ru = 0

which have the form

u(x, y) = f(x) g(y), ← this is what is called ‘separation of variables’

(6.1)

where

f : R1 −→ R1, x 7→ f(x), and g : R1 −→ R1, y 7→ g(y),
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are functions of 1 variable. For a well-posed problem, the boundary conditions for

the PDE will separate into boundary conditions for two ODEs — one ODE for f

and one ODE for g. The whole process each time repeats the following steps:

1. Separate variables and split the PDE into two ODEs each with boundary (or

initial) conditions.

2. Solve one of the ODEs using its homogeneous boundary conditions (i.e. the

ones equal to zero) and as far as is possible determine the constants βn in

any trigonometric factors sin (βnx) and cos (βnx) which occur.

3. Use this to then also solve the second ODE, again using its homogeneous

boundary conditions. Hence write down for each βn a solution to the PDE

— the constants βn are at this point still undetermined.

4. By summing such solutions over n use Fourier Series to compute the unde-

termined coefficients βn, and hence write down an exact solution to the PDE

as an infinite sum of functions of the form βnfn(x) gn(y), where one (at least)

of fn(x) or gn(y) is a trigonometric function.

6.1 Example: separation of variables solution of the Laplace

equation on on [0, L]× [0, L]

Consider the Laplace equation

∂2u

∂x2
+
∂2u

∂y2
= 0, or uxx + uyy = 0 (6.2)

on the solid square X = {(x, y) | 0 ≤ x ≤ L, 0 ≤ y ≤ L} subject to the boundary

conditions

u(0, y) = 0, (6.3)

u(L, y) = 0, (6.4)

u(x, 0) = 0, (6.5)

u(x, L) = φ(x) for some given φ : R1 → R1 (6.6)

for (x, y) ∈ (0, L)× (0, L).

We try to construct a solution by adding together solutions having the form

u(x, y) = f(x)g(y)

for some f : R1 → R1 and g : R1 → R1 . Substituting in (6.2) gives the two ODEs

f
′′
(x) + µ2f(x) = 0 and g

′′
(y)− µ2g(y) = 0 (6.7)
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with solutions if µ 6= 0

fµ(x) = Aµ cos(µx)+Bµ sin(µx) and gµ(y) = Cµ cosh(µx)+Dµ sinh(µx) (6.8)

for some undetermined constants Aµ, Bµ, Cµ, Dµ. If µ = 0 then

f0(x) = ax+ b, g0(y) = cy + d, (6.9)

for some constants a, b, c, d.

Since uµ(x, y) = fµ(x)gµ(y) is a solution so is any function

u(x, y) = Σµ∈Sfµ(x)gµ(y)

for S a set of labels, such as the integers or the positive integers.

We can use the boundary conditions to determine the constants, as follows. (6.3)

implies from (6.8) that Aµ = 0. Likewise, (6.5) implies Cµ = 0. The boundary

condition (6.4) requires fµ(L) = 0 and hence that µ = nπ/L with n ∈ Z an integer,

and also that a = 0.

Thus, any solution to the Laplace equation with the first three boundary conditions

(6.3), (6.4), (6.5) is a sum of the form

u(x, y) = Σ∞n=1En sin(
nπx

L
) sinh(

nπy

L
) (6.10)

for some constants En.

To compute the constants En one uses the boundary condition (6.6) , which requires

φ(x) = Σ∞n=1En sinh(nπ) · sin(
nπx

L
) = Σ∞n=1Fn · sin(

nπx

L
) (6.11)

some constants Fn (since we can then compute the En = Fn/ sinh(nπ)). For this

we need Fourier series (below).

6.2 Example

By the procedure outlined above, we likewise obtain that the Laplace boundary

problem on [0, L]× [0,M ]

uxx + uyy = 0,

ux(0, y) = 0,

u(x, 0) = 0,

u(L, y) = 0,
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has the class of solutions

u(x, y) = Σ∞n=0 Kn cos

(
(2n− 1)π

2L
x

)
sinh

(
(2n− 1)π

2L
y

)
. (6.12)

Thus, a conclusion of all this is that the particular boundary conditions imposed

produce different products of trigonometric and hyperbolic functions. Likewise,

the possible values for the constants µ are determined by the boundary conditions.

As an exercise, you might like to try and manufacture boundary conditions such

that the solution involves only sums of cos(µx) cosh(µy) or sin(µx) cosh(µy).

6.3 Fourier Series

Fourier series allow us to write a general function

φ : [0, L]→ R, x 7→ φ(x), (6.13)

no matter how complicated it is (provided it is, say, at least piecewise continuous)

as a sum of (relatively simple) sines and cosines. Precisely, there exist real values

constants An, Bn ∈ R such that

φ(x) =
∞∑
n=1

Bn sin
(nπx
L

)
for 0 < x < L, (6.14)

and also

φ(x) =
A0

2
+
∞∑
n=1

An cos
(nπx
L

)
for 0 ≤ x ≤ L. (6.15)

Those constants are given by the specific formulae

Bn =
2

L

∫ L

0

φ(t) sin

(
nπt

L

)
dt (6.16)

and

An =
2

L

∫ L

0

φ(t) cos

(
nπt

L

)
dt. (6.17)

For example, for

φ(x) = x, (6.18)

from (6.16) you can compute that as a sine series,

x =
2L

π

∞∑
n=1

(−1)n+1

n
sin
(nπx
L

)
for 0 < x < L, (6.19)

while as a cosine series

x =
L

2
− 4L

π2

∞∑
m=1

1

(2m− 1)2
cos

(
(2m− 1)πx

L

)
for 0 ≤ x ≤ L. (6.20)
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6.4 Using this to find the constants En in (6.10)

To determine the constants Bn we specify a third boundary condition

u(x, L) = φ(x) ∀ 0 < x < L, (6.21)

for some φ : R1 → R1. From (6.12) this is the requirement that

φ(x) =
∞∑
n=1

En sinh(nπ) sin
(nπx
L

)
(6.22)

That is, that Bn sinh(nπ) is the nth Fourier sine coefficient of the function φ(x) on

(0, L), so therefore

En sinh(nπ) =
2

L

∫ L

0

φ(t) sin

(
nπt

L

)
dt.

So this gives an exact solution to the original PDE; that is, in terms of the given

boundary conditions which allow us to say exactly what the value is of the (ini-

tially) undetermined constants that turn up in solving the PDE without boundary

conditions.

For example, if we set

φ(x) = x

then, as computed earlier,

En sinh(nπ) =
2

L

∫ L

0

t sin

(
nπt

L

)
dt =

2L

π

(−1)n+1

n
, (6.23)

and hence the solution of the PDE subject the four given boundary conditions is

u(x, y) =
2L

π

∞∑
n=1

(−1)n+1

n sinh(nπ)
sin
(nπx
L

)
sinh

(nπy
L

)
. (6.24)

Notice that if we had specified fewer boundary conditions then we would only have

been able to compute a solution which contained arbitrary constants (a ‘family of

solutions’), but not a unique solution, while if we had specified more boundary

conditions then there would not exist any solution at all. Thus, in setting up the

PDE a delicate balance has to be achieved in ensuring that the boundary problem

is ‘well posed’.
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7 The Cauchy Residue Theorem and Fourier Trans-

forms

For the remainder of this course we will be thinking hard about how the following

theorem allows one to explicitly evaluate a large class of Fourier transforms. This

will enable us to write down explicit solutions to a large class of ODEs and PDEs.

The Cauchy Residue Theorem:

Let C ⊂ C be a simple closed contour. Let f : C→ C be a complex function which

is holomorphic along C and inside C except possibly at a finite number of points

a1, . . . , am at which f has a pole. Then, with C oriented in an anti-clockwise sense,∫
C

f(z) dz = 2πi
m∑
k=1

res(f, ak), (7.1)

where res(f, ak) is the residue of the function f at the pole ak ∈ C.

You are probably not yet familiar with the meaning of the various components

in the statement of this theorem, in particular the underlined terms and what is

meant by the contour integral
∫
C
f(z) dz, and so our first task will be to explain the

terminology. The Cauchy Residue theorem has wide application in many areas of

pure and applied mathematics, it is a basic tool both in engineering mathematics

and also in the purest parts of geometric analysis. The idea is that the right-side

of (7.47), which is just a finite sum of complex numbers, gives a simple method

for evaluating the contour integral; on the other hand, sometimes one can play the

reverse game and use an ‘easy’ contour integral and (7.47) to evaluate a difficult

infinite sum (allowing m → ∞). More broadly, the theory of functions of a com-

plex variable provides a considerably more powerful calculus than the calculus of

functions of two real variables (‘Calculus II’).

As listed on the course webpage, a good text for this part of the course is:

H A Priestley, Introduction to Complex Analysis (2nd Edition) (OUP)

We start by considering complex functions and the sub class of holomorphic func-

tions.
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7.1 Holomorphic functions

Within the space of all functions f : C → C there is a distinguished subspace of

holomorphic functions, often also called analytic functions. Being holomorphic is

just a local property, meaning that whether a function is holomorphic at a point

a ∈ C depends only on the value of f at a and, for some small real number ε > 0,

and its behaviour in a small disc

Bε(a) : {z ∈ C | |z − a| < ε}

around a. (By definition, Bε(a) consists of those complex numbers whose distance

from a is less than ε.)

Working definition: A function is holomorphic at a ∈ C if it is independent of

z near a and has no singularity at z = a (meaning it is well defined at all points

near a and is differentiable (smooth) in z) there.

In practise, those are the properties we look for in order to identify whether function

is holomorphic at a given point: it must be a function of z alone and must be

differentiable, the latter meaning (in practise) that if you replace z by a real variable

x then you recognize the resulting function as differentiable in the usual (real

variable) sense.

In particular, for any given b ∈ C the exponential function

f(z) = ebz

is holomorphic at all z ∈ C. That immediately implies that all the trigonometric

and hyperbolic functions

f(z) = sin z, f(z) = cos z, f(z) = sinh z, f(z) = cosh z, (7.2)

are all holomorphic at all z ∈ C. The implication is immediate because of the

following properties which tell us we can build many holomorphic functions just

by knowing a few simple ones:

f, g , : C→ C holomorphic at a ∈ C ⇒ f.g, f+g, f◦g holomorphic at a ∈ C.
(7.3)

and
f

g
holomorphic at a ∈ C provided g(a) 6= 0. (7.4)

Thus, as another example, because f(z) = z is holomorphic (everywhere) then so

is any polynomial

f(z) = amz
m + am−1z

m−1 + · · ·+ a1z + a0, aj ∈ C. (7.5)
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On the other hand,

f(z) =
ez

z − b
(7.6)

is holomorphic at all points except at z = b.

When we have a function which is holomorphic at a ∈ C then its derivative

f ′(a) :=
∂f

∂z

∣∣∣∣
z=a

∈ C

at a is defined and we may compute it in the usual way — as a partial derivative

with respect to z. All the usual identities hold:

∂

∂z
zn = nzn−1 (if n < 0 then for z 6= 0).

For any fixed λ ∈ C,
∂

∂z
eλz = λ ez

and hence
∂

∂z
cos z = − sin z,

∂

∂z
sin z = cos z,

∂

∂z
cosh z = sinh z,

∂

∂z
sinh z = cosh z.

‘Hence’ because all the usual properties of (partial) differentiation hold: if f, g :

C→ C are holomorphic at z ∈ C then

(f + g)′(z) = f ′(z) + g′(z), (λf)′(z) = λf ′(z),

(fg)′(z) = f(z)g′(z) + f ′(z)g(z), (f ◦ g)
′
(z) = g

′
(z) f

′
(g(z)),

and also (f(z)/g(z))′ = (g(z)f ′(z)− f(z)g′(z))/(g2(z)) provided g(z) 6= 0.

A more mathematically rigorous definition of holomorphic: Let a ∈ C
and let ε > 0 be a positive real number. A function is holomorphic at a ∈ C if

its partial derivatives are continuous and there exists an ε > 0 such that there is a

power series expansion

f(z) =
∞∑
n=0

cn (z − a)n valied for all z with |z − a| < ε. (7.7)

Thus the expansion must hold for all z in an ‘open disc’ of radius ε centred at a,

that is, for the set of points which have distance less than ε from a.

In fact, when this holds it is just the complex ‘Taylor series’ expansion: the coef-

ficients are given by

cn =
1

n!
f (n)(a), where f (n)(a) :=

∂nf

∂zz

∣∣∣∣
z=a

. (7.8)
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For example, the exponential is can be expanded around a = 0 into the Taylor

power series

ez =
∞∑
n=0

1

n!
zn (7.9)

This particular expansion, in fact, holds for all z, i.e. we can take ε arbitrarily

large. We can likewise compute its expansion (7.7) around any other a ∈ C to see

ez = eaez−a
(7.9)
= ea ·

∞∑
n=0

1

n!
(z − a)n =

∞∑
n=0

ea

n!︸︷︷︸
= cn

(z − a)n. (7.10)

As another example,

f(z) :=
1

1− z
=
∞∑
n=0

zn valied for all z with |z| < 1. (7.11)

That is, (7.7) holds for f(z) = 1/(1−z) at a = 0 with ε = 1; that is, the expansion

is valid for all z which distance less than 1 from the origin.

We can immediately deduce from (7.11) that there is a power series expansion

around any a ∈ C\{1} — indeed, as you can see (7.11) implies the power series

expansion

1

1− z
=
∞∑
n=0

1

(1− a)n+1
(z − a)n valied for all |z − a| < |1− a|, (7.12)

that is, valid provided z is closer to a that a is to 1.

Of course, it is ‘obvious’ from (7.4) that f(z) = 1
1−z is holomorphic everywhere

except at z = 1 because it is the quotient of two functions (1 and 1 − z) which

really are obviously holomorphic everywhere, so the only points where f will fail

to be holomorphic are where the denominator has zeroes, i.e. at z = 1.

7.2 The Cauchy-Riemann equations.

Recall that φ : C → C is said to be holomorphic at a ∈ C means that φ has an

expansion valid for z sufficiently near to a

φ(z) = β0 + β1 (z − a) + β2 (z − a)2 + β3 (z − a)3 + · · · (7.13)

in positive powers of z − a.

Another characterization of holomorphic is as follows:
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Suppose that

f : C→ C, z = x+ iy 7→ f(z) = u(x, y) + iv(x, y),

is differentiable at a ∈ C — meaning that the partial derivatives ux = ∂u/∂x, uy,

vx vy exist and are continuous. Then f is holomorphic at a ∈ C if and only if in

some small enough disc Dε(a) centred at a ∈ C one has

∂f

∂z
= 0. (7.14)

An equivalent way to state (7.14) is

ux = vy and uy = −vx. (7.15)

So (7.14) says that f is independent of z in Dε, which, since it is differentiable and

hence has no singularities, is what we said holomorphic intuitively means.

Example: Find, in terms of z = x + iy, the most general holomorphic function

whose real part is ex sin y.

Solution: Set f(z) = u + iv with u = ex sin y. The Cauchy-Riemann equations

state that
∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x

which gives

ex sin y =
∂v

∂y
,

∂v

∂x
= −ex cos y.

The first of these equations gives v = −ex cos y+ f1(x) and substituting this in the

second gives

−ex cos y + f ′1(x) = −ex cos y, f1(x) = C, C ∈ R.

Hence

f(z) = ex sin y + i(−ex cos y + C) = −iez + iC, C ∈ R.

Example: Show that if a holomorphic function has constant real part, then the

function is constant

Solution: With z = x + iy we have f(z) = c + iv(x, y) for some real constant c.

The Cauchy-Riemann equations therefore imply that

∂v

∂y
= 0,

∂v

∂x
= 0,

which says that v is independent of both x and y. Hence v(x, y) = c′ is a real

constant and thus f(z) = c+ ic′ is likewise constant.
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7.3 Integration along a contour

We begin by noting that if g : [a, b] → C is a continuous complex valued function

such that g(t) = g1(t) + ig2(t), where g1, g2 are real valued on [a, b], then∫ b

a

g(t) dt =

∫ b

a

g1(t) dt+ i

∫ b

a

g2(t) dt.

Note that it is immediate from the definition that∫ b

a

g′(t) dt = g(b)− g(a) (7.16)

since we know this holds for the real valued functions g1 and g2.

Now let γ : [a, b]→ C be a smooth curve and suppose that f : C→ C is a function

which is continuous in a region containing the path traced out by γ. We wish to

define the integral of f along the curve γ,∫
γ

f(z) dz

A natural way to proceed is to partition [a, b] as above by points t0, t1, . . . tn−1, tn
such that a = t0 < t1 < t2 < . . . < tn−1 < tn = b. The points zj = γ(tj) define a

polygon with vertices at z0, z1, . . . , zn. We may form the sum

n∑
j=1

f(tj)(zj − zj−1) =
n∑
j=1

f(tj)
γ(tj)− γ(tj−1)

tj − tj−1︸ ︷︷ ︸
γ′ (tj) + o(t)

(tj − tj−1)︸ ︷︷ ︸
δtj

.

(Note, f could be evaluated at any point sj ∈ [tj−1, tj]. As we take finer and finer

partitions we can take the limit of these sums and as the length of the longest

interval tends to zero, it tends to
∫ b
a
f(γ(t))γ′(t) dt.
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We will take this integral as our definition of
∫
γ
f(z) dz. To be precise:

Definition 7.1 Let γ : [a, b] → C be a smooth curve and suppose that f is a

function which is continuous in a region containing the path of γ. Then∫
γ

f(z) dz =

∫ b

a

f(γ(t))γ′(t) dt.

It will be useful to note the following basic properties: Let γ be a contour. For

constants α, β ∈ C

• ∫
γ

(αf(z) + βg(z)) dz = α

∫
γ

f(z) dz + β

∫
γ

g(z) dz, (7.17)

• ∫
γ̃

f(z) dz = −
∫
γ

f(z) dz, (7.18)

where γ̃ is the reverse curve to γ

• Let

γ : [a, b] −→ C, t 7→ γ(t), µ : [c, d] −→ C, s 7→ µ(s),

be two parametrizations of a path C ⊂ C. Then if they both have the same

direction ∫
γ

f(z) dz =

∫
µ

f(z) dz. (7.19)

That is,
∫
C
f(z) dz is independent of the choice of parametrization (up to

sign).

7.3.1 Example

Evaluate
∫
γ
z dz, where γ = γ1 + γ2, γ1 being the line segment from 1 to 0 and γ2

being the line segment from 0 to 2 + 2i.

In this case the contour consists of two lines and we need to parametrize them

separately by, for example,

γ1 : [0, 1]→ C, γ1(t) = 1− t,

and

γ2 : [0, 1]→ C, γ2(t) = t(2 + 2i)
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So ∫
C

z dz =

∫
γ1

z dz +

∫
γ2

z dz.

We have in each case ∫
γj

z dz =

∫ 1

0

γj(t) γ
′
j(t) dt

from which we find
∫
γ1
z dz = −1/2 and

∫
γ2
z dz = 4, so that∫

γ

z dz =
7

2
.

7.3.2 Example

Evaluate
∫
C
z2 dz, where C = C1 + C2 with C1 the line segment from −2 to 2

on the real axis, and C2 the semi-circle of radius 2 and centre 0 in the upper-half

plane from 2 to −2.

The contour consists of two pieces which we need to parametrize separately. Parametrize

C1 by, for example, γ1 : [−2, 2]→ C, γ1(t) = t, and C2 by, for example, γ2 : [0, π]→
C, γ2(t) = 2eit. So

∫
C
z2 dz = 0. Make sure you can see why.

7.3.3 A particularly important Example

This example is one of the key elements that goes into the Cauchy Residue theorem.

Let C(a, r) be the circle of radius r > 0 with centre at a ∈ C. Then

∫
C(a,r)

1

(z − a)n
dz =

{
0 n 6= 1

2πi n = 1.
(7.20)

Let us emphasize
1

2πi

∫
C(a,r)

1

(z − a)
dz = 1 (7.21)

for any r > 0.

7.4 Some fundamental theorems

In practise, we evaluate real integrals analytically by ‘reverse differentiation’, using

the FTC for real integrals. A similar result is true for certain types of contour

integration:
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Theorem 7.2 Let f : C → C be a complex function, and let C be a contour

beginning at p ∈ C and ending at q ∈ C. If f = F ′ is the derivative of a function

F which is holomorphic at each point of C (recall here F ′(z) := ∂F/∂z) then∫
γ

f(z) dz = F
(
q
)
− F

(
p
)
. (7.22)

In particular, if C is a closed contour and f = F ′ then∫
C

f(z) dz = 0. (7.23)

(Recall, a ‘closed contour’ is a contour which looks something like a circle, or a

loop of string, it has no end points.)

The FTC can greatly simplify the evaluation and analysis of contour integrals.

Example: As a simple example, let f(z) = (z− a)m, where m is an integer. If C

is a smooth curve which does not pass through a ∈ C and which starts at p and

ends at q then∫
C

(z − a)m dz =
1

m+ 1

[
qm+1 − pm+1

]
provided m 6= −1 (7.24)

On the other hand, when m = −1 and Cclosed is a simple (no self-crossings) closed

contour then∫
Cclosed

(z − a)−1 dz =

{
2πi, if a is inside the contour

0, if a is outside the contour.
(7.25)

We can write (7.25) for the case of a circle C(a, r) centred at a of radius r > 0 as∫
C(a,r)

(z − a)−1 dz = 2πi. (7.26)

Exercise: How about
∫
C(b,r)

(z − a)−1 dz where b 6= a? (Your answer will depend

on |a− b|).

In fact, (7.25) follows from the simpler fact (7.26) because of the following funda-

mental theorem:

Theorem 7.3 (Cauchy’s Theorem) Let f : C→ C be a complex function, and let

Cclosed ⊂ C be a simple closed contour. Then if f is holomorphic along and at all

points inside Cclosed, then ∫
Cclosed

f(z) dz = 0. (7.27)
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The proof of this theorem is given in full detail in the course 6CCM322A Complex

Analysis which is a 3rd year mathematics option. You need to know the statement

of the above theorems, but not the proofs. Cauchy’s Theorem 7.3 combined with

(7.26) yields the Cauchy Residue theorem (CRT).

7.5 Poles and residues

If φ : C→ C, on the other hand, if f : C→ C, z 7→ f(z), has an isolated singularity

at a ∈ C (meaning that f is not holomorphic at a but it is holomorphic at those

points z ∈ C with 0 < |z − a| < ε some ε > 0) and the singularity at a looks like

f(z) =
β−m

(z − a)m
+ . . . +

β−1
(z − a)

+ φ(z), 0 < |z − a| < ε, (7.28)

with φ holomorphic for |z − a| < ε, then f is said to have a pole of order m at

a. Note that the complex numbers occuring in (7.28)

β−r = β−r(a)

will depend on the point a ∈ C. If (7.28) holds with m = 1, i.e. if for some ε > 0

f(z) =
β−1(a)

(z − a)
+ φ(z), 0 < |z − a| < ε, (7.29)

with φ holomorphic at a ∈ C, then f is said to have a simple pole at a.

If f has a pole at a (of some order) then the residue of f at a is defined by

res(f, a) = β−1(a). (7.30)

(7.28) can be equivalently written

f(a+ h) =
β−m(a)

hm
+ . . . +

β−1(a)

h
+ φ(a+ h), 0 < |h| < ε, (7.31)

which can sometimes be easier for computing (7.30); note also that (??) may be

similarly written

φ(a+ h) =
∑
n≥ 0

βn(a)hn, βn(a) =
φ(n)(a)

n!
, for all ‘small′ h. (7.32)

7.6 Computing residues

In order to use the Cauchy Residue Theorem effectively we need to have some

methods for computing residues. For particularly simple functions one can do this
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directly, but more generally it is usually easier to resort to one of the following

formulae for computing residues.

Suppose that

f(z) =
φ(z)

z − a
where φ is holomorphic at a. (7.33)

Then

res(f, a) = φ(a). (7.34)

Suppose

f(z) =
φ(z)

(z − a)m
, φ holomorphic at a, (7.35)

then

res(f, a) =
φ(m−1)(a)

(m− 1)!
. (7.36)

Suppose that

f(z) =
φ(z)

ψ(z)
(7.37)

with φ and ψ holomorphic at a ∈ C, and that

ψ(a) = 0 and ψ
′
(a) 6= 0.

Then f has a simple pole at z = a and

res(f, a) =
φ(a)

ψ′(a)
. (7.38)

Example

f(z) =
1

z4 + 1

has poles at

e
π
4
i, e

3π
4
i, e

5π
4
i, e

7π
4
i.

We have ψ′(e
(2k+1)

4
πi) = 4e

3
4
(2k+1)πi 6= 0, so we can apply the formula to get

res

(
1

z4 + 1
, e

(2k+1)
4

πi

)
=

1

4
e−

3
4
(2k+1)πi. (7.39)

For instance,

res

(
1

z4 + 1
, e

π
4
i

)
=

1

4
e−

3
4
πi = − 1

4
√

2
(1 + i). (7.40)
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7.7 Evaluating integrals with the CRT

The Cauchy Residue Theorem:

Let C ⊂ C be a simple closed contour. Let f : C→ C be a complex function which

is holomorphic along C and inside C except possibly at a finite number of points

a1, . . . , am at which points f has poles. Then, with C oriented in an anti-clockwise

sense, ∫
C

f(z) dz = 2πi
m∑
k=1

res(f, ak), (7.41)

where res(f, ak) is the residue of the function f at the point ak ∈ C. If f has no

poles inside C (f is holomorphic inside C) then
∫
C
f(z) dz = 0.

7.8 The right-hand side of the Cauchy Residue Formula

(7.47): adding-up residues

If φ(z) is analytic at a, then from (7.47) and formula (15.9) of online lecture 15 we

have

∫
C

φ(z)

z − a
dz = 2πi res

(
φ(z)

z − a
, a

)
(7.42)

=

{
2πi φ(a), if a is inside C

0, if a is outside C.

Let

C(a,R) = circle centred at a ∈ C and with radius R > 0.

7.9 Example

the functions ez and z are holomorphic everywhere the only pole of f(z) = ez

z
is at

z = 0 with, by (7.42), residue equal to e0 = 1. Hence∫
C(0,1)

ez

z
dz = 2πi. (7.43)
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7.10 Example

To evaluate ∫
γ

ez

(z − 1)(z − 3)
dz,

taken round the circle γ given by |z| = 2 in the positive (anti-clockwise) sense,

we have f(z) = φ(z)
z−a with φ(z) = ez/(z−3)

z−1 holomorphic everywhere inside the curve

|z| = 2 — and, in particular, at z = 1. Hence from (7.42) the integral equals

2πi φ(1) = −πi e. Around |z| = 1/2 , on the other hand, the CIF says it evaluates

to zero

Likewise, from (7.47) we can compute∫
C

φ(z)

(z − a)m
dz = 2πi res

(
φ(z)

(z − a)m
, a

)

=

{
2πi φ

(m−1)(a)
(m−1)! , if a is inside C

0, if a is outside C.

7.11 Example

Applying this, we have ∫
C

sin(3z)

(z − 2i)2
dz = 6πi cosh 6. (7.44)

On the other hand, if g analytic at a ∈ C while

ψ(a) = 0 and ψ
′
(a) 6= 0,

from (7.47) we infer that if a is inside the contour C then∫
C

g(z)

ψ(z)
dz = 2πi

g(a)

ψ′(a)
. (7.45)

If there are two points a1, a2 ∈ C which are inside the contour C and which are

poles of this type, then∫
C

g(z)

ψ(z)
dz = 2πi

g(a1)

ψ′(a1)
+ 2πi

g(a2)

ψ′(a2)
, (7.46)

and so on.
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7.12 Example

To evaluate ∫
C(0,5/2)

cot(πz) dz.

we saw earlier that cot(πz) has a simple pole at each integer n ∈ Z with residue 1
π

(independent of n). Hence, as there are five poles inside the contour, we have∫
C(0,5/2)

cot(πz) dz = 10 i.

7.13 Evaluating real integrals using the CRT

The Cauchy Residue Theorem states:

Let C ⊂ C be a simple closed contour. Let f : C→ C be a complex function which

is holomorphic along C and inside C except possibly at a finite number of points

a1, . . . , am at which points f has poles. Then, with C oriented in an anti-clockwise

sense, ∫
C

f(z) dz = 2πi
m∑
k=1

res(f, ak), (7.47)

where res(f, ak) is the residue of the function f at the point ak ∈ C.

This provides us with a powerful method of computing real integrals which would

be impossible to evaluate using standard real integration techniques on R.

In fact, every time we evaluate a contour integral using (7.47) we evaluate two real

integrals. For, if γ : [a, b]→ C ⊂ C is a parametrisation of C then∫
C

f(z) dz =

∫ b

a

α(t) dt + i

∫ b

a

β(t) dt.

On the other hand, we can also write the right-hand side 2πi
∑m

k=1 res(f, ak) of

(7.47) as

2πi
m∑
k=1

res(f, ak) = A+ iB for some real numbers A,B ∈ R, (7.48)

and hence we obtain the evaluations
∫ b
a
α(t) dt = A and

∫ b
a
β(t) dt = B.
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7.13.1 Example:

We computed in Example (16.1) that∫
C(0,1)

ez

z
dz = 2πi. (7.49)

Using the parametrization γ(θ) = eiθ, 0 ≤ θ ≤ 2π, of C(0, 1) we have∫
C

ez

z
dz = i

∫ 2π

0

ecos θ (cos(sin θ) + i sin(sin θ)) dθ.

Equating this with (7.49) gives∫ 2π

0

ecos θ cos(sin θ) dθ = 2π,

∫ 2π

0

ecos θ sin(sin θ) dθ = 0.

7.13.2 Exercise:

By considering the contour integral
∫
C(0,1)

1
z2+4z+1

dz show that∫ 2π

0

1

2 + cos(t)
dt =

2π√
3
.

7.14 Evaluating integrals
∫∞
−∞ f(x) dx over the whole real

line

This will provide us with a method of evaluating Fourier transforms and hence

obtaining explicit solutions to a given ODE or PDE.

The idea is to compute
∫
CR
f(z) dz over a simple closed contour, typically, of the

form

CR = [−R,R] ∪ AR
where f is holomorphic on and inside CR except possibly at poles a1, . . . , amR inside

CR, and then allow R→∞. Since∫
CR

f(z) dz =

∫
[−R,R]

f(z) dz +

∫
AR

f(z) dz

=

∫ R

−R
f(x) dx +

∫
AR

f(z) dz,

the aim is to choose AR so that

lim
R→∞

∫
AR

f(z) dz = 0 (7.50)
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and hence that by the Cauchy Residue Theorem infer that∫ ∞
−∞

f(x) dx = lim
R→∞

2πi

mR∑
k=1

res(f, ak). (7.51)

Note that the right-hand side must in this case be a real number. This method

depends on the convergence of all the limits and the existence of the integrals and

so forth — but it works for large classes of functions.

7.14.1 Estimating contour integrals

The following fact is useful in showing properties like (7.50).

We know that for continuous real valued functions f : [a, b]→ R that∣∣∣∣∫ b

a

f(x) dx

∣∣∣∣ ≤ ∫ b

a

|f(x)| dx.

This extends to complex integrals in the following way.

Theorem 7.4 Let C be a contour in C. Then∣∣∣∣∫
C

f(z) dz

∣∣∣∣ ≤ ∫ b

a

|f
(
γ(t)

)
| · |γ′(t)| dt, (7.52)

where γ : [a, b]→ C ⊂ C is a parametrisation of C.

Note that if |f(z)| ≤ M, ∀ z ∈ C (f is bounded by M along C, this implies

|
∫
C
f(z) dz| ≤MLC, where LC is the length of C.

7.14.2 Example:

By considering the contour integral∫
CR

eiz

z − ia
dz,

where CR = [−R,R] ∪ AR and AR is the semicircle centre at 0 and radius R > a

in the upper-half plane, one has∫ ∞
−∞

x sinx+ a cosx

x2 + a2
dx = 2πe−a

and ∫ ∞
−∞

x cosx− a sinx

x2 + a2
dx = 0.
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To see this, we use the CRT as indicated above, and show that
∫
AR
f(z) dz → 0 as

R → ∞. For that use (7.52). From the parametrization γ2(x) = Reix of AR and

Theorem 7.4 we have∣∣∣∣∫
AR

f(z) dz

∣∣∣∣ =

∣∣∣∣∫ π

0

ei[R cos θ+iR sin θ]Rieiθ dθ

Reiθ − ia

∣∣∣∣ ≤ ∫ π

0

Re−R sin θ dθ

|Reiθ − ia|

≤
∫ π

0

R

R− a
e−R sin θ dθ =

2R

R− a

∫ π/2

0

e−R sin θ dθ.

—– and since sin θ ≥ 2θ/π ∀θ ∈ [0, π/2] —–

≤ 2R

R− a

∫ π/2

0

e−2Rθ/π dθ =
π

R− a
(1− e−R)→ 0 as R→∞.

8 An application to ordinary

differential equations

We are now going to use a contour integral to help solve an ODE. This principle

is, in fact, very general and can be applied to partial differential equations on Rm

(recall that ODEs refer to differential equations on R1). As a warm up to this you

are encouraged to re-read the section “ODEs and the FT”.

8.1 The ODE

Here, we are going to see how to find the general solution to the ODE

d4f

dx4
+ f = g (8.1)

provided that
dkf

dxk
→ 0 as |x| → ∞ for k = 0, 1, 2, 3. (8.2)

The function g : R1 → R1 is given, and the objective is to determine f : R1 → R1.

8.2 Applying Fourier transform

The assumption (8.2) means that we can apply the Fourier transform to the ODE

(8.1) to obtain

f(x) =

∫ ∞
−∞

k(x, y) g(y) dy
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where

k(x, y) =
1

2π

∫ ∞
−∞

ei(y−x)ξ

ξ4 + 1
dξ. (8.3)

It remains, then, to evaluate the integral on the right-side of (8.3).

8.3 Using the Cauchy residue theorem

To evaluate this real integral previous examples suggest that we may get somewhere

by evaluating the contour integral

I(α) =

∫
CR

eiαz

z4 + 1
dz

around the contour CR in the z-plane which consists of the portion of the real axis

from −R to R, together with the semi-circular arc γR parametrized by γR(θ) =

Reiθ, 0 ≤ θ ≤ π.

We assume that

α ∈ R1. (8.4)

For R > 1 f(z) = eiαz

z4+1
has two poles inside CR at z0 = eiπ/4 and z1 = ei 3π/4. The

Cauchy residue theorem says that

I(α) = 2πi(res(f, z0) + res(f, z1)), (8.5)

= π e
− α√

2 sin

(
α√
2

+
π

4

)
,

using residue formulae.

On the other hand,

I(α) =

∫ R

−R

eiαξ

ξ4 + 1
dξ +

∫
AR

eiαz

z4 + 1
dz

with AR the arc component of the contour. But using the estimate for contour

integrals, described in the previous section, we find∣∣∣∣∫
AR

eiαz

z4 + 1
dz

∣∣∣∣ =

∣∣∣∣∣
∫ π

0

eiαRe
iθ

R4ei4θ + 1
Reiθ dθ

∣∣∣∣∣ ≤ Rπ

R4 − 1
→ 0 as R→∞ if α ≥ 0.

We are then left with

lim
R→∞

∫ R

−R

eiαξ

ξ4 + 1
dξ :=

∫ ∞
−∞

eiαξ

ξ4 + 1
dξ = π e

− α√
2 sin

(
α√
2

+
π

4

)
.
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That is,

provided α ≥ 0

∫ ∞
−∞

eiαξ

ξ4 + 1
dξ = π e

−α√
2 sin

(
α√
2

+
π

4

)
. (8.6)

From (8.3) we want to apply this with α = y − x. But y − x can take on any real

value, so we need to extend (8.8) to the case α ≤ 0. To do that we make use of

the fact that we have only used two of the four poles of f . So we now evaluate

IDR(α) =

∫
DR

eiαz

z4 + 1
dz

around the contour DR in the z-plane which consists of the portion of the real axis

from R to −R, together with the semi-circular arc γR parametrized by γR(θ) =

Reiθ, π ≤ θ ≤ 2π, (note this is positively oriented (anticlockwise) which means

the direction along the [−R,R]] is reversed!). We now assume that

α ≤ 0. (8.7)

We now repeat the above process with DR instead of CR to find that

provided α ≤ 0

∫ ∞
−∞

eiαξ

ξ4 + 1
dξ = π e

α√
2 sin

(
−α√

2
+
π

4

)
. (8.8)

Hence:

For any α ∈ R1

∫ ∞
−∞

eiαξ

ξ4 + 1
dξ = π e

−|α|√
2 sin

(
|α|√

2
+
π

4

)
. (8.9)

We now obtain from (8.3) and (8.9) that the general solution to (8.1) is given by

f(x) =

∫ ∞
−∞

k(x, y) g(y) dy

with

k(x, y) =
1

2
e
− |x−y|√

2 sin

(
|x− y|√

2
+
π

4

)
.
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