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Chapter 4 - Complex Integration

Cauchy’s Integral Formula

4.2.2 Exercise 1

Applying the Cauchy integral formula to f(z) = ez,

1 = f(0) =
1

2πi

∮
|z|=1

f(z)

z
dz ⇐⇒ 2πi =

∮
|z|=1

ez

z
dz

Section 4.2.2 Exercise 2

Using partial fractions, we may express the integrand as

1

z2 + 1
=

i

2(z + i)
− i

2(z − i)

Applying the Cauchy integral formula to the constant function f(z) = 1,

1

2πi

∮
|z|=2

1

z2 + 1
dz =

i

2

(
1

2πi

)∮
|z|=2

1

z + i
dz − i

2

(
1

2πi

)∮
|z|=2

1

z − i
dz = 0

4.2.3 Exercise 1

1. Applying Cauchy’s differentiation formula to f(z) = ez,

1 = f (n−1)(0) =
(n− 1)!

2πi

∮
|z|=1

ez

zn
dz ⇐⇒ 2πi

(n− 1)!
=

∮
|z|=1

ez

zn
dz

2. We consider the following cases:

(a) If n ≥ 0,m ≥ 0, then it is obvious from the analyticity of zn(1− z)m and Cauchy’s theorem that
the integral is 0.

(b) If n ≥ 0,m < 0, then by the Cauchy differentiation formula,∮
|z|=2

zn(1−z)mdz = (−1)m
∮
|z|=2

zn

(z − 1)|m|
dz =

{
0 n < |m| − 1
(−1)m2πi
(|m|−1)!

n!
(n−|m|+1)! = (−1)|m|2πi

(
n

|m|−1

)
n ≥ |m|

(c) If n < 0,m ≥ 0, then by a completely analogous argument,∮
|z|=2

zn(1−z)mdz =

∮
|z|=2

(1− z)m

z|n|
dz =

{
0 m < |n| − 1
(−1)|n|−12πi

(|n|−1)!
m!

(m−|n|+1)! = (−1)|n|−12πi
(

m
|n|−1

)
m ≥ n

(d) If n < 0,m < 0, then sincen(|z| = 2, 0) = n(|z| = 2, 1) = 1, we have by the residue formula that∮
|z|=2

(1− z)mzn = 2πires(f ; 0) + 2πires(f ; 1) =

∮
|z|= 1

2

(1− z)mzndz +

∮
|z−1|= 1

2

(1− z)mzndz
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Using Cauchy’s differentiation formula, we obtain∮
|z|=2

(1− z)mzndz =

[∮
|z|= 1

2

(1− z)−|m|

z|n|
dz +

∮
|z−1|= 1

2

z−|n|

(1− z)|m|
dz

]

=
2πi

(|n| − 1)!
· (|m|+ |n| − 2)!

(|m| − 1)!
+

(−1)|m|2πi

(|m| − 1)!
· (−1)|m|−1(|n|+ |m| − 2)!

(|n| − 1)!

= 2πi

[(
|m|+ |n| − 2

|n| − 1

)
−
(
|m|+ |n| − 2

|n| − 1

)]
= 0

3. If ρ = 0, then it is trivial that
∮
|z|=ρ |z − a|

−4 |dz| = 0, so assume otherwise. If a = 0, then∮
|z|=ρ

|z|−4 |dz| =
∫ 1

0

ρ−42πiρdt =
2πi

ρ3

Now, assume that a 6= 0. Observe that

1

|z − a|4
=

1

(z − a)2(z − a)
2

∮
|z|=ρ

|z − a|−4 |dz| =
∮
|z|=ρ

1

(z − a)2(z − a)2
|dz| =

∫ 1

0

1

(ρe2πit − a)2(ρe−2πit − a)2
ρ

2πie4πit

ie4πit
dt

= −i
∫ 1

0

ρ2πie4πit

(ρe2πit − a)2(ρ− ae2πit)2
dt =

−i
ρ

∮
|z|=ρ

z

(ρ− a
ρz)

2(z − a)2
dz =

−iρ
a2

∮
|z|=ρ

z

(z − ρ2

a )2(z − a)2
dz

We consider two cases. First, suppose |a| > ρ. Then z(z− a)−2 is holomorphic on and inside {|z| = ρ}
and ρ2

a lies inside {|z| = ρ}. By Cauchy’s differentiation formula,∮
|z|=ρ

|z − a|−4 |dz| = 2πi
−iρ
a2

[
(z − a)−2 − 2z(z − a)−3

]
z= ρ2

a

=
2πρ

a2(ρ
2

a − a)2

[
1− 2

ρ2

a(ρ
2

a − a)

]

=
−2πρ(ρ2 + |a|2)

(ρ2 − |a|2)3
=

2πρ(ρ2 + |a|2)

(|a|2 − ρ2)3

Now, suppose |a| < ρ. Then ρ2

a lies outside |z| = ρ, so the function z(z − ρ2

a )−2 is holomorphic on and
inside {|z| = ρ}. By Cauchy’s differentiation formula,∮

|z|=ρ
|z − a|−4 |dz| = 2πi

−iρ
a2

[
(z − ρ2

a
)−2 − 2z(z − ρ2

a
)−3

]
z=a

=
2πρ

a2(a− ρ2

a )2

[
1− 2

a

(a− ρ2

a )

]

=
−2πρ

(|a|2 − ρ2)2

(a+ ρ2

a )

a− ρ2

a

=
−2πρ(|a|2 + ρ2)

(|a|2 − ρ2)3
=

2πρ(|a|2 + ρ2)

(ρ2 − |a|2)3

4.2.3 Exercise 2

Let f : C → C be a holomorphic function satisfying the following condition: there exists R > 0 and n ∈ N
such that |f(z)| < |z|n ∀ |z| ≥ R. For every r ≥ R, we have by the Cauchy differentiation formula that for
all m > n, ∣∣∣f (m)(a)

∣∣∣ ≤ m!

2π

∮
|z|=r

|z|n

|z|m+1 |dz| ≤
m!

rm−n

Noting that m− n ≥ 1 and letting r →∞, we have that f (m)(a) = 0. Since f is entire, for every a ∈ C, we
may write

f(z) = f(a) + f ′(a)(z − a) + · · ·+ f (n)(a)

n!
(z − a)n + fn+1(z)(z − a)n+1 ∀z ∈ C

where fn+1 is entire. Since fn+1(a) = f (n+1)(a) = 0 and a ∈ C was arbitary, we have that fn+1 ≡ 0 on C.
Hence, f is a polynomial of degree at most n.
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Local Properties of Analytical Functions

4.3.2 Exercise 2

Let f : C→ C be an entire function with a nonessential singularity at∞. Consider the function g(z) = f
(

1
z

)
at z = 0. Let n ∈ N be minimal such that limz→0 z

ng(z) = 0. Then the function zn−1g(z) has an analytic
continuation h(z) defined on all of C. By Taylor’s theorem, we may express h(z) as

zn−1g(z) = h(z) = h(0)︸︷︷︸
cn−1

+
h′(0)

1!︸ ︷︷ ︸
cn−2

z +
h′′(0)

2!
z2 + · · ·+ h(n−1)(0)

(n− 1)!︸ ︷︷ ︸
c0

zn−1 + hn(z)zn ∀z 6= 0

where hn : C→ C is holomorphic. Hence,

lim
z→0

g(z)−
[ cn−1

zn−1
+
cn−2

zn−2
+ · · ·+ c0

]
= lim
z→0

zhn(z) = 0

And
lim
z→∞

g(z)−
[ cn−1

zn−1
+
cn−2

zn−2
+ · · ·+ c0

]
= lim
z→0

f(z) = f(0)

since f is entire. Note that we also obtain that c0 = f(0). Hence, g(z) −
[ cn−1

zn−1 + cn−2

zn−2 + · · ·+ c0
]

(we
are abusing notation to denote the continuation to all of C) is a bounded entire function and is therefore
identically zero by Liouville’s theorem. Hence,

∀z 6= 0, f(z) = cn−1z
n−1 + cn−2z

n−2 + · · ·+ c0

Since f(0) = c0, we obtain that f is a polynomial.

4.3.2 Exercise 4

Let f : C ∪ {∞} → C ∪ {∞} be a meromorphic function in the extended complex plane. First, I claim that
f has finitely many poles. Since the poles of f are isolated points, they form an at most countable subset
{pk}∞k=1 of C. By definition, the function f̃(z) = f

(
1
z

)
has either a removable singularity or a pole at z = 0.

In either case, there exists r > 0 such that f̃ is holomorphic on D′(0; r). Hence, {pk}∞k=1 ⊂ D(0; r). Since
this set is bounded, {pk}∞k=1 has a limit point p. By continuity, f(p) =∞ and therefore p is a pole. Since p
is an isolated point, there must exist N ∈ N such that ∀k ≥ N, pk = p.
Our reasoning in the preceding Exercise 2 shows that for any pole pk 6= ∞ of order mk, we can write in a
neighborhood of pk

f(z) =

[
cmk

(z − pk)mk
+

cmk−1

(z − pk)mk−1
+ · · ·+ c1

z − pk
+ c0

]
︸ ︷︷ ︸

fk(z)

+gk(z)

where gk is holomorphic in a neighborhood of pk. If p =∞ is a pole, then analogously,

f̃(z) =
[ cm∞
zm∞

+
cm∞−1

zm∞−1
+ · · ·+ c1

z
+ c0

]
︸ ︷︷ ︸

f̃∞(z)

+g̃∞(z)

where g̃∞ is holomorphic in a neighborhood of 0. For clarification, the coefficients cn depend on the pole,
but we omit the dependence for convenience. Set f∞(z) = f̃∞

(
1
z

)
and

h(z) = f(z)− f∞(z)−
n∑
k=1

fk(z)

I claim that h is (or rather, extends to) an entire, bounded function. Indeed, in a neighborhood of each zk,
h can be written as h(z) = gk(z)−

∑
i 6=k fk(z) and in a neighborhood of z∞ as h(z) = g∞(z)−

∑n
k=1 fk(z),

which are sums of holomorphic functions. h̃(z) = h
(

1
z

)
is evidently bounded in a neighborhood of 0 since

the fk
(

1
z

)
are polynomials and f

(
1
z

)
− f∞

(
1
z

)
= g̃∞(z), which is holomorphic in a neighborhood of 0. By

Liouville’s theorem, h is a constant. It is immediate from the definition of h that f is a rational function.
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Calculus of Residues

4.5.2 Exercise 1

Set f(z) = 6z3 and g(z) = z7 − 2z5 − z + 1. Clearly, f, g are entire, |f(z)| > |g(z)| ∀ |z| = 1, and
f(z) + g(z) = z7 − 2z5 + 6z3 − z + 1. By Rouché’s theorem, f and f + g have the same number of zeros,
which is 3 (counted with order), in the disk {|z| < 1}.

Section 4.5.2 Exercise 2

Set f(z) = z4 and g(z) = −6z + 3. Clearly, f, g are entire, |f(z)| > |g(z)| ∀ |z| = 2. By Rouché’s theorem,
z4−6z+3 has 4 roots (counted with order) in the open disk {|z| < 2}. Now set f(z) = −6z and g(z) = z4 +3.
Clearly, |f(z)| > |g(z)| ∀ |z| = 1. By Rouché’s theorem, z4 − 6z + 3 = 0 has 1 root in the in the open disk
{|z| < 1}. Observe that if z ∈ {1 ≤ |z| < 2} is root, then by the reverse triangle inequality,

3 = |z|
∣∣z3 − 6

∣∣ ≥ |z| ∣∣∣|z|3 − 6
∣∣∣

So |z| ∈ (1, 2). Hence, the equation z4 − 6z + 3 = 0 has 3 roots (counted with order) with modulus strictly
between 1 and 2.

4.5.3 Exercise 1

1. Set f(z) = 1
z2+5z+6 = 1

(z+3)(z+2) . Then f has poles z1 = −2, z2 = −3 and by Cauchy integral formula,

res(f ; z1) =
1

2πi

∮
|z+2|= 1

2

(z + 3)−1

(z + 2)
dz =

1

z + 3
|z=−2 = 1

res(f ; z2) =
1

2πi

∮
|z+3|= 1

2

(z + 2)−1

(z + 3)
dz =

1

z + 2
|z=−3 − 1

2. Set f(z) = 1
(z2−1)2 = 1

(z−1)2(z+1)2 . Then f has poles z1 = −1, z2 = −1. Applying Cauchy’s differentia-

tion formula, we obtain

res(f ; z1) =
1

2πi

∮
|z+1|=1

(z − 1)−2

(z + 1)2
dz = −2(z − 1)−3|z=−1 =

1

4

res(f ; z2) =
1

2πi

∮
|z−1|=1

(z + 1)−2

(z − 1)2
dz = −2(z + 1)−3|z=1 = −1

4

3. sin(z) has zeros at kπ, k ∈ Z, hence sin(z)−1 has poles at zk = kπ. We can write sin(z) = (z −
zk) [cos(zk) + gk(z)], where gk is holomorphic and gk(zk) = 0. By the Cauchy integral formula,

res(f ; zk) =
1

2πi

∮
|z−zk|=1

[f ′(zk) + gk(z)]
−1

(z − zk)
dz =

1

f ′(zk) + g(zk)
= (−1)k

4. Set f(z) = cot(z). Since sin(z) has zeros at zk = kπ, k ∈ Z and cos(zk) 6= 0, cot(z) has poles at
zk, k ∈ Z. We can write sin(z) = (z − zk) [cos(zk) + gk(z)], where gk is holomorphic and gk(zk) = 0.
By Cauchy’s integral formula,

res(f ; zk) =
1

2πi

∮
|z−zk|=1

cos(z) [cos(zk) + gk(z)]
−1

(z − zk)
dz =

cos(zk)

cos(zk) + gk(zk)
= 1

5. It follows from (3) that f(z) = sin(z)−2 has poles at zk = kπ, k ∈ Z. We remark further that
gk(z) = − cos(zk)(z−zk)2 +hk(z), where hk(z) is holomorphic. By the Cauchy differentiation formula,

res(f ; zk) =
1

2πi

∮
|z−zk|=1

[cos(zk) + gk(z)]
−2

(z − zk)2
dz = −2

g′k(zk)

(cos(zk) + gk(zk))3
= 0
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6. Evidently, the poles of f(z) = 1
zm(1−z)n are z1 = 0, z2 = 1. By Cauchy’s differentiation formula,

res(f ; z1) =
1

2πi

∮
|z|= 1

2

(1− z)−n

zm
dz =

(n+m− 2)!

(n− 1)!(m− 1)!
=

(
n+m− 2

m− 1

)

res(f ; z2) =
(−1)n

2πi

∮
|z−1|= 1

2

z−m

(z − 1)n
dz =

(−1)n(−1)n−1(m+ n− 2)!

(m− 1)!
= −

(
n+m− 2

n− 1

)

4.5.3 Exercise 3

(a) Since a+ sin2(θ) = a+ 1−cos(2θ)
2 = 2 [(2a+ 1)− cos(2θ)], we have∫ π

2

0

dθ

a+ sin2(θ)
= 2

∫ π
2

0

dθ

(2a+ 1)− cos(2θ)
=

∫ π

0

dt

(2a+ 1)− cos(t)
=

∫ 0

−π

dτ

(2a+ 1) + cos(τ)

=

∫ π

0

dτ

(2a+ 1) + cos(τ)

where we make the change of variable τ = θ − π, and the last equality follows from the symmetry of
the integrand. Ahlfors p. 155 computes

∫ π
0

dx
α+cos(x) = π√

α2−1
for α > 1. Hence,

∫ π
2

0

dθ

a+ sin2(θ)
=

π√
(2a+ 1)2 − 1

(b) Set

f(z) =
z2

z4 + 5z2 + 6
=

z2

(z2 + 3)(z2 + 2)
=

z2

(z −
√

3i)(z +
√

3i)(z −
√

2i)(z +
√

2i)

For R >> 0,
γ1 : [−R,R]→ C, γ1(t) = t; γ2 : [0, π]→ C, γ2(t) = Reit

and let γ be the positively oriented closed curve formed by γ1, γ2. By the residue formula and applying

the Cauchy integral formula to eiz

z+ai to compute res(f ; ai),∫
γ

f(z)dz = 2πires(f ;
√

3i) + 2πires(f ;
√

2i)

It is immediate from Cauchy’s integral formula that

2πires(f ;
√

3i) =

∫
|z−i√3|=ε

z2(z + i
√

3)−1(z2 + 2)−1

(z − i
√

3)
dz = 2πi · (i

√
3)2

((i
√

3)2 + 2)(2i
√

3)
=
√

3π

2πires(f ;
√

2i) =

∫
|z−i√2|=ε

z2(z + i
√

2)−1(z2 + 3)−1

(z − i
√

2)
dz = 2πi · (i

√
2)2

((i
√

2)2 + 3)(2i
√

2)
= −
√

2π

Using the reverse triangle inequality, we obtain the estimate∣∣∣∣∫
γ2

f(z)dz

∣∣∣∣ ≤ πR3

|R2 − 3| |R2 − 2|
→ 0, R→∞

Hence,

2

∫ ∞
0

x2

x4 + 5x2 + 6
=

∫ ∞
−∞

x2

x4 + 5x2 + 6
dx = (

√
3−
√

2)π ⇒
∫ ∞

0

x2dx

x4 + 5x2 + 6
=

(
√

3−
√

2)π

2
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(e) We may write
cos(x)

x2 + a2
= Re

eix

(x2 + a2)

So set f(z) = eiz

z2+a2 , which has simple poles at ±ai. First, suppose that a 6= 0. For R >> 0, define

γ1 : [−R,R]→ C, γ1(t) = t; γ2 : [0, π]→ C, γ2(t) = Reit

and let γ be the positively oriented closed curve formed by γ1, γ2. By the residue formula,∫
γ

f(z)dz = 2πires(f ; ai) = 2πi · e
i(ai)

(2ai)
=
πe−a

a∣∣∣∣∫
γ2

f(z)dz

∣∣∣∣ =

∣∣∣∣∫ π

0

eiR[cos(t)+i sin(t)]

R2e2it + a2
Reitdt

∣∣∣∣ =

∣∣∣∣∫ π

0

eiR cos(t)e−R sin(t)

R2e2it + a2
Reitdt

∣∣∣∣
≤
∫ π

0

Re−R sin(t)

R2 − a2
dt ≤ πR

R2 − a2
→ 0, R→∞

since e−R sin(t) ≤ 1 on [0, π]. Hence,∫ ∞
0

cos(x)

x2 + a2
= Re

1

2

∫ ∞
−∞

eix

x2 + a2
dx =

πe−a

2a

If a = 0, then the integral does not converge.

(h) Define f(z) = log(z)
(1+z2) , where we take the branch of the logarithm with arg(z) ∈ [−π2 ,

3π
2 ). For R >> 0,

define

γ1 : [−R, −1

R
]→ C, γ1(t) = t; γ2 : [, π]→ C, γ2(t) =

−1

R
e−it; γ3 : [

1

R
,R]→ C, γ3(t) = t; γ4 : [0, π]→ C, γ4(t) = Reit

and let γ be the positively oriented closed curve formed by the γi.∣∣∣∣∫
γ2

f(z)dz

∣∣∣∣ ≤ ∫ π

0

∣∣∣log |R|−1
∣∣∣+ 3π

2∣∣ 1
R2 − 1

∣∣ 1

R
dt ≤ π

R(log |R|+ 3π
2 )

|R2 − 1|
→ 0, R→∞∣∣∣∣∫

γ4

f(z)dz

∣∣∣∣ ≤ ∫ π

0

|log |R|+ it|
R2 − 1

Rdt ≤ πR(log |R|+ π)

R2 − 1
→ 0, R→∞

By the residue formula and applying the Cauchy integral formula to f(z)/(z + i) to compute res(f ; i),∫
γ

f(z)dz = 2πires(f ; i) = 2πi · log(z)

(z + i)
|z=i = 2πi ·

π
2

2i
=
π2

2

Hence,

π2

2
=

∫
γ1

f(z)dz+

∫
γ3

f(z)dz =

∫ − 1
R

−R

log(teiπ)

1 + t2
dt+

∫ R

1
R

log(t)

1 + t2
dt =

∫ − 1
R

−R

log(|t|)
1 + t2

dt+

∫ R

1
R

log(t)

1 + t2
dt+π

∫ − 1
R

−R

1

1 + t2
dt

= 2

∫ R

1
R

log(t)

1 + t2
+ π

∫ R

1
R

1

1 + t2
dt = 2

∫ R

1
R

log(t)

1 + t2
+
π2

2

where we’ve used
∫∞

0
1

1+t2 dt = limR→∞ arctan(R)− arctan(0) = π
2 . Hence,∫ R

1
R

log(t)

1 + t2
dt = 0⇒

∫ ∞
0

log(t)

1 + t2
dt = 0

Lemma 1. Let U, V ⊂ C be open sets, F : U → V a holomorphic function, and u : V → C a harmonic
function. Then u ◦ F : U → C is harmonic.

Proof. Since u◦F is harmonic on U if and only if it is harmonic on any open disk contained in U about every
point, we may assume without loss of generality that V is an open disk. Then there exists a holomorphic
function G : V → C such that u = Re(G). Hence, G ◦ F : U → C is holomorphic and Re (G ◦ F ) = u ◦ F ,
which shows that u ◦ F is harmonic.

In what follows, a conformal map f : Ω→ C is a bijective holomorphic map.
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Harmonic Functions

4.6.2 Exercise 1

Let u : D′(0; ρ) → R be harmonic and bounded. I am going to cheat a bit and assume Schwarz’s theorem
for the Poisson integral formula, even though Ahlfors discusses it in a subsequent section. Let

Pu(z) =
1

2π

∫ 2π

0

Re
reiθ − z
reiθ + z

u(reiθ)dθ

denote the Poisson integral for u on some circle of fixed radius r < ρ. Since u is continuous, Pu(z) is a
harmonic function in the open disk D(0; r) and is continuous on the boundary {|z| = r}. We want to show
that u and Pu agree on the annulus, so that we can define a harmonic extension of u by setting u(0) = Pu(0).
Define

g(z) = u(z)− Pu(z)

and for ε > 0 define

gε(z) = g(z) + ε log

(
|z|
r

)
∀0 < |z| ≤ r

Then g is harmonic in D′(0; r) and continuous on the boundary. Furthermore, since u is bounded by
hypothesis and Pu is bounded by construction on D(0; r), we have that g is bounded on D(0; r). gε(z) is
harmonic in D′(0; r) and continuous on the boundary since both its terms are. Since log

(
r−1 |z|

)
→ −∞, z →

0, we have that
lim sup
z→0

gε(z) < 0

Hence, there exists δ > 0 such that 0 < |z| ≤ δ ⇒ gε(z) ≤ 0. Since gε is harmonic on the closed annulus
{δ ≤ |z| ≤ r}, we can apply the maximum principle. Hence, gε assumes its maximum in {|z| = δ}∪{|z| = r}.
But, gε(z) ≤ 0 ∀ |z| = δ, by our choice of δ, and since u, Pu agree on {|z| = r}, we have that gε(z) = 0 ∀ |z| = r.
Hence,

gε(z) ≤ 0 ∀0 < |z| ≤ r
Letting ε → 0, we conclude that g(z) ≤ 0 ∀0 < |z| ≤ r, which shows that u ≤ Pu on the annulus. Applying
the same argument to h = Pu − u, we conclude that u = Pu on 0 < |z| ≤ r. Setting u(0) = Pu(0) defines a
harmonic extension of u on the closed disk.

4.6.2 Exercise 2

If f : Ω = {r1 < |z| < r2} → C is identically zero, then there is nothing to prove. Assume otherwise. Since
the annulus is bounded, f has finitely many zeroes in the region. Hence, for λ ∈ R, the function

g(z) = λ log |z|+ log |f(z)|

is harmonic in Ω \ {a1, · · · , an}, where a1, · · · , an are the zeroes of f . Applying the maximum principle to
g(z), we see that |g(z)| takes its maximum in ∂Ω. Hence,

λ log |z|+ log |f(z)| = g(z) ≤ max {λ log(r1) + log(M(r1)), λ log(r2) + log(M(r2))} ∀z ∈ Ω \ {a1, · · · , an}

Thus, if |z| = r, then we have the inequality

λ log(r) + log (M(r)) ≤ max {λ log(r1) + log(M(r1)), λ log(r2) + log(M(r2))}

We now find λ ∈ R such that the two inputs in the maximum function are equal.

λ log(r1) + log(M(r1)) = λ log(r2) + log(M(r2))⇒ λ log

(
r1

r2

)
= log

(
M(r2)

M(r1)

)
Hence, λ = log

(
M(r2)
M(r1)

)(
log
(
r1
r2

))−1

. Exponentiating both sides of the obtained inequality,

M(r) ≤ exp

log(M(r2)) + log

(
M(r2)

M(r1)

)
log
(
r2
r

)
log
(
r1
r2

)
 = exp

[
log(M(r2) + log

(
M(r1)

M(r2)

)
α

]
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= M(r1)αM(r2)1−α

where α = log
(
r2
r

) (
log
(
r2
r1

))−1

. I claim that equality holds if and only if f(z) = azλ, where a ∈ C, λ ∈ R.

It is obvious that equality holds if f(z) is of this form. Suppose quality holds. Then by Weierstrass’s extreme
value theorem, for some |z0| = r, we have

|f(z0)| = M(r) =
(r1

r

)λ
M(r1)⇒

∣∣zλ0 f(z0)
∣∣ = rλ1M(r1)

But since the bound on the RHS holds for all r1 < |z| < r2, the Maximum Modulus Principle tells us that
zλf(z) = a ∈ C ∀r1 < |z| < r2. Hence, f(z) = az−λ. But λ is an arbitrary real parameter, from which the
claim follows.

4.6.4 Exercise 1

We seek a conformal mapping of the upper-half plane H+ onto the unit disk D. lemma The map φ given by

φ(z) = i
1 + z

1− z

is a conformal map of D onto H+ and is a bijective continuous map of ∂D onto R ∪ {∞}, where 1 7→ ∞. Its
inverse is given by

φ−1(w) =
w − i
w + i

Proof. The statements about conformality and continuity follow from a general theorem about the group of
linear fractional transformations of the Riemann sphere (Ahlfors p. 76), so we just need to verify the images.
For z ∈ D,

Im(φ(z)) = Im

(
i
1 + z

1− z
· 1− z

1− z

)
=

1− |z|2

|1− z|2
> 0

since |z| < 1. Furthermore, observe that Im(φ(z)) = 0⇐⇒ z ∈ ∂D. In particular, φ(1) =∞. For w ∈ H+,

∣∣φ−1(w)
∣∣2 =

w − i
w + i

· w + i

w − i
=
|w|2 − 2Im(w) + 1

|w|2 + 2Im(w) + 1
< 1

by hypothesis that Im(z) > 0. Furthermore, observe that
∣∣φ−1(w)

∣∣ = 1⇐⇒ Im(w) = 0.

Ũ = U ◦ φ : ∂D → C is a piecewise continuous function since U is bounded and we therefore can ignore
the fact that φ(1) =∞. By Poisson’s formula, the function

PŨ (z) =
1

2π

∫ 2π

0

Re
eiθ + z

eiθ − z
Ũ(eiθ)dθ

is a harmonic function in the open disk D. By Lemma 1, the function

PU (z) = PŨ ◦ φ
−1(z) =

1

2π

∫ 2π

0

Re
eiθ + φ−1(z)

eiθ − φ−1(z)
Ũ(eiθ)dθ

is harmonic in H+. Fix w0 ∈ D and let x0 + iy0 = z0 = φ−1(w0). Let Pw0
(θ) denote the Poisson kernel. We

apply the change of variable t = ϕ−1(eiθ) to obtain

1

2π
Pw0(θ)

dθ

dt
=

1

2π

1−
∣∣∣ z0−iz0+i

∣∣∣2∣∣∣ z0−iz0+i −
t−i
t+i

∣∣∣2 ·
(

1− t−i
t+i

)2

−2 t−it+i

=
1

2π

|z0 + i|2 − |z0 − i|2∣∣∣(z0 − i)− t−i
t+i (z0 + i)

∣∣∣2 ·
((t+ i)− (t− i))2

−2 |t+ i|2

=
2

π

y0

|(z0 − i)(t+ i)− (t− i)(z0 + i)|2
=

2

π
· y0

2 |z0 − t|2
=

1

π
· y0

(x0 − t)2 + y2
0
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Hence,

PU (x, y) =
1

π

∫ ∞
−∞

y

(x− t)2 + y2
U(t)dt

is a harmonic function in H+. Furthermore, since the value of PŨ (z) for |z| = 1 is given by Ũ(z) at the points
of continuity and since φ−1(∂D) = R ∪ {∞}, we conclude that

PU (x, 0) = PŨ ◦ φ
−1(x, 0) = Ũ ◦ φ−1(x, 0) = U(x, 0)

at the points of continuity x ∈ R.

4.6.4 Exercise 5

I couldn’t figure out how to show that log |f(z)| satisfies the mean-value property for z0 = 0, r = 1 without
first computing the value of

∫ π
0

log sin(θ)dθ.

Since sin(θ) ≤ θ ∀θ ∈ [0, π2 ], 1 ≥ θ
sin(θ) is continuous on [0, π2 ], where we’ve removed the singularity at the

origin. Hence, for δ > 0,∫ π
2

0

log

∣∣∣∣ θ

sin(θ)

∣∣∣∣ dθ = lim
δ→0

∫ π
2

δ

log

∣∣∣∣ θ

sin(θ)

∣∣∣∣ dθ =

∫ π
2

0

log |θ| dθ − lim
δ→0

∫ π
2

δ

log |sin(θ)| dθ

By symmetry, it follows that the improper integral
∫ π
π
2

log |sin(θ)| dθ exists and therefore
∫ π

0
log |sin(θ)| dθ

exists. Again by symmetry,
∫ π

2

0
log(sin(θ))dθ =

∫ π
2

0
log cos(θ)dθ, hence∫ π

2

0

log sin(θ)dθ =
1

2

∫ π
2

0

log sin(θ) cos(θ)dθ =
1

2

∫ π
2

0

log

(
1

2
sin(2θ)

)
dθ =

1

2

∫ π
2

0

sin(2θ)dθ − π

4
log(2)

=
1

4

∫ π

0

sin(ϑ)dϑ− π

4
log(2)

where we make the change of variable ϑ = 2θ to obtain the last equality. Since
∫ π

0
log sin(θ)dθ = 2

∫ π
2

0
log sin(θ)dθ,

we conclude that ∫ π

0

log sin(θ)dθ = −π log(2)

We now show that for f(z) = 1 + z, log |f(z)| satisfies the mean-value property for z0 = 0, r = 1. Observe
that

log
∣∣1 + eiθ

∣∣ =
1

2
log
∣∣(1 + cos(θ))2 + sin2(θ)

∣∣ =
1

2
log
∣∣1 + 2 cos(θ) + cos2(θ) + sin2(θ)

∣∣ =
1

2
log |2 + 2 cos(θ)|

= log |2|+ 1

2
log

∣∣∣∣1 + cos(θ)

2

∣∣∣∣
Substituting and making the change of variable 2ϑ = θ,∫ 2π

0

log
∣∣1 + eiθ

∣∣ dθ =

∫ 2π

0

[
log 2 +

1

2
log
∣∣cos2(θ)

∣∣] dθ = 2π log 2+

∫ π

0

log

∣∣∣∣1 + cos(2ϑ)

2

∣∣∣∣ dϑ = 2π log 2+

∫ π

0

log cos2(ϑ)dϑ

By symmetry, integrating log cos2(θ) over [0, π] is the same as integrating log
∣∣sin2(θ)

∣∣ over [0, π]. Hence,∫ 2π

0

log
∣∣1 + eiθ

∣∣ dθ = 2π log 2 +

∫ π

0

log
∣∣sin2(ϑ)

∣∣ dϑ = 2π log 2 + 2

∫ π

0

log |sin(ϑ)| dϑ = 0
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4.6.4 Exercise 6

Let f : C→ C be an entire holomorphic function, and suppose that z−1Re(f(z))→ 0, z →∞. By Schwarz’s
formula (Ahlfors (66) p. 168), we may write

f(z) =
1

2πi

∫
|ζ|=R

ζ + z

ζ − z
Re(f(ζ))

dζ

ζ
∀ |z| < R

Let ε > 0 be given and R0 > 0 such that ∀R ≥ R0,
∣∣∣Re(f(z))

z

∣∣∣ < ε. Let R be sufficiently large that R > R
2 > R0.

By Schwarz’s formula, ∀R2 ≤ |z| < R,

|f(z)| ≤ Rε

2π

∫ 2π

0

∣∣∣∣Reiθ + z

Reiθ − z

∣∣∣∣ dθ ≤ Rε

2π

∫ 2π

0

R+ |z|
R− |z|

dθ = Rε · R+R

R− R
2

= 4Rε

Fix z ∈ C and let R
2 > max {R0, |z|}. By Cauchy’s differentiation formula,

|f ′(z)| = 1

2π

∣∣∣∣∣
∫
|w|=R

2

f(w)

(w − z)2
dw

∣∣∣∣∣ ≤ 1

2π

∫ 2π

0

R
2

∣∣f(R2 e
iθ)
∣∣∣∣R

2 e
iθ − z

∣∣2 dθ
≤ 1

2π

R

2
· 4Rε

∫ 2π

0

1∣∣R
2 − |z|

∣∣2 dθ = 8ε
R2

(R− 2 |z|)2

Letting R→∞, we conclude that |f ′(z)| ≤ 8ε. Since z ∈ C was arbitrary, we conclude that |f ′(z)| 8ε ∀z ∈ C.
Since ε > 0 was arbitrary, we conclude that f ′(z) = 0, which shows that f is constant.

4.6.5 Exercise 1

Let f : C → C be an entire holomorphic function satisfying f(R) ⊂ R and f(i · R) ⊂ i · R. Since f(R) ⊂ R,
f(z)− f(z) vanishes on the real axis. By the limit-point uniqueness theorem that

f(z) = f(z) ∀z ∈ C

Since f(iR) ⊂ iR, f(z) + f(−z) vanishes on the imaginary axis. By the limit-point uniqueness theorem that

f(z) = −f(−z) ∀z ∈ C

Combining these two results, we have

f(z) = −f(−z) = −f(−z) = −f(−z) ∀z ∈ C

4.6.5 Exercise 3

Let f : D → C be holomorphic and satisfy |f(z)| = 1 ∀ |z| = 1. Let φ : C ∪ {∞} → C ∪ {∞} be the linear
fractional transformation

φ(z) =
z − i
z + i

Consider the function g = φ−1 ◦ f ◦ φ : H+ → C. By the maximum modulus principle, |f(z)| ≤ 1 ∀ |z| ≤ 1.

Hence, g : H+ → H+
. Since |f(z)| = 1 ∀ |z| = 1, φ−1(f(z)) ∈ R ∀ |z| = 1. Hence, f̃(R) ⊂ R. By the Schwarz

Reflection Principle, g extends to an entire function g : C→ C satisfying g(z) = g(z). Define

f̃ = φ ◦ g ◦ φ−1 : C→ C

Then f̃ is meromorphic in C since φ has a pole at z = −i and φ−1 has a pole at z = 1. In particular,
f̃ has finitely many poles. We proved in Problem Set 1 (Ahlfors Section 4.3.2 Exercise 4) that a function
meromorphic in the extended complex plane is a rational function, so we need to verify that f̃ doesn’t have
an essential singularity at ∞. But in a neighborhood of 0,

f̃

(
1

z

)
= φ ◦ g

(
i
1 + 1

z

1− 1
z

)
= φ ◦ g

(
i
z + 1

z − 1

)
which is evidently a meromorphic function. Alternatively, we note that ∀ |z| ≥ 1,

∣∣∣f̃(z)
∣∣∣ ≥ 1 since g maps

H− onto H−. So the image of f̃ in a suitable neighborhood of∞ is not dense in C. The Casorati-Weierstrass
theorem then tells us that f̃ cannot have an essential singularity at ∞.
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Chapter 5 - Series and Product
Developments

Power Series Expansions

5.1.1 Exercise 2

We know that in the region Ω = {z : Re(z) > 1} , ζ(z) exists since∣∣∣∣ 1

nz

∣∣∣∣ =
1

nRe(z)
∣∣nIm(z)i

∣∣ =
1

nRe(z)
∣∣elog(n)Im(z)i

∣∣ =
1

nRe(z)

and therefore
∑∞
n=1

∣∣ 1
nz

∣∣ is a convergent harmonic series; absolute convergence implies convergence by com-

pleteness. Define ζN (z) =
∑N
n=1

1
nz . Clearly, ζN is the sum of holomorphic functions on the region Ω. I claim

that (ζN )N∈N converge uniformly to ζ on any compact subset K ⊂ Ω. Since K is compact and z 7→ Re(z)
is continuous, by Weierstrass’s Extreme Value Theorem ∃z0 ∈ K such that Re(z0) = infz∈K Re(z). In

particular, Re(z0) > 1 since z0 ∈ Ω. Hence,

∣∣∣∣ 1

nz

∣∣∣∣ ≤ 1

nRe(z)
≤ 1

nRe(z0)
. So by the Triangle Inequality,

∀z ∈ Ω,

∣∣∣∣∣
N∑
n=1

1

nz

∣∣∣∣∣ ≤
N∑
n=1

∣∣∣∣ 1

nz

∣∣∣∣ ≤ N∑
n=1

1

nRe(z0)
<

∞∑
n=1

1

nRe(z0)
<∞

By Weierstrass’s M-test, we attain that ζn → ζ uniformly on K. Therefore by Weierstrass’s theorem, ζ is
holomorphic in Ω and

ζ ′(z) = lim
N→∞

ζ ′N (z) = lim
N→∞

N∑
n=1

− log(n)e− log(n)z = lim
N→∞

N∑
n=1

− log(n)

nz
=

∞∑
n=1

− log(n)

nz

Section 5.1.1 Exercise 3

Lemma 2. Set an = (−1)n+1. If
∑∞
n=1

an
nz converges for some z0. Then

∑∞
n=1

an
nz converges uniformly on

∀z ∈ C with Re(z) ≥ Re(z0).

Proof. If
∑∞
n=1

an
nz0 conveges, there exists an M > 0 which bounds the partial sums. Let m ≤ N ∈ N. Using

summation by parts, we may write

N∑
n=m

an
nz

=

N∑
n=m

an
nz0

1

nz−z0
=

1

Nz−z0

m−1∑
n=1

an
nz0
−
N−1∑
n=m

(
n∑
k=1

ak
kz0

)(
1

(n+ 1)z−z0
− 1

nz−z0

)
Hence, ∣∣∣∣∣

N∑
n=m

an
nz

∣∣∣∣∣ ≤M 1

|Nz−z0 |
+M

1

|nz−z0 |
+M

N−1∑
n=m

∣∣∣∣ 1

(n+ 1)z−z0
− 1

nz−z0

∣∣∣∣
Observe that∣∣∣∣ 1

(n+ 1)z−z0
− 1

nz−z0

∣∣∣∣ =
∣∣∣e− log(n+1)(z−z0) − e− log(n)(z−z0)

∣∣∣ =

∣∣∣∣∣ −1

z − z0

∫ log(n+1)

log(n)

e−t(z−z0)dt

∣∣∣∣∣
14



≤ 1

|z − z0|

∫ log(n+1)

log(n)

e−t(Re(z)−Re(z0))dt =
|Re(z)− Re(z0)|
|z − z0|

∣∣∣e− log(n+1)(Re(z)−Re(z0)) − e− log(n)(Re(z)−Re(z0))
∣∣∣

≤ e− log(n)(Re(z)−Re(z0)) − e− log(n+1)(Re(z)−Re(z0)) =
1

nRe(z)−Re(z0)
− 1

(n+ 1)Re(z)−Re(z0)

Since this last expression is telescoping as the summation ranges over n, we have that∣∣∣∣∣
N∑

n=m

an
nz

∣∣∣∣∣ ≤ M

NRe(z)−Re(z0)
+

M

mRe(z)−Re(z0)
+M

∣∣∣∣ 1

NRe(z)−Re(z0)
− 1

mRe(z)−Re(z0)

∣∣∣∣
≤ 2M

mRe(z)−Re(z0)
+

M

mRe(z)−Re(z0)

∣∣∣∣(mN )Re(z)−Re(z0)

− 1

∣∣∣∣ ≤ 4M

mRe(z)−Re(z0)
→ 0,m→∞

Hence, the partial sums of
∑N
n=1

an
nz−z0

are Cauchy and therefore converge by completeness.

Corollary 3. If
∑∞
n=1

an
nz converges for some z = z0, then

∑∞
n=1

an
nz conveges uniformly on compact subsets

of {Re(z) ≥ Re(z0)}.

Proof. Let K ⊂ {Re(z) ≥ Re(z0)} be compact. Since z 7→ Re(z) is continuous, there exists z1 ∈ K such that
Re(z) ≥ Re(z1) ∀z ∈ K. Since Re(z1) ≥ Re(z0),

∑∞
n=1

an
nz1 converges. The proof of the preceding lemma

shows that we have a uniform bound∣∣∣∣∣
N∑

n=m

an
nz

∣∣∣∣∣ ≤ 4M

mRe(z)−Re(z0)
≤ 4M

mRe(z1)−Re(z0)

where M depends only on z0. The claim follows immediately from the M -test and completeness.

Since the series f(z) =
∑∞
n=1

an
nz converges if we take z ∈ R>0 (the well-known alternating series), we

have by the lemma that
∑∞
n=1

an
nz converges ∀Re(z) > 0. We now show that this series is holomorphic on the

region {Re(z) > 0}.
Define a sequence of functions (fN )N∈N by

fN =

N∑
n=1

(−1)n+1

nz

It is clear that fN is holomorphic, being the finite sum of holomorphic functions. Set Ω = {z ∈ C : Re(z) > 0}
and let K ⊂ Ω be compact. Since the fN are just the partial sums of the series, we have by the corollary to
the lemma that fN → f uniformly on K. By Weierstrass’s theorem, f is holomorphic in Ω.
To see that (1− 21−z)ζ(z) =

∑∞
n=1

an
nz on {Re(z) > 1}, observe that

(1− 21−z)

N∑
n=1

1

nz
−

N∑
n=1

(−1)n+1

nz
=

N∑
n=1

1

nz
− 2

N∑
n=1

1

(2n)z
−

N∑
n=1

(−1)n+1

nz
= 2

∑
N<n≤2N
n is even

1

nz

Since
∑∞
n=1

1
nz is absolutely convergent, we see that by taking N sufficiently large, the RHS can be made

less than ε for ε > 0 given.

5.1.2 Exercise 2

Differentiating
(
1− 2αz + z2

)− 1
2 with respect to z, we obtain

p1(α) =
2α− 2z

2(1− 2αz + z2)
3
2

|z=0 = α

To compute higher order Legendre polynomials, we differentiate
(
1− 2αz + z2

)− 1
2 and its Taylor series to

obtain the equality

α− z
(1− 2αz + z2)

3
2

=

∞∑
n=1

nPn(α)zn−1 ⇒ α− z√
1− 2αz + z2

= (1− 2αz + z2)

∞∑
n=1

nPn(α)zn−1
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Hence,

∞∑
n=0

αPn(α)zn −
∞∑
n=0

Pn(α)zn+1 =

∞∑
n=0

nPn(α)zn−1 −
∞∑
n=0

2αnPn(α)zn +

∞∑
n=0

nPn(α)zn+1

Invoking elementary limit properties and using the fact that a function is zero if and only if all its Taylor
coefficients are zero, we may equate terms to obtain the recurrence

αPn+1(α)− Pn(α) = (n+ 2)Pn+2(α)− 2α(n+ 1)Pn+1(α) + nPn(α)

⇒ Pn+2(α) =
1

n+ 2
[(2n+ 3)αPn+1(α)− (n+ 1)Pn(α)]

So,

P2(α) =
1

2

(
3α2 − 1

)
P3(α) =

1

3

(
5α

1

2
(3α2 − 1)− 2α

)
=

1

2

(
5α3 − 3α

)
P4(α) =

1

4

(
7α

1

2
(5α3 − 3α)− 3

1

2
(3α2 − 1)

)
=

1

8
(35α4 − 30α2 + 3)

5.1.2 Exercise 3

Observe that
sin(z)

z
=

1

z

∞∑
n=0

(−1)n

(2n+ 1)!
z2n+1 =

∞∑
n=0

(−1)n

(2n+ 1)!
z2n

So, sin(z)
z 6= 0 in some open disk about z = 0. Hence, the function z 7→ log

(
sin(z)
z

)
is holomorphic in an open

disk about z = 0, where we take the principal branch of the logarithm. Substituting,

log

(
sin(z)

z

)
= log

(
1−

(
1− sin(z)

z

))
= −

∞∑
m=1

(
1−

∑∞
n=0

(−1)n

(2n+1)!z
2n
)m

m

= −
∞∑
m=1

(
1
3!z

2 − 1
5!z

4 + 1
7!z

6 − [z8]
)m

m

Set P (z) = 1
3!z

2 − 1
5!z

4. Then

log

(
sin(z)

z

)
= −

[
z6

7!
+
P (z) + [z8]

1
+
P (z)2 + [z8]

2
+
P (z)3 + [z8]

3

]

= −
[
z2

3!
− z4

5!
+
z6

7!
+

1

2

(
z4

(3!)2
− 2z6

(3!)(5!)

)
+

z6

3(3!)3
+ [z8]

]
= −1

6
z2 − 1

180
z4 − 1

2835
z6 + [z8]

Partial Fractions and Factorization

5.2.1 Exercise 1

From Ahlfors p. 189, we obtain for |z| < 1,

zπ cot(πz) = z

(
1

z
+ 2

∞∑
n=1

z

z2 − n2

)
= 1− 2z2

∞∑
n=1

1

n2
· 1

1− z2

n2

= 1− 2z2
∞∑
n=1

1

n2

( ∞∑
k=0

(
z2

n2

)k)
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where we expand z2

n2 using the geometric series. Since both series are absolutely convergent, we may inter-
change the order of summation to obtain

zπ cot(πz) = 1− 2z2
∞∑
k=0

( ∞∑
n=1

1

n2(k+1)

)
z2k = 1− 2

∞∑
k=0

ζ(2k)z2k

We now compute the Taylor series for πz cot(πz).

πz cot(πz) = πz
cos(πz)

sin(πz)
= πiz

eiπz + e−iπz

eiπz − e−iπz
= πiz

ei2πz + 1

ei2πz − 1
=

2πiz

e2πiz − 1
+
πiz(e2πiz − 1)

e2πiz − 1
= πiz +

2πiz

e2πiz − 1

Let |z| < 1
2π . Then

zπ cot(πz) = πiz +
2πiz∑∞

k=1
(2πiz)k

k!

= πiz +
1

1−
(
−
∑∞
k=1

(2πiz)k

(k+1)!

) = πiz +

∞∑
n=0

(
−
∞∑
k=1

(2πiz)k

(k + 1)!

)n

= πiz +

∞∑
k=0

Bk
k!

(2πiz)k

where we may use the geometric expansion since
∣∣∣∑∞k=1

(2πiz)k

(k+1)!

∣∣∣ ≤ ∑∞k=1 |2πz|
k
< 1 (|z| < 1

2π ), and the

change in the order of summation is permitted since the series are absolutely convergent. According to
Ahlfors, the numbers Bk are called Bernoulli numbers, the values of which one can look up. Since the two
series representations for πz cot(πz) are equal, the coefficients must agree. Hence,

ζ(2) =
−1

2

(2πi)2B2

2!
=
π2

6

ζ(4) =
−1

2

(2πi)4B4

4!
=

16π4

6
· 60 =

π4

90

ζ(6) =
−1

2

(2πi)6B6

6!
=

32π6

42 · 6!
=

π6

21 · 45
=

π6

945

5.2.1 Exercise 2

We first observe that
∞∑

n=−∞

1

z3 − n3

converges absolutely, being comparable to
∑∞
n=1

1
n3 . For z 6= 0, we may write (after some laborious compu-

tation, which can be found at the end of the solutions)

1

z3 − n3
=

1

(z − n)(z − nei 2π3 )(z − nei 4π3 )
=

1

(z − n)(ei
2π
3 z − n)(ei

4π
3 z − n)

=
A

z − n
+

B

zei
4π
3 − n

+
C

zei
2π
3 − n

where

C =
e

2π
3 i

3z2
B =

e
4π
3 i

3z2
A =

1

3z2

Ahlfors p. 189 shows that limm→∞
∑m
−m

1
z−n = π cot(πz), 0 < |z| < 1. Hence, for 0 < |z| < 1,

lim
m→∞

m∑
−m

1

z3 − n3
=

1

3z2
lim
m→∞

m∑
−m

1

z − n
+
e

2π
3 i

3z2
lim
m→∞

m∑
−m

1

zei
2π
3 − n

+
e

4π
3 i

3z2
lim
m→∞

m∑
−m

1

zei
4π
3 − n

=
π cot(πz)

3z2
+
πe

2π
3 i cot(πe

2π
3 iz)

3z2
+
πe

4π
3 i cot(πe

4π
3 i)

3z2
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5.2.2 Exercise 2

In what follows, we will restrict ourselves to z ∈ D(0; 1). For n ∈ Z≥0, define

Pn(z) = (1 + z)
(
1 + z2

)
· · ·
(

1 + z2n
)

=

n∏
i=1

(
1 + z2i

)
First, I claim that (1− z)Pn(z) = (1− z2n+1

). Suppose the claim is true for some n, then

(1− z)Pn+1(z) = [(1− z)Pn(z)] (1 + z2n+1

) = (1− z2n+1

)(1 + z2n+1

) =
(

1− z2n+2
)

=
(

1− z2(n+1)+1
)

The base case is trivial, so the result follows by induction. Therefore,∣∣∣∣Pn(z)− 1

1− z

∣∣∣∣ ≤ 1

1− |z|
|(1− z)Pn(z)− 1| = |z|2

n+1

→ 0, n→∞

since |z| < 1. Since 1
1−|z| , |z| are bounded on any compact subset of D(0; 1), we remark that the convergence

is uniform on compact subsets of D(0; 1).

5.2.3 Exercise 3

First, note that even though the function z 7→
√
z is not entire for any branch choice, the function f(z) =

cos(
√
z) is. Indeed, substituting into the definition of cos(z),

f(z) =

∞∑
n=0

(−1)n

(2n)!
(
√
z)2n

Since changing the choice of branch only results in a sign change, we see that (
√
z)2n = zn, and therefore

f(z) =

∞∑
n=0

(−1)n

(2n)!
zn

which is evidently an entire function, being a power series with infinite radius of convergence. Observe that

f(z) has zero set

{(
(2n+1)π

2

)2

: n ∈ Z
}

. Since sin(z + π
2 ) = cos(z), cos(πz) can be written as

cos(πz) = π

(
z +

1

2

)∏
n 6=0

(
1−

z + 1
2

n

)
e
z+1

2
n = π

(
z +

1

2

)∏
n 6=0

(
2n− 1

2n
− 2z

2n

)
e

1
2n+ z

n

=
π

2

(
1− z

−1
2

)∏
n 6=0

2n− 1

2n

(
1− z

2n−1
2

)
e

1
2n+ z

n =
π

2

∞∏
n=1

(
1− 1

4n2

)(
1− z2

(2n−1)2

4

)
Using the infinite product representation of sin(z), we have

2

π
=

sin
(
π
2

)
π
2

=

∞∏
n=1

(
1−

(
π
2

)2
n2π2

)
=

∞∏
n=1

(
1− 4

n2

)
Hence,

cos(πz) =

∞∏
n=1

(
1− z2

(2n−1)2

4

)
⇒ cos(z) =

∞∏
n=1

1− z2(
(2n−1)π

2

)2


Hence, f(z) has the canonical product representation

f(z) =

∞∏
n=1

1− z(
(2n−1)π

2

)2


Since

∞∑
n=1

(
(2n− 1)π

2

)−2

=
π2

4

∞∑
n=1

1

(2n− 1)2
<∞

being comparable to
∑

1
n2 , we see that f(z) is an entire function of genus zero.
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5.2.3 Exercise 4

Let f(z) be an entire function of genus h. Let {an 6= 0}n∈N denotes the (at most countable) set of nonzero
zeroes of f and hc denote the genus of the canonical product. We may write

f(z) = zmeg(z)
∞∏
n=1

(
1− z

an

)
e
z
an

+ 1
2 ( z

an
)
2
+···+ 1

hc
( z
an

)
hc

where g(z) is a polynomial and h = max (deg(g(z)), hc). Hence,

f(z2) = z2meg(z
2)
∞∏
n=1

(
1− z2

an

)
e
z2

an
+ 1

2

(
z2

an

)2
+···+ 1

hc

(
z2

an

)hc

= z2meg(z
2)
∞∏
n=1

(
1− z
√
an

)(
1 +

z
√
an

)
e

z√
an

+ 1
2

(
z√
an

)2
+···+ 1

2hc+1

(
z√
an

)2hc+1

e
z

−√an+ 1
2

(
z

−√an

)2
+···+ 1

2hc+1

(
z

−√an

)2hc+1

where we’ve chosen some branch of the square root. If we define b1 =
√
a1, b2 = −√a1, · · · . Then

f̃(z) = f(z2) = z2meg(z
2)
∞∏
n=1

(
1− z

bn

)
e
z
bn

+ 1
2 ( z

bn
)
2
+···+ 1

2hc+1 ( z
bn

)
2hc+1

the breaking up of the product being justified since the individual products converge absolutely by virtue of∑ 1

|bn|2hc+1+1
=
∑ 1

|an|hc+1
<∞

I claim that the genus of f̃ is bounded from below by h. If h = 0, then there is nothing to prove; assume
otherwise. If h = deg(g(z)) > 0, then h̃ ≥ deg(g(z2)) > h; so assume that h = hc. We will show that the
genus h̃c of the canonical product associated to (bn) is bounded from below by 2hc. Suppose h̃c < 2hc. Since
an →∞ and therefore bn →∞ by continuity, we have that for all n sufficiently large |bn| > 1. So it suffices
to consider the case h̃c = 2hc − 1. Then

∞ >

∞∑
n=1

1

|bn|h̃c+1
=

∞∑
n=1

1

|bn|2hc−1+1
=

∞∑
n=1

1

|an|hc

But this shows that the genus of the canonical product associated to (an) is at most hc−1, which is obviously
a contradiction. Taking f to be a polynomial shows that this bound is sharp.
I claim that the genus of f̃ is bounded from above by 2h+ 1. Indeed, 2h+ 1 ≥ 2 deg(g(z)) = deg(g(z2)), and
we showed above that h̃c ≤ 2hc + 1 ≤ 2h+ 1. This bound is also sharp since we can take

f(z) =

∞∏
n=1

(
1− z

n2

)
⇒ f(z2) =

∏
n 6=0

(
1− z

n

)
e
z
n

f(z) is clearly an entire function of genus 0, and the genus of the canonical product associated to (n)n∈Z is
1, from which we conclude the genus of f(z2) is 1 .

5.2.4 Exercise 2

Using Legendre’s duplication formula for the gamma function (Ahlfors p. 200),

Γ

(
1

6

)
=
√
πΓ

(
2 · 1

6

)
21−2· 16 Γ

(
1

6
+

1

2

)−1

=
√
π2

2
3 Γ

(
1

3

)
Γ

(
2

3

)
Applying the formula Γ(z)Γ(1− z) = π

sin(πz) (Ahlfors p. 199), we obtain

Γ

(
1

6

)
=
√
π2

2
3 Γ

(
1

3

)
Γ

(
1

3

)
sin
(
π · 1

3

)
π

= 2−
1
3

(
3

π

) 1
2
(

Γ

(
1

3

))2
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5.2.4 Exercise 3

It is clear from the definition of the Gamma function that for each k ∈ Z≤0,

f(z) =

{(
1 + z

k

)
Γ(z) k 6= 0

zΓ(z) k = 0

extends to a holomorphic function in an open neighborhood of k. We abuse notation and denote the extension
also by

(
1 + z

k

)
Γ(z) and zΓ(z). lemma For any k ∈ Z>0,

Γ(z) =
Γ(z + k)∏k

j=1(z + j − 1)
∀z /∈ Z

Proof. Recall that Γ(z) has the property that the Γ(z+ 1) = zΓ(z). We proceed by induction. The base case

is trivial, so assume that Γ(z) = Γ(z+k)∏k
j=1(z+j−1)

for some k ∈ N. Then

Γ(z + (k + 1))∏k+1
j=1 (z + j − 1)

=
Γ((z + k) + 1)∏k+1
j=1 (z + j − 1)

=
(z + k)Γ(z + k)∏k+1
j=1 (z + j − 1)

=
Γ(z + k)∏k

j=1(z + j − 1)!
= Γ(z)

Corollary 4. For any k ∈ Z≤0,

lim
z→k

(z − k)Γ(z) =
(−1)k

|k|!

Proof. Fix k ∈ Z≤0. Immediate from the preceding lemma is that

lim
z→−|k|

(z + |k|)Γ(z) = lim
z→−|k|

(z + |k|) Γ(z + |k|+ 1)∏k+1
j=1 (z + |j| − 1)

=
Γ(1)

(−1) (−2) · · · (− |k|)
=

(−1)k

|k|!

Let k ∈ Z≤0. Then

res (Γ; k) =
1

2πi

∫
|z−k|= 1

2

Γ(z)dz =
1

2πi

∫
|z−k|= 1

2

(1− z
k )Γ(z)

1− z
k

dz =
1

2πi

∫
|z−k|= 1

2

(z − k) Γ(z)

z − k
dz

Since the function
(
1 + z

k

)
Γ(z) extends to a holomorphic function in a neighborhood of k, by Cauchy’s

integral formula,
1

2πi

∫
|z−k|= 1

2

(z − k) Γ(z)

z − k
dz = (z − k) Γ(z)|z=k =

(−1)k

|k|!

where use the preceding lemma to obtain the last equality. Thus,

res (Γ; k) =
(−1)k

|k|!
∀k ∈ Z≤0

5.2.5 Exercise 2

Lemma 5. ∫ ∞
0

log

(
1

1− e−2πx

)
dx =

π

12

Proof. Let 1 >> δ > 0. Consider the function log(1−z)
z , which has the power series representation

log(1− z)
z

= −1

z

∞∑
n=1

1

n
zn =

∞∑
n=1

1

n
zn−1 ∀ |z| < 1
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with the understanding that the singularity at z = 0 is removable. Since the convergence is uniform on
compact subsets, we may integrate over the contour γδ : [0, 1− δ]→ C, γδ(t) = t term by term, Thus,∫

γδ

log(1− z)
z

dz =

∫ 1−δ

0

log(1− t)
t

dt =

∞∑
n=1

1

n2
(1− δ)n →

∞∑
n=1

1

n2
=
π2

6
]

since the function f(x) =
∑∞
n=1

xn

n2 is left-continuous at x = 1. Hence,∫ 1

0

log(1− t)
t

dt =

∞∑
n=1

1

n2
=
π2

6

We now make the change of variable t = e−2πx to obtain

π2

6
=

∫ ∞
0

log(1− e−2πx)

e−2πx
− 2πe−2πxdx = −2π

∫ ∞
0

log(1− e−2πx)dx

which gives ∫ ∞
0

log

(
1

1− e−2πx

)
dx =

∫ ∞
0

− log
(
1− e−2πx

)
dx =

π

12

For x ∈ R>0, Stirling’s formula (Ahlfors p. 203-4) for Γ(z) tells us that

Γ(x) =
√

2πxx−
1
2 e−xeJ(x)

where

J(x) =
1

π

∫ ∞
0

x

η2 + x2
log

(
1

1− e−2πη

)
dη

The preceding lemma tells us that

J(x) =
1

x
· 1

π

∫ ∞
0

x2

x2 + η2
log

(
1

1− e−2πη

)
dη ≤ 1

x
· 1

π

∫ ∞
0

log

(
1

1− e−2πη

)
dη =

1

x
· 1

π
· π

12
=

1

12x

where we’ve used 0 < x2

x2+η2 ≤ 1 ∀η. Set

θ(x) = 12xJ(x)

It is obvious that θ(x) > 0 and θ(x) < 1 since x2

x2+η2 < 1 almost everywhere, and therefore the preceding
inequality is strict. We thus conclude that

Γ(x) =
√

2πxx−
1
2 e−xe

θ(x)
12x 0 < θ(x) < 1

5.2.5 Exercise 3

Take f(z) = e−z
2

, and for R >> 0, define

γ1 : [0, R]→ C, γ1(t) = t; γ2 : [0,
π

4
]→ C, γ2(t) = Reit; γ3 : [0, R]→ C, γ3(t) = (R− t)eiπ4

and let γ be the positively oriented closed curve defined by the γi.∣∣∣∣∫
γ2

f(z)dz

∣∣∣∣ =

∣∣∣∣∣
∫ π

4

0

e−R cos(2t)−iR sin(2t)Rieitdt

∣∣∣∣∣ ≤
∫ π

4

0

e−R cos(2t)Rdt

Since cos(2t) is nonnegative and cos(2t) ≥ 2t (this is immediate from d
dt cos(2t) = −2 sin(2t) ≥ −2 on [0, π4 ])

for t ∈ [0, π4 ], we have∫ π
4

0

e−R cos(2t)Rdt ≤
∫ π

4

0

e−2RtRdt = −1

2

[
e−R

π
2 − 1

]
→ 0, R→∞
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Since f is an entire function, by Cauchy’s theorem,

0 =

∫
γ

f(z)dz =

∫
γ1

f(z)dz +

∫
γ2

f(z)dz +

∫
γ3

f(z)dz

and letting R→∞,∫ ∞
0

e−x
2

dx = lim
R→∞

ei
π
4

∫ R

0

e−(R−t)2ei
π
2 dt = lim

R→∞
ei
π
4

∫ R

0

e−i(R−t)
2

dt = ei
π
4

∫ ∞
0

e−iy
2

dy

where we make the substitution y = R− t. Substituting
∫∞

0
e−x

2

dx = 2−1
√
π,∫ ∞

0

cos(x2)dx− i
∫ ∞

0

sin(x2)dx =

∫ ∞
0

e−ix
2

dx = e−i
π
4

√
π

2
=

√
π

2
√

2
− i
√
π

2
√

2

Equating real and imaginary parts, we obtain the Fresnel integrals∫ ∞
0

cos(x2)dx =

√
π

2
√

2∫ ∞
0

sin(x2)dx =

√
π

2
√

2

Entire Functions

5.3.2 Exercise 1

We will show that the following two definitions of the genus of an entire function f are equivalent:

1. If

f(z) = zmeg(z)
∞∏
n=1

(
1− z

an

)
e
∑h
j=1

1
j (

z
an

)
j

where h is the genus of the canonical product associated to (an), then the genus of f is max (deg(g(z)), h).
If no such representation exists, then f is said to be of infinite genus.

2. The genus of f is the minimal h ∈ Z≥0 such that

f(z) = zmeg(z)
∞∏
n=1

(
1− z

an

)
e
∑h
j=1

1
j (

z
an

)
j

where deg(g(z)) ≤ h. If no such h exists, then f is said to be of infinite genus.

Proof. Suppose f has finite genus h1 with respect to definition (1). If h1 = h, then deg(g(z)) ≤ h1. Hence,
f is of a finite genus h2 with respect to definition (2), and h2 ≤ h1. Assume otherwise. By definition of the
genus of the canonical product, the expression

∞∑
n=1

h1∑
j=h+1

1

j

(
z

an

)j
=

h1∑
j=h+1

1

j

( ∞∑
n=1

1

ajn

)
zj

defines a polynomial of degree h1. Hence, we may write

f(z) = zmeg(z)−
∑∞
n=1

∑h1
j=h+1

1
j (

z
an

)
j
∞∏
n=1

(
1− z

an

)
e
∑h1
j=1

1
j (

z
an

)
j

= zmeg̃(z)
∞∏
n=1

(
1− z

an

)
e
∑h1
j=1

1
j (

z
an

)
j

where we g̃(z) is a polynomial of degree h1. Hence, f is of finite genus h2 with respect to definition (2) and
h2 ≤ h1.
Now suppose that f has finite genus h2 with respect to definition (2). Reversing the steps of the previous
argument, we attain that f has finite genus h1 with respect to definition (1), and h1 ≤ h2. It follows
immediately that definitions (1) and (2) are equivalent if f has finite genus with respect to either (1) and
(2), and by proving the contrapositives, we see that (1) and (2) are equivalent for all entire functions f .
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5.3.2 Exercise 2

lemma Let a ∈ C and r > 0. Then

inf
|z|=r

|z − |a|| = |r − |a|| and sup
|z|=r

|z − |a|| = r + |a|

Proof. By the triangle inequality and reverse inequality, we have the double inequality

|r − |a|| = ||z| − |a|| ≤ |z − |a|| ≤ |z|+ |a| = r + |a|

Hence, inf |z − |a|| ≥ |r − |a|| and sup |z − |a|| ≤ r + |a|. But these values are attained at z = r and z = −r,
respectively.

By Weierstrass’s extreme value theorem, |f | and |g| attain both their maximum and minimum on the
circle {|z| = r} at zM,f , zM,g and zm,f , zm,g, respectively. The preceding lemma shows that zM,g = −r and
zm,g = r. Consider the expression

∣∣∣∣f(z)

g(z)

∣∣∣∣ =

∣∣∣∣∣∣
zm
∏∞
n=1

(
1− z

an

)
zm
∏∞
n=1

(
1− z

|an|

)
∣∣∣∣∣∣ =

∞∏
n=1

|z − an|
|z − |an||

We have ∣∣∣∣f(zM,f )

g(zM,g)

∣∣∣∣ =

∣∣∣∣f(zM,f )

g(−r)

∣∣∣∣ =

∞∏
n=1

∣∣reiθM,f − an∣∣
r + |an|

=

∞∏
n=1

∣∣rei(θM,f−arg(an)) − |an|
∣∣

r + |an|

≤
∞∏
n=1

sup|z|=r |z − |an||
r + |an|

=

∞∏
n=1

r + |an|
r + |an|

= 1

Hence, |f(zM,f )| ≤ |g(zM,g)|. Since

|zm,f − an| =
∣∣∣rei(θm,f−arg(an)) − |an|

∣∣∣ ≥ |r − |an|| ∀n ∈ N

we have that ∣∣∣∣f(zm,f )

g(zm,g)

∣∣∣∣ =

∣∣∣∣f(zm,f )

g(r)

∣∣∣∣ =

∞∏
n=1

|zm,f − an|
|r − |an||

≥
∞∏
n=1

|zm,f − an|
|zm,f − an|

= 1

Hence, |f(zm,f )| ≥ |g(zm,g)|.

5.5.5 Exercise 1

Let Ω be a fixed region and F be the family of holomorphic functions f : Ω→ C with Re(f(z)) > 0 ∀z ∈ Ω.
I claim that F is normal. Consider the family of functions

G =
{
g : Ω→ C : g = e−f for some f ∈ F

}
Since Re(f(z)) > 0 ∀f ∈ F , we have∣∣∣e−f(z)

∣∣∣ =
∣∣∣e−Re(f(z))−iIm(f(z))

∣∣∣ =
∣∣∣e−Re(f(z))

∣∣∣ ≤ 1

Hence, G is uniformly bounded on compact subsets of Ω and is therefore a normal family. Fix a sequence
(fn)n∈N ⊂ F , and consider the sequence gn = e−fn . (gn) has a convergent subsequence (gnk) which converges
to a holomorphic function g on compact sets (Weierstrass’s theorem). Since gnk is nonvanishing for each k,
g is either identically zero or nowhere zero by Hurwitz theorem. If g is identically zero, then it is immediate
that fnk tends to ∞ uniformly on compact sets. Now, suppose that g is nowhere zero. g(K) ⊂ D \ {0}
is compact by continuity. By the Open Mapping Theorem, for each z ∈ K, there exists r > 0 such that
D(g(z); r) ⊂ g(Ω) ⊂ D \ {0}. The disks D(g(z); 4−1r) form an open cover of g(K), so by compactness,

g(K) ⊂
n⋃
i=1

D(g(zi); 4−1ri) ⊂
n⋃
i=1

D(g(zi); 2−1ri) ⊂
n⋃
i=1

D(g(zi); ri) ⊂ D \ {0}
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On each D(g(zi); ri), we can choose a branch of the logarithm such that log(z) is holomorphic on D(g(zi); ri),
and in particular uniformly continuous on D(g(zi); 2−1ri). For each i, choose δi > 0 such that

w,w′ ∈ D(g(zi); ri) |w − w′| < δi ⇒ |log(w)− log(w′)| < ε

Set δ = min1≤i≤n δi, choose k0 ∈ N such that k ≥ k0 ⇒ |gnk(z)− g(z)| < δ ∀z ∈ K. Then for 1 ≤ i ≤ n,

∀k ≥ k0

∣∣∣log
(
e−fnk (z)

)
− log(g(z))

∣∣∣ < ε ∀z ∈ g−1
(
D(g(zi); 2−1ri)

)
It is not a priori true that log(e−fnk (z)) = −fnk(z); the imaginary parts differ by an integer multiple of 2πi.
But the function given by 1

2πi

[
log(e−fnk (z)) + fnk(z)

]
is continuous and integer-valued on any open disk

about each zi in Ω, and therefore must be a constant m ∈ Z in that disk as a consequence of connectedness.
Taking a new covering of g(K), if necessary, such that D(g(zi); ri) is contained in the image under g of such a
disk (which we can do by the Open Mapping Theorem), we may assume that for each z ∈ g−1 (D(g(zi); ri)),

2πmi = lim
k→∞

[
log
(
e−fnk (z)

)
+ fnk(z)

]
= log(g(z)) + lim

k→∞
fnk(z)

Taking k0 ∈ N larger if necessary, we conclude that

∀k ≥ k0

∣∣∣log
(
e−fnk (z)

)
− log(g(z))

∣∣∣ = |fnk(z)− [− log(g(z)) + 2πmi]| < ε ∀z ∈ g−1
(
D(g(zi); 2−1ri)

)
Since K ⊂

⋃n
i=1 g

−1
(
D(g(zi); 2−1ri)

)
, we conclude from the uniqueness of limits that fnk(z) converges to

limk→∞ fnk(z) uniformly on K.

Suppose in addition that {Re(f) : f ∈ F} is uniformly bounded on compact sets. I claim that F is then
locally bounded. Let K ⊂ Ω be compact, and let L > 0 be such that Re(f)(z) ≤ L ∀z ∈ K ∀f ∈ F . Then∣∣∣ef(z)

∣∣∣ = eRe(f(z)) ≤ eL ∀z ∈ K ∀f ∈ F

Hence,
{
g = ef : f ∈ F

}
is a locally bounded family, and therefore its derivatives are locally bounded. Since

Re(f) > 0 ∀f ∈ F , we have that

|f ′(z)| ≤
∣∣∣f ′(z)ef(z)

∣∣∣ = |g′(z)|

which shows that {f ′ : f ∈ F} is a locally bounded family. Since K is compact, there exist z1, · · · , zn ∈ K
and r1, · · · , rn > 0 such that K ⊂

⋃n
i=1D(zi;

ri
2 ) and D(zi; ri) ⊂ Ω. By Cauchy’s theorem,

f(z) =

∫
[zi,z]

f ′(z)dz ∀z ∈ D
(
zi;

ri
2

)
⇒ |f(z)| ≤Miri ∀z ∈ D

(
zi;

ri
2

)
where [z, zi] denotes the straight line segment, and Mi is a uniform bound for {f ′ : f ∈ F} on D(zi; 2−1ri).
Setting M = max1≤i≤nMi and r = max1≤i≤n ri, we conclude that

|f(z)| ≤Mr ∀z ∈ K ∀f ∈ F

Normal Families

5.5.5 Exercise 3

Let f : C→ C be an entire holomorphic function. Define a family of entire functions F by

F = {g : C→ C : g(z) = f(kz), k ∈ C}

Fix 0 ≤ r1 < r2 ≤ ∞. I claim that F is normal (in the sense of Definition 3 p. 225) in the annulus
r1 < |z| < r2 if and only if f is a polynomial.

Suppose f = a0 + a1z + · · · + anz
n is a polynomial, where an 6= 0. By Ahlfors Theorem 17 (p. 226), it

suffices to show that the expression

ρ(g) =
2 |g′(z)|

1 + |g(z)|2
g ∈ F
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is locally bounded. Since g(z) = f(kz) for some k ∈ C, it suffices to show that
2|f ′(z)|

1+|f(z)|2 is bounded on C.

The function F (z) given by

F (z) =
2
∣∣f ′ (z−1

)∣∣
1 + |f(z−1)|2

=
2
∣∣a1z

2n + 2a2z
2n−1 + · · ·+ nanz

n+1
∣∣

|z|2n + |a0zn + a1zn−1 + · · ·+ an|2

is continuous in a neighborhood of 0 with F (0) 6= +∞ since an 6= 0. Hence, |F (z)| ≤ M1 ∀ |z| ≤ δ, which
shows that

2 |f ′(z)|
1 + |f(z)|2

≤M1 ∀ |z| ≥
1

δ

2|f ′(z)|
1+|f(z)|2 is continuous on the compact set D(0; 1

δ ) and therefore bounded by some M2. Taking M =

max {M1,M2}, we obtain the desired result.

Now suppose that F is normal in r1 < |z| < r2. If f is bounded, then we’re done by Liouville’s theorem.
Assume otherwise. Let (fn)n∈N ⊂ F be a sequence given by

fn(z) = f(κnz) for some κn ∈ C

where κn → ∞, n → ∞. Since F is normal, (fn) has a subsequence (fnk)k∈N which either tends to ∞,
uniformly on compact subsets of {r1 < |z| < r2}, or converges to some limit function g in likewise fashion.
Fix δ > 0 small and consider the compact subset {r1 + δ ≤ |z| ≤ r2 − δ}. If fnk → g, then I claim that f
is bounded on C, which gives us a contradiction. Indeed, fix z0 ∈ C. Since (fnk) converges uniformly on
{r1 + δ ≤ |z| ≤ r2 − δ}, (fnk) is uniformly bounded by some M > 0 on this set. Let |κnk(r1 + δ)| ≥ |z0|. By
the Maximum Modulus Principle, |f(z)| is bounded on the disk D(0; |κnk(r1 + δ)|) by some |f(w)| for some
w on the boundary. Hence,

|f(z0)| ≤ |f(w)| = |fnk(z)| ≤M for some z ∈ {|z| = r1 + δ}

Since z0 was arbitrary, we conclude that f is bounded.
I now claim that f has finitely many zeroes. Suppose not. Let (an)n∈N be the sequence of zeroes of f ordered
by increasing modulus, and consider the sequence of functions fn(z) = fn(r−1anz), where r1 < r < r2 is
fixed. Our preceding work shows that (fn) has a subsequence (fnk) which tends to ∞ on the compact set
{|z| = r}. But this is a contradiction since fnk(r) = 0 ∀k ∈ N.
If we can show that f has a pole at ∞, then we’re done by Ahlfors Section 4.3.2 Exercise 2 (Problem Set
1). Let fn(z) = f(nz), and let (fnk)k∈N be a subsequence which tends to ∞ on compact sets. Let M > 0
be given. Fix r1 < r < r2. Then fnk → ∞ uniformly on {|z| = r}, so there exists k0 ∈ N such that for
k ≥ k0, |fnk(z)| > M ∀ |z| = r. Taking k0 larger if necessary, we may assume that |f(z)| > 0 ∀ |z| ≥ rnk0 .
Let z ∈ C, |z| ≥ rnk0 , and choose k so that nkr > |z|. By the Minimum Modulus Principle, |f | assumes its
minimum on the boundary of the annulus {nk0r ≤ |w| ≤ rnk}. But

min

{
inf

|w|=nk0r
|f(w)| , inf

|w|=nkr
|f(w)|

}
> M

and therefore,
|f(z)| ≥ inf

nk0r≤|w|≤nkr
|f(w)| > M

Since z was arbitrary, we conclude that |f(z)| > M ∀ |z| ≥ rnk0 . Since M > 0 was arbitrary, we conclude
that f has a pole at ∞.

5.5.5 Exercise 4

Let F be a family of meromorphic functions in a given region Ω, which is not normal in Ω. By Ahlfors
Theorem 17 (p. 226), there must exist a compact set K ⊂ Ω such that the expression

ρ(f)(z) =
2 |f ′(z)|

1 + |f(z)|2
f ∈ F
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is not locally bounded on K. Hence, we can choose a sequence of functions (fn) ⊂ F and of points (zn) ⊂ K
such that

2 |f ′n(zn)|
1 + |fn(zn)|2

↗∞, n→∞

Suppose for every z ∈ Ω, there exists an open disk D(z; rz) ⊂ Ω on which F is normal, equivalently ρ(f) is lo-
cally bounded. Let Mz > 0 bound ρ(f) on the closed disk D(z; 2−1rz). The collection

{
D(z; 2−1rz) : z ∈ K

}
forms an open cover of K. By compactness, there exist finitely many disks D(z1; 2−1r1), · · · , D(zn; 2−1rn)
such that

K ⊂
n⋃
i=1

D(zi; 2−1ri) and ∀i = 1, · · · , n |ρ(f)(z)| ≤Mi ∀z ∈ D(zi; 2−1r) ∀f ∈ F

Setting M = max1≤i≤nMi, we conclude that

|ρ(f)(z)| ≤M ∀z ∈ K ∀f ∈ F

This is obviously a contradiction since limn→∞ ρ(fn)(zn) = +∞. We conclude that there must exist z0 ∈ Ω
such that F is not normal in any neighborhood of z0.
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Conformal Mapping, Dirichlet’s
Problem

The Riemann Mapping Theorem

6.1.1 Exercise 1

Lemma 6. Let f : Ω → C be a holomorphic function on a symmetric region Ω (i.e. Ω = Ω). Then the
function g : Ω→ C, g(z) = f(z) is holomorphic.

Proof. Writing z = x+ iy, if f(z) = u(x, y) + iv(x, y), where u, v are real, then g(z) = u(x,−y)− iv(x,−y) =
ū(x, y) + iv̄(x, y). It is then evident that g is continuous and u, v have C1 partials. We verify the Cauchy-
Riemann equations.

∂ū

∂x
(x, y) =

∂u

∂x
(x,−y);

∂ū

∂y
(x, y) = −∂u

∂y
(x,−y)

∂v̄

∂x
(x, y) = −∂v

∂x
(x,−y);

∂v̄

∂y
(x, y) =

∂v

∂y
(x,−y)

The claim follows immediately from the fact that u, v satisfy the Cauchy-Riemann equations.

Let Ω ⊂ C be simply connected symmetric region, z0 ∈ Ω be real, and f : Ω→ D be the unique conformal
map satisfying f(z0) = 0, f ′(z0) > 0 (as guaranteed by the Riemann Mapping Theorem). Define g(z) = f(z).
Then g : Ω→ D is holomorphic by the lemma and bijective, being the composition of bijections; hence, g is
conformal. Furthermore, g(z0) = 0 since z0, f(z0) ∈ R. Since

0 < f ′(z0) =
∂u

∂x
(z0) =

∂u

∂x
(z0) = g′(z0)

we conclude by uniqueness that f = g. Equivalently, f(z) = f(z) ∀z ∈ Ω.

6.1.1 Exercise 2

Suppose now that Ω is symmetric with respect to z0 (i.e. z ∈ Ω⇐⇒ 2z0 − z ∈ Ω). I claim that f satisfies

f(z) = 2f(z0)− f(2z0 − z) = −f(2z0 − z)

Define g : Ω→ D by g(z) = −f(2z0 − z). Clearly, g is conformal, being the composition of conformal maps,
and g(z0) = 0. Furthermore, by the chain rule, g′(z0) = f ′(z0) > 0. We conclude from the uniqueness
statement of the Riemann Mapping Theorem that g(z) = f(z) ∀z ∈ Ω.
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Elliptic Functions

Weierstrass Theory

7.3.2 Exercise 1

Let f be an even elliptic function periods ω1, ω2. If f is constant then there is nothing to prove, so assume
otherwise. First, suppose that 0 is neither a zero nor a pole of f . Observe that since f is even, its zeroes
and poles occur in pairs. Since f is elliptic, f has the same number of poles as zeroes. So, let a1, · · · , an,
and b1, · · · , bn denote the incongruent zeroes and poles of f in some fundamental parallelogram Pa, where
ai 6≡ −aj mod M, bi 6≡ −bj mod M ∀i, j and where we repeat for multiplicity. Define a function g by

g(z) = f(z)

(
n∏
k=1

℘(z)− ℘(ak)

℘(z)− ℘(bk)

)−1

and where ℘ is the Weierstrass p-function with respect to the lattice generated by ω1, ω2. I claim that g
is a holomorphic elliptic function. Since ℘(z) − ℘(ak) and ℘(z) − ℘(bk) have double poles at each z ∈ M
for all k, g has a removable singularity at each z ∈ M . For each k, ℘(z) − ℘(bk) has the same poles as ℘
and is therefore an elliptic function of order 2. Since bk 6= 0 and ℘ is even, it follows that ℘(z) − ℘(bk) has
zeroes of order 1 at z = ±bk. From our convention for repeating zeroes and poles, we conclude that g has
a removable singularity at ±bk. The argument that g has removable singularity at each ak is completely
analogous. Clearly,

g(z + ω1) = g(z + ω2) = g(z) for z /∈ ai +M ∪ bi +M ∪M

so by continuity, we conclude that g is a holomorphic elliptic function with periods ω1, ω2 and is therefore
equal to a constant C. Hence,

f(z) = C

n∏
k=1

℘(z)− ℘(ak)

℘(z)− ℘(bk)

Since f is even, its Laurent series about the origin only has nonzero terms with even powers. So if f vanishes
or has a pole at the origin, the order is 2m,m ∈ N. Suppose that f vanishes with order 2m. The function
given by

f̃(z) = f(z) · ℘(z)m

is elliptic with periods ω1, ω2. f̃ has a removable singularity at z = 0, since ℘(z)k has a pole of order 2k at
z = 0. Hence, we are reduced to the previous case of elliptic function, so applying the preceding argument,
we conclude that

f̃(z) = C

n∏
k=1

℘(z)− ℘(ak)

℘(z)− ℘(bk)
⇒ f(z) =

C

℘(z)m

n∏
k=1

℘(z)− ℘(ak)

℘(z)− ℘(bk)

If f has a pole of order 2m at the origin, then the function given by

f̃(z) =
f(z)

℘(z)m

is elliptic with periods ω1, ω2 and has a removable singularity at the origin. From the same argument, we
conclude that

f(z) = C℘(z)m
n∏
k=1

℘(z)− ℘(ak)

℘(z)− ℘(bk)
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7.3.2 Exercise 2

Let f be an elliptic function with periods ω1, ω2. By Ahlfors Theorem 5 (p. 271), f has the same number
of zeroes and poles counted with multiplicity. Let a1, · · · , an, b1, · · · , bn denote the incongruent zeroes and
poles of f , respectively, where we repeat for multiplicity. By Ahlfors Theorem p. 271,

∑n
k=1 bk − ak ∈M , so

replacing a1 by a′1 = a1 +
∑n
k=1 bk − ak, we may assume without loss of generality that

∑n
k=1 bk − ak = 0.

Define a function g by

g(z) = f(z)

(
n∏
k=1

σ(z − ak)

σ(z − bk)

)−1

where σ is the entire function (Ahlfors p. 274) given by

σ(z) = z
∏
ω 6=0

(
1− z

ω

)
e
z
w+ 1

2 ( zw )
2

g has removable singularities at ai +M, bi +M for 1 ≤ i ≤ n. I claim that g is elliptic with periods ω1, ω2.
Recall (Ahlfors p. 274) that σ satisfies

σ(z + ω1) = −σ(z)e−η1(z+
ω1
2 ) and σ(z + ω2) = −σ(z)e−η2(z+

ω2
2 ) ∀z ∈ C

where η2ω1 − η1ω2 = 2πi (Legendre’s relation). Hence, for z 6≡ bi +M,ai +M ,

g(z + ω1) = f(z + ω1)

(
n∏
k=1

σ(z − ak + ω1)

σ(z − bk + ω1)

)−1

= f(z)

(
n∏
k=1

−σ(z − ak)eη1(z−ak+
ω1
2 )

−σ(z − bk)eη1(z−bk+
ω1
2 )

)−1

= eη1
∑n
k=1 ak−bkf(z)

(
n∏
k=1

σ(z − ak)

σ(z − bk)

)−1

= g(z)

By continuity, we conclude that g(z + ω1) = g(z) ∀z ∈ C. Analogously, for z 6≡ bi +M,ai +M ,

g(z + ω2) = f(z + ω2)

(
n∏
k=1

σ(z − ak + ω2)

σ(z − bk + ω2)

)−1

= f(z)

(
n∏
k=1

−σ(z − ak)eη2(z−ak+
ω2
2 )

−σ(z − bk)eη2(z−bk+
ω2
2 )

)−1

= eη2
∑n
k=1 ak−bkf(z)

(
n∏
k=1

σ(z − ak)

σ(z − bk)

)−1

= g(z)

By continuity, we conclude that g(z + ω2) = g(z) ∀z ∈ C. Since g is an entire elliptic function, it is constant
by Ahlfors Theorem 3 (p. 270). We conclude that for some C ∈ C,

f(z) = C

n∏
k=1

σ(z − ak)

σ(z − bk)

7.3.3 Exercise 1

Fix a rank-2 lattice M ⊂ C and u /∈M . Then

℘(z)− ℘(u) = −σ(z − u)σ(z + u)

σ(z)2σ(u)2

Proof. I first claim that the RHS is periodic with respect to M . Let ω1, ω2 be generators of M and let
η1ω2 − η2ω1 = 2πi. For z /∈M ,

−σ(z + ω1 − u)σ(z + ω1 + u)

σ(z + ω1)2σ(u)2
= −σ(z − u)eη1(z−u+

ω1
2 )σ(z + u)eη1(z+u+

ω1
2 )

σ(z)2e2η1(z+
ω1
2 )σ(u)2

= −σ(z − u)σ(z + u)e2η1(z+
ω1
2 )

σ(z)2σ(u)2e2η1(z+
ω1
2 )

= −σ(z − u)σ(z + u)

σ(z)2σ(u)2
= f(z)
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The argument for ω2 is completely analogous. The RHS has zeroes at ±u and a double pole at 0. Hence, by
the same reasoning used above, we see that

℘(z)− ℘(u) = −Cσ(z − u)σ(z + u)

σ(z)2σ(u)2
for some C ∈ C

To find conclude that C = 1, we first note that ℘(z) − ℘(u) has a coefficient of 1 for the z−2 term in its
Laurent expansion. If we show that the Laurent expansion of the f(z) also has a coefficient of 1 for the z−2,
then it follow from the uniquenuess of Laurent expansions that C = 1.

−σ(z − u)σ(z + u)

σ(z)2σ(u)2
= −

(z2 − u2)
∏
ω 6=0

(
1− z−u

ω

)
e
z−u
ω + 1

2 ( z−uω )
2 ∏

ω 6=0

(
1− z+u

ω

)
e
z+u
ω + 1

2 ( z+uω )
2

z2σ(u)2
(∏

ω 6=0

(
1− z

ω

)
e
z
ω+ 1

2 ( zω )
2)2

= −
∏
ω 6=0

(
1− z−u

ω

)
e
z−u
ω + 1

2 ( z−uω )
2 ∏

ω 6=0

(
1− z+u

ω

)
e
z+u
ω + 1

2 ( z+uω )
2

σ(u)2
(∏

ω 6=0

(
1− z

ω

)
e
z
ω+ 1

2 ( zω )
2)2

︸ ︷︷ ︸
g1(z)

+
1

z2
·
u2
∏
ω 6=0

(
1− z−u

ω

)
e
z−u
ω + 1

2 ( z−uω )
2 ∏

ω 6=0

(
1− z+u

ω

)
e
z+u
ω + 1

2 ( z+uω )
2

σ(u)2
(∏

ω 6=0

(
1− z

ω

)
e
z
ω+ 1

2 ( zω )
2)2

︸ ︷︷ ︸
g2(z)

Observe that both g1(z) and g2(z) are holomorphic in a neighborhood of 0 since we have eliminated the
double pole at 0. Hence, the coefficient of the z−2 in the Laurent expansion of f(z) is given by g2(0). But
since σ is an odd function, it is immediate that g2(0) = 1.

7.3.3 Exercise 2

With the hypotheses of the preceding problem,

℘′(z)

℘(z)− ℘(u)
= ζ(z − u) + ζ(z + u)− 2ζ(z)

Proof. For z 6= u+M , we can choose a branch of the logarithm holomorphic in a neighborhood of ℘(z)−℘(u).
Taking the derivative of the log of both sides and using the chain rule,

℘′(z)

℘(z)− ℘(u)
=

∂

∂z

[
log(−σ(z − u)) + log(σ(z − u))− log(σ(u)2σ(z)2)

]
=
σ′(z − u)

σ(z − u)
+
σ′(z + u)

σ(z + u)
− 2σ′(z)

σ(z)
= ζ(z − u) + ζ(z + u)− 2ζ(z)

where we’ve used σ′(w)
σ(w) = ζ(w) ∀w ∈ C (Ahlfors p. 274).

7.3.3 Exercise 3

With the same hypotheses as above, for z 6= −u+M ,

ζ(z + u) = ζ(z) + ζ(u) +
1

2

℘′(z)− ℘′(u)

℘(z)− ℘(u)

Proof. Since the last term has a removable singularity at z = u+M , by continuity, we may also assume that
z 6= u+M . First, observe that by replacing switching u and z in the argument for the last identity, we have
that

℘′(u)

℘(z)− ℘(u)
= − [ζ(u− z) + ζ(z + u)− 2ζ(u)] = ζ(z − u)− ζ(z + u) + 2ζ(u)
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where we’ve used the fact that σ(z) is odd and therefore ζ(z) = σ′(z)
σ(z) is also odd. Hence,

℘′(z)− ℘′u
℘(z)− ℘(u)

= (ζ(z − u) + ζ(z + u)− 2ζ(z))− (ζ(z − u)− ζ(z + u) + 2ζ(u)) = 2ζ(z + u)− 2ζ(z)− 2ζ(u)

The stated identity follows immediately.

7.3.3 Exercise 4

By Ahlfors Section 7.3.3 Exercise 3,

ζ(z + u) = ζ(z) + ζ(u) +
1

2

(
℘′(z)− ℘′(u)

℘(z)− ℘(u)

)
Differentiating both sides with respect to z and using −ζ ′(w) = ℘(w) ∀w ∈ C \M , we obtain

−℘(z + u) = −℘(z) +
1

2

(
℘′′(z)

℘(z)− ℘(u)
− (℘′(z)− ℘′(u))℘′(z)

(℘(z)− ℘(u))2

)
We seek an expression for ℘′′(z) in terms of ℘(z). For z 6= ω1

2 ,
ω2

2 ,
ω1+ω2

2 +M ,

℘′(z)2 = 4℘(z)3 − g2℘(z)− g2 ⇒ 2℘′(z)℘′′(z) = 12℘(z)2℘′(z)− g2℘
′(z)⇒ ℘′′(z) = 6℘(z)2 − g2

2

We conclude from continuity that ℘′′(z) = 6℘(z)2 − g2
2 . Substituting this identity in,

−℘(z + u) = −℘(z) +
1

2

(
6℘(z)2 − g2

2

℘(z)− ℘(u)
− (℘′(z)− ℘′(u))℘′(z)

(℘(z)− ℘(u))2

)
Applying the same arguments as above except taking u to be variable, we obtain that

−℘(z + u) = −℘(u) +
1

2

(
−

6p(u)2 − g2
2

p(z)− p(u)
+

(℘′(z)− ℘′(u))℘′(u)

(℘(z)− ℘(u))2

)
Hence,

−2℘(z+u) = −℘(z)+−℘(u)+
1

2

(
6(℘(z)2 − ℘(u)2)

℘(z)− ℘(u)
− (℘′(z)− ℘′(u))2

(℘(z)− ℘(u))2

)2

= 2℘(z)+2℘(u)−1

2

(
℘′(z)− ℘′(u)

℘(z)− ℘(u)

)2

⇒ ℘(z + u) = −℘(z)− ℘(u) +
1

4

(
℘′(z)− ℘′(u)

℘(z)− ℘(u)

)2

7.3.3 Exercise 5

Using the identity obtained in the previous exercise, we have by the continuity of ℘ that

℘(2z) = lim
u→z

℘(z + u) = lim
u→z

[
−℘(z)− ℘(u) +

1

4

(
℘′(z)− ℘′(u)

℘(z)− ℘(u)

)2
]

= lim
u→z

−℘(u)− ℘(z) +
1

4

(
℘′(z)−℘′(u)

z−u
℘(z)−℘(u)

z−u

)2
 = −2℘(z) +

1

4

(
℘′′(z)

℘′(z)

)2

where we use the continuity of w 7→ w2 to obtain the last expression.
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7.3.3 Exercise 7

Fix u, v /∈M such that |u| 6= |v|, and define a function f : C \M → C by

f(z) = det

℘(z) ℘′(z) 1
℘(u) ℘′(u) 1
℘(v) −℘′(v) 1

 = −℘′(z)(℘(u)− ℘(v)) + ℘′(u)(℘(z)− ℘(v)) + ℘′(v)(℘(z)− ℘(u))

= (℘′(u) + ℘′(v))︸ ︷︷ ︸
A

℘(z) + (℘(v)− ℘(u))︸ ︷︷ ︸
B

℘′(z) +−(℘′(u)℘(v) + ℘′(v)℘(u))︸ ︷︷ ︸
C

where we use Laplace expansion for determinants. By our choice of u, v and the fact that the Weierstrass
function is elliptic of order 2, B 6= 0. Hence, f(z) is an elliptic function of order 3 with poles at the lattice
points of M . Since the determinant of any matrix with linearly dependent rows is zero, f has zeroes at u,−v.
Since f has order 3, it has a third zero z, and by Abel’s Theorem (Ahlfors p. 271 Theorem 6),

u− v + z ≡ 0 mod M ⇒ z = v − u

We conclude that

det

 ℘(z) ℘′(z) 1
℘(u) ℘′(u) 1

℘(u+ z) −℘′(u+ z) 1

 = 0

7.3.5 Exercise 1

Since λ is invariant under Γ(2) and Γ \ Γ(2) is generated by the linear fractional transformations τ 7→ τ + 1
and τ 7→ −τ−1, it suffices to show that J(τ + 1) = J(τ) and J(−τ−1) = J(τ). Recall that λ satisfies the
functional equations

λ(τ + 1) =
λ(τ)

λ(τ)− 1
and λ

(
−1

τ

)
= 1− λ(τ)

So,

J(τ + 1) =
4

27

(1− λ(τ + 1) + λ(τ + 1)2)3

λ(τ + 1)2(1− λ(τ + 1))2
=

4

27

(1− λ(τ)(λ(τ)− 1)−1 + λ(τ)2(λ(τ)− 1)−2)3

λ(τ)2(λ(τ)− 1)−2 (1− λ(τ)(λ(τ)− 1)−1)
2 · (λ(τ)− 1)6

(λ(τ)− 1)6

=
4

27

(
(λ(τ)− 1)2 − λ(τ)(λ(τ)− 1) + λ(τ)2

)3
λ(τ)2(λ(τ)− 1)2

=
4

27

(1− λ(τ) + λ(τ)2)3

λ(τ)2(λ(τ)− 1)2
= J(τ)

and

J

(
−1

τ

)
=

4

27

(
1− (1− λ(τ)) + (1− λ(τ))2

)3
(1− λ(τ))2(1− (1− λ(τ)))2

=
4

27

(
1− λ(τ) + λ(τ)2

)3
λ(τ)2(1− λ(τ))2

= J(τ)

Observe that

J(τ) =
4

27

(
1− λ(τ) + λ(τ)2

)3
λ(τ)2(1− λ(τ))2

=
4

27

(λ(τ)− eiπ3 )3(λ(τ)− e−iπ3 )3

λ(τ)2(1− λ(τ))2

So, J(τ) assumes the value 0 on λ−1
({
e±i

π
3

})
. Since λ is a bijection on Ω ∪ Ω′, J(τ) has two zeroes, each

of order 3. We proved in Problem Set 8 that

g2 = −4(e1e2 + e1e3 + e2e3) = 0

for τ = ei
2π
3 . So using the identity for J(τ) proved below, J(ei

2π
3 ) = 0. Using the invariance of J(τ) under

Γ, we see that J(ei
π
3 ) = 0.

J(τ) assumes the value 1 on λ−1 ({λ1, · · · , λ6}), where the λi are the roots of degree 6 the polynomial

p(z) = 4(1− z + z2)3 − 27z2(1− z)2

It is easy to check that

e3 = ℘

(
1 + i

2
; i

)
= −℘

(
i+ 1

2
; i

)
= −e3 ⇒ e3 = 0
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Since e1 + e2 + e3 = 0 (see below for argument), we have e1 = −e2 and therefore

λ(i) =
e3 − e2

e1 − e2
=

1

2

Since each point in H+ is congruent modulo 2 to a point in Ω ∪ Ω′, λ maps this fundamental conformally
onto C \ {0, 1}, and J(τ) is invariant under Γ, we conclude J(τ) assumes the value 1 at τ = i, 1 + i, i+1

2 . I
claim that these are these are the only possible points up to modulo 2 congruence. Suppose J(τ) = 1 for
τ /∈

{
i, 1 + i, i+1

2

}
. If we let S1, · · · , S6 denote the complete set of mutually incongruent transformations, then

since τ /∈
{
ei
π
3 , ei

2π
3

}
(otherwise J(τ) = 0), S1τ, · · · , S6τ ∈ Ω∪Ω′ are distinct, hence the λ(Siτ) are distinct

roots of p(z), and we obtain that p(z) has more than 6 roots, a contradiction. Moreover, this argument shows
that the polynomial p(z) has three roots, which by inspection, we see are given by

{
−1, 1

2 , 2
}

.

I claim that J(τ) assumes the value 1 with order 2 at τ = i, 1 + i, i+1
2 . We need to show that the zeroes of

p(z) are each of order 2. Indeed, one can verify that

p(z) = 4(1− z + z2)3 − 27z2(1− z)2 = (z − 2)2(2z − 1)2(z + 1)2

Substituting λ = e3−e2
e1−e2 , we have

J(τ) =
4

27

(
1− (e3 − e2)(e1 − e2)−1 + (e3 − e2)2(e1 − e2)−2

)3
(e3 − e2)2(e1 − e2)−2(e1 − e3)2(e1 − e2)−2

=
4

27

(
(e1 − e2)2 − (e3 − e2)(e1 − e2) + (e3 − e2)2

)3
(e3 − e2)2(e1 − e3)2(e1 − e2)2

=
4

27

(
e2

1 − 2e1e2 + e2
2 − e3e1 + e3e2 + e2e1 − e2

2 + e2
3 − 2e3e2 + e2

2

)3
(e3 − e2)2(e1 − e3)2(e1 − e2)2

Since

4z3 − g2z − g3 = 4(z − e1)(z − e2)(z − e3) = 4(z2 − (e1 + e2)z + e1e2)(z − e3) = 4(e1 + e2 + e3)z2 + · · ·

we have that e1 + e2 + e3 = 0 and so,

0 = (e1 + e2 + e3)2 = e2
1 + e2

2 + e2
3 + 2e1e2 + 2e1e3 + 2e2e3 ⇒ e2

1 + e2
2 + e3

3 = −2 (e1e2 + e1e3 + e2e3)

Substituting this identity in,

J(τ) =
4

27

(−2(e1e2 + e2e3 + e1e3)− (e1e2 + e2e3 + e1e3))
3

(e3 − e2)2(e1 − e3)2(e1 − e2)2
= −4

(e1e2 + e2e3 + e1e3)
3

(e3 − e2)2(e1 − e3)2(e1 − e2)2
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