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Chapter 4 - Complex Integration

Cauchy’s Integral Formula

4.2.2 Exercise 1
Applying the Cauchy integral formula to f(z) = e?,

_ _ 17 f(?)
l_f(O)_27TZ |z|=1 z

dz <= 27 = j{ e—dz

lz]=1 #

Section 4.2.2 Exercise 2
Using partial fractions, we may express the integrand as
1 i i
241 2(z+1i)  2(z—1)

Applying the Cauchy integral formula to the constant function f(z) =1,

1 1 i (1 1 (1 1
YR R Y e
210 Js =0 2% + 1 2\2m) Jz=2 2 +1 2\2mi) Jiy—2 2 — 0

4.2.3 Exercise 1
1. Applying Cauchy’s differentiation formula to f(z) = e?,

) z ; z
1= f=D(0) = (n ,1)' -7{ ey 2T ]{ ds
\ |z|=

2mi 2=1 2" (n—1)  J,— 2"

2. We consider the following cases:

(a) If n > 0,m > 0, then it is obvious from the analyticity of z™(1 — z)™ and Cauchy’s theorem that
the integral is 0.

(b) If n > 0,m < 0, then by the Cauchy differentiation formula,

2" 0 n<|m|—1
2" (1—2)"dz = (—1)’”-7{ ——dz = {(—1)""27r' n! mloi( n
j{ﬂ_g z=2 (2 = 1)Im] IEIRC=rEsy i (-1) ‘2m<\m|71) n = |ml

(¢) If n < 0,m >0, then by a completely analogous argument,

i (1—2)m 0 bl
2" (1—2)"dz = sz =9 (=D 1am; m! In|=19;( m
|2|=2 2]=2  Z Q=1 Gata = (~1)"2mi( ) m >

(d) If n < 0,m < 0, then sincen(|z| = 2,0) = n(|z| = 2,1) = 1, we have by the residue formula that

(1—2)"2"dz+ f (1—2)"2"dz
lz—1]=3%

j{ (1 —2)™2" = 2mires(f;0) + 2mires(f;1) = ]{
|2|=2 |2]=3
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Using Cauchy’s differentiation formula, we obtain

o (=2l L
A [ Y el

2mi (|m| +|n| - 2)! N (=yml2mi (=1)m (|| + [m| - 2)!
(In[ =)t (Im| = 1)! (Im| = 1)t (In| —1)!

() (]

3. If p =0, then it is trivial that f|2|:P |z — a|™*|dz| = 0, so assume otherwise. If a = 0, then

1 .

_ 2
[
|z|=p 0 P

Now, assume that a # 0. Observe that
1 1

|z —al* (z—a)?(z—a)
) 1 /1 1 2migdit

_ dz| = —  _|dz| = . - —dt
i{z_p'z af "l ?{_p GoapE_aE P17 |, e appe e —ap’ i

1 s At .
2 —i -
Z/ 2mit P 2Z€ Fe2mit)2 dt : a z 2 dz 7Z2p 2 ° d
o (pe a)?(p — ae®™™) P Jiz=p (p— ;Z) (z—a) a” Jizj=p (z — £)2(z — a)?

2

We consider two cases. First, suppose |a| > p. Then z(z — a)~? is holomorphic on and inside {|z| = p}
2
and £ lies inside {|z| = p}. By Cauchy’s differentiation formula,

_ —1 2 2
j{ |z —a| ™" |dz| :2“77@2{) [(z—a)?=22(z—a)?] _,2= ;Tp 1-2 f
J2l=r a - a)?
_ —2mp(p* +al*) _ 2mp(p* + |af)
(p? —lal*)? (laf* = p?)?
Now, suppose |a| < p. Then % lies outside |z| = p, so the function z(z — %)’2 is holomorphic on and
inside {|z| = p}. By Cauchy’s differentiation formula,

p— _' 2 2 2
R S Y B O G Y Rt L) I — T S § I S —
|zl=p a’ a a sma @ (a— )2 (a — %=
2
~ =2mp (a+ %) —2mp(lal* +p?) _ 2mp(jal® + p?)
- 2 2 - 2 - 2
(la|” = p?)? a— = (lal” = p?)? (p? —lal")?

4.2.3 Exercise 2

Let f: C — C be a holomorphic function satisfying the following condition: there exists R > 0 and n € N

such that |f(z)| < |2|" V|z| > R. For every r > R, we have by the Cauchy differentiation formula that for
all m > n,

m m! 2" m!
IO Ry - E

2 2| pm=n

Noting that m —n > 1 and letting r — oo, we have that f("™)(a) = 0. Since f is entire, for every a € C, we
may write

(g
FE = 1@+ @ =)+ T =0 a9 - vz e

where f,41 is entire. Since f,11(a) = f™*Y(a) = 0 and a € C was arbitary, we have that f,4; = 0 on C.
Hence, f is a polynomial of degree at most n.



Local Properties of Analytical Functions

4.3.2 Exercise 2

Let f : C — C be an entire function with a nonessential singularity at co. Consider the function g(z) = f (%)

at 2 = 0. Let n € N be minimal such that lim,_,o 2"g(z) = 0. Then the function 2"~!g(z) has an analytic
continuation h(z) defined on all of C. By Taylor’s theorem, we may express h(z) as

(0 " (0 A= (0
2" lg(2) = h(z) = h(0) + 1<| ) z+ 2(| )22 SR e 1()') 2" 4 by (2)2" V2 £ 0
~— ! ! n—1)!
Cn—1 P R ——
e co

where h,, : C — C is holomorphic. Hence,

. Cn—1 Cn—2 T o

ligo(e) = [+ S o] =l () =0
And li . Cn—1 + Cn—2 + — I f _f 0

Jim g = |5+ S5+ o] = Ty /) = £(O)

since f is entire. Note that we also obtain that ¢y = f(0). Hence, g(z) — [zﬁj + 2213 + .- —‘rCQ} (we
are abusing notation to denote the continuation to all of C) is a bounded entire function and is therefore

identically zero by Liouville’s theorem. Hence,
Ve £ 0, f(2) = en12™ 4 ena? 2 4 4o

Since f(0) = ¢g, we obtain that f is a polynomial.

4.3.2 Exercise 4

Let f: CU{oo} = CU {00} be a meromorphic function in the extended complex plane. First, I claim that
[ has finitely many poles. Since the poles of f are isolated points, they form an at most countable subset
{pr}rey of C. By definition, the function f(z) = f (%) has either a removable singularity or a pole at z = 0.
In either case, there exists r > 0 such that f is holomorphic on D’(0;r). Hence, {py}re, C D(0;r). Since
this set is bounded, {px},-; has a limit point p. By continuity, f(p) = oo and therefore p is a pole. Since p
is an isolated point, there must exist N € N such that Vk > N, pr = p.

Our reasoning in the preceding Exercise 2 shows that for any pole pp # oo of order my, we can write in a
neighborhood of py

ka cmkfl cl
4 = CEEEE C z
/) [(Z — p)" i (z = pg)m T Z— Pk i O} o)

fi(2)

where g is holomorphic in a neighborhood of pg. If p = oo is a pole, then analogously,

= C C — Cc -
f(z) = [—“’Jr et +--~+;1+Co] +900(2)

Moo Zmoofl

foo(2)

where go, is holomorphic in a neighborhood of 0. For clarification, the coefficients ¢, depend on the pole,
but we omit the dependence for convenience. Set foo(2) = foo (1) and

W) = £(2) = faol2) = S u(2)
k=1

I claim that A is (or rather, extends to) an entire, bounded function. Indeed, in a neighborhood of each zy,
h can be written as h(z) = gi(2) — 32,4 fx(2) and in a neighborhood of 25, as h(z) = goo(2) — Sory fr(2),

which are sums of holomorphic functions. fz(z) =h (%) is evidently bounded in a neighborhood of 0 since
the fi (%) are polynomials and f (%) — fo (1) = Joo(2), which is holomorphic in a neighborhood of 0. By

4
Liouville’s theorem, h is a constant. It is immediate from the definition of h that f is a rational function.



Calculus of Residues

4.5.2 Exercise 1

Set f(2) = 623 and g(z) = 27 — 225 — 2z + 1. Clearly, f,g are entire, |f(2)| > |g(z)| V|z| = 1, and
f(z)+g(z) = 27 —22° + 62 — 2 + 1. By Rouché’s theorem, f and f + g have the same number of zeros,
which is 3 (counted with order), in the disk {|z| < 1}.

Section 4.5.2 Exercise 2

Set f(z) = 2* and g(z) = —6z + 3. Clearly, f,g are entire, |f(z)| > |g(2)| ¥ |z| = 2. By Rouché’s theorem,
24 —62+3 has 4 roots (counted with order) in the open disk {|z| < 2}. Now set f(z) = —6z and g(z) = 2% +3.
Clearly, |f(2)| > |g(2)| V|z| = 1. By Rouché’s theorem, 2* — 6z + 3 = 0 has 1 root in the in the open disk
{]#] < 1}. Observe that if z € {1 < |z| < 2} is root, then by the reverse triangle inequality,

3=1z||z* — 6] > |2|

2~

So |z| € (1,2). Hence, the equation 2* — 62 + 3 = 0 has 3 roots (counted with order) with modulus strictly
between 1 and 2.

4.5.3 Exercise 1

1. Set f(z) = z2+éz+6 = (2+3)1(Z+2). Then f has poles z; = —2, 20 = —3 and by Cauchy integral formula,

-1
res(f;z1) = 1% (z+3) dz = ! li=—2 =1
|=+2|=

2mi 1 (2+2) z4+3
1 2)~1 1
res(f;ZQ):—_}{ (2+2) dz = lo=—3 —1
2mi Jiqg=1 (2 +3) z+42

2. Set f(z) = (Zzil)g = (Z71)21(2+1)2. Then f has poles z; = —1, 29 = —1. Applying Cauchy’s differentia-
tion formula, we obtain

1 (z—1)72 s 1
S(f; :—% L dz=-20z—1)e = =
I‘G‘S(f, Zl) 21 |z+1|=1 (Z + 1)2 * (Z ) |Z_ ! 4

1 (z+1)72 3 1
. [ — -~ 2 _dz=-2 1 p—1 = ——
res(f, 22) 21 ?{Z1|—1 (Z — 1)2 < (Z + ) | 1 4

3. sin(z) has zeros at km, k € Z, hence sin(z)~! has poles at z, = km. We can write sin(z) = (2 —
zi) [cos(zk) + gi(2)], where gy is holomorphic and g (zx) = 0. By the Cauchy integral formula,

- L el taE@™ L
sl = g fiz-zuzl ) T P rem Y

4. Set f(z) = cot(z). Since sin(z) has zeros at z;, = km,k € Z and cos(z) # 0, cot(z) has poles at
2k, k € Z. We can write sin(z) = (z — zi) [cos(zk) + gr(z)], where gy is holomorphic and g (zx) = 0.
By Cauchy’s integral formula,

1 cos(z) [cos(zi) + g (2)] B cos(zk)
szzﬂ—l @

2i (z — 21)  cos(zk) + gr(2k)

res(f;zx) =

5. It follows from (3) that f(z) = sin(z)~2? has poles at zx = km,k € Z. We remark further that
gr(2) = —cos(z1,)(z — 21)% + hi(2), where hy(2) is holomorphic. By the Cauchy differentiation formula,

2mi B

res(f;z,) = 1 [cos(zx) + gr(2)] L 9 (2k) _
i) = fz—Zk|=1 (2 = 21)° ! 2(COS(Zk) +or(z))® 0



6.

Evidently, the poles of f(z) = —mr——= are z; = 0,z = 1. By Cauchy’s differentiation formula,

zm(1—z)"

res(f; 1) = 1 jil:; (l—z)_"dz: (n+m —2)! _<n+m—2>

2mi Zm (n—Dim-1! \ m-1

res(f;z2) =

(—1)" ]{le_; ( o ()" (=)"Hm+n—2)! _<n+m—2>

2mi 1 (z—1)" (m—1)! n—1

4.5.3 Exercise 3

(a)

Since a + sin?(0) = a + =22 — 2[(24 + 1) — cos(26)], we have

3 dg 3 dg B dt 0 dr
/0 a + sin®(6) - 2/0 (2a + 1) — cos(26) - /0 (2a 4+ 1) — cos(t) - /_7r (2a 4+ 1) + cos(T)

B / T dr
Jo (2a+1) +cos(7)
where we make the change of variable 7 = 6 — 7, and the last equality follows from the symmetry of

the integrand. Ahlfors p. 155 computes foﬂ a+dx = for a > 1. Hence,

cos(z) ~ a2—-1

[NE]

/ o w
o a+sin®’(d)  /(2a+1)2—1

Set

22 22 22

A 452246 (2243)(22+2) (2 —V3i)(z+V3i)(z — V2i)(z + V2i)

f(z) =

For R >> 0, )
A [_R7 R] — (Ca’yl(t) = tvr}/2 : [Ovﬂ-] — Ca’YQ(t) = R@”

and let v be the positively oriented closed curve formed by 71, v2. By the residue formula and applying
the Cauchy integral formula to ﬁ; to compute res(f;ai),

/ f(2)dz = 2mirves(f;V/3i) + 2mires(f; V/2i)

It is immediate from Cauchy’s integral formula that

2 i/3)-1(22 4 9)-1 - a2
27rires(f; \/gz) = / z (Z + Z\/g) . (Z + ) dz = 27 - ‘ (Z\/g) : _ \/gﬂ_
|z—iv/3|=e (z —iv/3) ((iv3)2 + 2)(2iV/3)
2 /2 —17,2 —1 /2 2
2mires(f; \@Z) = / alChs Z\[) - (2" +3) dz = 2mi - — (Z\[) - = —\V2r
i (-iVD) (V27 +3)(2v3)
Using the reverse triangle inequality, we obtain the estimate
TR3
dz| < 75— < 0, R
72]"’(2)2_‘]{2_3|‘R2_2|% ,R— o0
Hence,
oo 2 [ee] 2 (o) 2d o 2
2t s = [ areagle= VB Vam= [t _ (VB V)
o x*+5x2+6 oo T+ 522 46 o T*+5x2+6 2



(e) We may write _
cos(x) e

a2 (22 + a?)

So set f(z) = zf_:_;az, which has simple poles at +ai. First, suppose that a # 0. For R >> 0, define
Y1t [=R,R] = C,71(t) = t;72 : [0, 7] = C,72(t) = Re”
and let v be the positively oriented closed curve formed by ~1,72. By the residue formula,

ei(ai) Te o

/f(Z)dZ = 2mires(f; ai) = 2mi -
.

(2ai)  a
™ eiR[cos(t)+i sin(t)] i ™ eiRcos(t)e—Rsin(t) i
[/2 f(z)dz) = /0 WRG dt’ - /0 R2e2it 4 g2 Re™dt
‘ﬂ'Re—Rsin(t) R
<) TR-a dt < 2 o2 —0,R —

since e~ f1s"(") < 1 on [0, 7]. Hence,

* cos(z) 1 [ e e @
/0 x? + a? 62/_00x2+a2x 2a

If @ = 0, then the integral does not converge.

(h) Define f(z) = Jog(2).where we take the branch of the logarithm with arg(z) € [-%,2). For R >> 0,

(1+2°)
define
—1 -1 1 it
A [_Ra ?] — Cﬁh(t) = t;’yQ : [77T] — (C»’Y2(t) = fe V3t [EvR} - (Ca’yd(t) = t;’Y4 : [077(] — (C»A/ﬁl(t) = Re
and let v be the positively oriented closed curve formed by the ~;.
« [log BRI |+ % 4 R(log |R| + %
TP i S W RS SR
Y2 0 |W - 1| R |R - 1|
™ llog | R| + it| R(log |R| + )
. f(Z)dZ S / ﬁRdtSﬂ'T —>O,R—> 0

By the residue formula and applying the Cauchy integral formula to f(2)/(z 4 ¢) to compute res(f;1),

mim2mi 2 =T
ami = 2T =
24 2

log(2)
(z+1)

/ f(2)dz = 2mires(f; i) = 2mi
.

1

2 ~% log(te'™)  log(t) 7 log([t]) * log() o
ERU R RETS P e A N s s

R R R 2
:2/ log(?) +7r/ ! dt:2/ log(t) , ™
1 14 ¢2 1 1+¢2 1142 2

1

5 o0
where we've used [ e

dt = limp_, o arctan(R) — arctan(0) = 7. Hence,

R 0o
/ () 4 — o = / 108 () 44 —
% 1 + t2 0

Lemma 1. Let U,V C C be open sets, F' : U — V a holomorphic function, and u : V — C a harmonic
function. Then wo F : U — C is harmonic.

Proof. Since wo F' is harmonic on U if and only if it is harmonic on any open disk contained in U about every
point, we may assume without loss of generality that V' is an open disk. Then there exists a holomorphic
function G : V' — C such that u = Re(G). Hence, Go F : U — C is holomorphic and Re (Go F) = uo F,
which shows that w o F' is harmonic. O

In what follows, a conformal map f : €2 — C is a bijective holomorphic map.

1

14+¢2

dt



Harmonic Functions

4.6.2 Exercise 1

Let uw : D'(0; p) — R be harmonic and bounded. I am going to cheat a bit and assume Schwarz’s theorem
for the Poisson integral formula, even though Ahlfors discusses it in a subsequent section. Let

1 (2™ ret? — 2 X
Pu(z) = — _— 9 de
(2) 27 /0 Rerew + Zu(re )

denote the Poisson integral for u on some circle of fixed radius r < p. Since u is continuous, P,(z) is a
harmonic function in the open disk D(0;r) and is continuous on the boundary {|z| = r}. We want to show
that v and P, agree on the annulus, so that we can define a harmonic extension of u by setting u(0) = P,(0).
Define

and for € > 0 define ]
z

0.(2) :g<z>+elog( ) W0 < |2 <1

r
Then g is harmonic in D’(0;7) and continuous on the boundary. Furthermore, since u is bounded by
hypothesis and P, is bounded by construction on D(0;7), we have that g is bounded on D(0;7). gc(z) is
harmonic in D’(0;r) and continuous on the boundary since both its terms are. Since log (r~!|z]) — —o0, z —
0, we have that

limsup ge(z) < 0

z—0

Hence, there exists ¢ > 0 such that 0 < |z] < § = g.(z) < 0. Since g, is harmonic on the closed annulus
{6 < |z|] < r}, we can apply the maximum principle. Hence, g. assumes its maximum in {|z| = 0} U{|z| = r}.
But, ¢g.(z) < 0V|z| = 4, by our choice of §, and since u, P, agree on {|z| = r}, we have that g.(z) =0V |z| = r.
Hence,

9e(2) SOVO < |z] <7

Letting € — 0, we conclude that g(z) < 0 VO < |z| < r, which shows that u < P, on the annulus. Applying
the same argument to h = P, — u, we conclude that u = P, on 0 < |z| < r. Setting u(0) = P,(0) defines a
harmonic extension of u on the closed disk.

4.6.2 Exercise 2

If f:Q={r <|z] <r2} — C is identically zero, then there is nothing to prove. Assume otherwise. Since
the annulus is bounded, f has finitely many zeroes in the region. Hence, for A € R, the function

9(z) = Alog |z| +log | f(2)]

is harmonic in Q\ {a1, - ,a,}, where ay,--- ,a, are the zeroes of f. Applying the maximum principle to
g(z), we see that |g(z)| takes its maximum in 9. Hence,

Alog |z| +1log | f(2)] = g(2) < max{Alog(r1) +1og(M (r1)), Alog(rz) +1og(M(r2))} Vz € Q\{ay, -, an}
Thus, if |z| = r, then we have the inequality
Aog(r) +log (M(r)) < max {Alog(r1) + log(M(r1)), Alog(ra) + log(M (r2))}
We now find A € R such that the two inputs in the maximum function are equal.

1

Mog(r1) + log(M(rq1)) = Xlog(rs) + log(M (r2)) = Alog (7‘2) = log (

)

—

Hence, A = log (M(T2

-1
M(T1)> (log (%)) . Exponentiating both sides of the obtained inequality,

M(r) < exp |log(M(ry)) + log (%EZ;) log(rf) — exp [log(M(rg) +log (%Eg) a}



= M(Tl)aM(Tg)lia

-1
where a = log (%2) (log (:—?)) . T claim that equality holds if and only if f(z) = az*, where a € C, X € R.

It is obvious that equality holds if f(z) is of this form. Suppose quality holds. Then by Weierstrass’s extreme
value theorem, for some |z9| = r, we have

Pl = M) = () M) = |270)| = riM(r)

But since the bound on the RHS holds for all 7 < |z| < 72, the Maximum Modulus Principle tells us that
A f(2) =a € CVr < |z| <ry. Hence, f(2) = az~*. But ) is an arbitrary real parameter, from which the
claim follows.

4.6.4 Exercise 1
We seek a conformal mapping of the upper-half plane H* onto the unit disk D. lemma The map ¢ given by

142
1—2z

¢(z) =i

is a conformal map of D onto HT and is a bijective continuous map of 9D onto R U {oo}, where 1 — oco. Its
inverse is given by

w—1

w1

Proof. The statements about conformality and continuity follow from a general theorem about the group of
linear fractional transformations of the Riemann sphere (Ahlfors p. 76), so we just need to verify the images.
For z € D,

¢~ (w) =

B A4z 1-7\  1-|2
Im(qb(z))—lm(zl_z 1—z>_|1_z|2>0

since |z| < 1. Furthermore, observe that Im(¢(2)) = 0 <= z € 9D. In particular, ¢(1) = co. For w € HT,
2 w—i Wi lw|? = 2Im(w) + 1

-1
w)| = - = = <1
o7 )] wi W—i  |w)® + 2Im(w) + 1

by hypothesis that Im(z) > 0. Furthermore, observe that |¢>_1(w)} =1 <= Im(w) = 0. O

U=Uo¢:0D — C is a piecewise continuous function since U is bounded and we therefore can ignore
the fact that ¢(1) = co. By Poisson’s formula, the function

1 [ etz .
Py (z) = %/0 Re - ZU(e )do

is a harmonic function in the open disk . By Lemma 1, the function

1 27 i0 -1 o
PU(Z) = PU o (b*l(z) = %/0 Re WU(BZG)CZG

is harmonic in Ht. Fix wo € D and let xg +iyo = 20 = ¢~ (wo). Let Py, (0) denote the Poisson kernel. We
apply the change of variable t = ¢~!(e??) to obtain

2
zZo—1% t—i
L, (e)da_ 1 =55 (1—m) 1 fmFiP =l -t (i)~ (t—1)°
o ONdE T 2w L 2 -2t or N INEA |2
Er il i (o= 1) = iz +9) 2l +1l
2 Yo Yo Yo

_ 2
o

1
(20 — )t +14) — (t —8)(z0 +9)|° 20z —tf T (z0— 12 +3

11



Hence,

rew =2 |Gt

is a harmonic function in H*. Furthermore, since the value of Py (2) for |z| = 1 is given by U (2) at the points
of continuity and since ¢~ (0D) = RU {oo}, we conclude that

Py(z,0) = Py o¢~Y(2,0)=Uo ¢ (z,0) = Ulx,0)

at the points of continuity x € R.

4.6.4 Exercise 5

I couldn’t figure out how to show that log|f(z)| satisfies the mean-value property for zo = 0,r = 1 without
first computing the value of foﬂ log sin(#)d6.

Since sin(f) <0 V0 € [0, 5], 1 > ﬁ is continuous on [0, 7], where we’ve removed the singularity at the

origin. Hence, for § > 0,

z
/ log
0

By symmetry, it follows that the improper integral [r log|sin(f)|df exists and therefore [; log|sin(6)|df
2

0 H Y
sin(@)‘da_/o 10g|9\d9—§1£%/6 log |sin ()| d0

3
'd@zglir(l) : log

sin(6)

exists. Again by symmetry, J"O% log(sin(0))df = J"O% log cos(0)df, hence
L L[ 1 (% 1. 1[5 ™
/ log sin(6)df = f/ log sin(#) cos(0)dd = f/ log | = sin(20) | df = f/ sin(26)df — — log(2)
) 2 J, 2/, 2 2 J, 4

1 [7 0
Y ~ Tog(2
4/0 sin(¥)dv 1 0g(2)

where we make the change of variable ¥ = 26 to obtain the last equality. Since foﬂ logsin(6)df = 2 fog log sin(6)d,
we conclude that

/ log sin(#)df = —m log(2)
0

We now show that for f(z) = 1+ z,log|f(z)| satisfies the mean-value property for zo = 0,7 = 1. Observe
that

, 1 1 1
log |1 + eﬂ =3 log |(1 + cos(6))* + sin2(9)’ =3 log |1+ 2cos(8) + cos® () + sin2(9)’ =3 log |2 + 2 cos(0)|

1+ cos(6) ‘

1
—log|2| + =1
0g|+20g‘ 5

Substituting and making the change of variable 29 = 6,

™ ‘ 1+ cos(29) ‘

27 27 T
) 1
/ log |1+ €| do = / [log2 +3 log |cos2(0)|} df = 2w log 2+/ log dY = 2 log 2+/ log cos? () dnd
0 0 0 0

By symmetry, integrating log cos?(#) over [0, 7] is the same as integrating log |sin2 (9)| over [0, 7]. Hence,

27 ™ T
/ 1og|1+e“’|d9:27rlog2+/ 10g|sin2(19)|d19=2ﬂ'10g2+2/ log |sin(9)| d¥ = 0
0 0 0

12



4.6.4 Exercise 6

Let f : C — C be an entire holomorphic function, and suppose that 2~ 'Re(f(z)) — 0,z — co. By Schwarz’s
formula (Ahlfors (66) p. 168), we may write

£(2) 1 C+z

d¢
¢

W‘ < €. Let R be sufficiently large that R > g > Ry.

Re(f(Q))—= VlIz[ <R

Let € > 0 be given and Ry > 0 such that VR > Ry,
By Schwarz’s formula, V£ < |2| < R,

Re 2
o< |

Fix z € C and let £ > max {Ry,|z|}. By Cauchy’s differentiation formula,
f(w) L2 g [f(5e)]
———dw| < — “——=——dl
lw|=R (w—2)? 21 Jo ’geie _ z‘

1R /2“ 1 R?
< ——-4Re df = 8¢
2m 2 o By (R —2]2)

Letting R — oo, we conclude that |f/(2)| < 8e. Since z € C was arbitrary, we conclude that |f'(z)| 8¢ Vz € C.
Since € > 0 was arbitrary, we conclude that f’(z) = 0, which shows that f is constant.

Re? + 2

R+R
Re® — 2

2m
<Be [ThEE Gy g BER g
21 Jo — |2 R—-3

17(2)] = =

T on

4.6.5 Exercise 1

Let f : C — C be an entire holomorphic function satisfying f(R) C R and f(i-R) C i-R. Since f(R) C R,
f(2) = f(Z) vanishes on the real axis. By the limit-point uniqueness theorem that

fle)=f(z)vzeC
Since f(iR) C iR, f(z)+ f(—%) vanishes on the imaginary axis. By the limit-point uniqueness theorem that
f(z)=—f(-2) VzeC

Combining these two results, we have

f)=—f(-2)=—f(=2) = —f(=2) Vz €C

4.6.5 Exercise 3

Let f : D — C be holomorphic and satisfy |f(2)| = 1 V|z| = 1. Let ¢ : CU {oo} — C U {00} be the linear

fractional transformation )
z—1
o) =
Consider the function g = ¢=1o fo¢: 0 —cC. By the maximum modulus principle, |f(z)] <1 V|z| < 1.
Hence, g : ' — H . Since 1f(2)| =1V]z] =1, 6~ (f(2)) € RV|z| = 1. Hence, f(R) C R. By the Schwarz

Reflection Principle, g extends to an entire function g : C — C satisfying g(z) = ¢(Z). Define
f=do0gogpt:C—C

Then f is meromorphic in C since ¢ has a pole at 2 = —i and ¢! has a pole at z = 1. In particular,

[ has finitely many poles. We proved in Problem Set 1 (Ahlfors Section 4.3.2 Exercise 4) that a function

meromorphic in the extended complex plane is a rational function, so we need to verify that f doesn’t have
an essential singularity at co. But in a neighborhood of 0,

-1 141 241
1) =een(i125) =ee0 (55)

which is evidently a meromorphic function. Alternatively, we note that V|z| > 1,

f(2)

H onto H . So the image of f in a suitable neighborhood of oo is not dense in C. The Casorati-Weierstrass
theorem then tells us that f cannot have an essential singularity at co.

> 1 since g maps

13



Chapter 5 - Series and Product
Developments

Power Series Expansions

5.1.1 Exercise 2
We know that in the region Q@ = {z : Re(z) > 1}, ((z) exists since
1

n®

B 1 B 1 1
- nRe(z) ’nlm(z)i| - nRe(z) |€log(n)lm(z)i - nRe(z)

and therefore >0 | |-L

pleteness. Define (n(2) = ZQ{ 1 nz . Clearly, (v is the sum of holomorphic functions on the region Q. I claim
that ({nx)nen converge uniformly to ¢ on any compact subset K C 2. Since K is compact and z — Re(z)
is continuous, by Weierstrass’s Extreme Value Theorem Jzg € K such that Re(zp) = inf.ex Re(z). In
1 1

‘ — nRe(z) = nRe(z0)

is a convergent harmonic series; absolute convergence implies convergence by com-

particular, Re(zp) > 1 since zg € 2. Hence, . So by the Triangle Inequality,

VZEQ,Z:TL Z: _Zm<z—;m<%

By Weierstrass’s M-test, we attain that {,, — ¢ uniformly on K. Therefore by Weierstrass’s theorem, ( is
holomorphic in 2 and

N

N e}
. _ 1og(s . —log(n) —log(n)

1o _ _ log(n)z _ —
¢'(z) = lim Cy(z) = ngnoo; log(n)e lenoon; — Z nz

Section 5.1.1 Exercise 3

Lemma 2. Set a,, = (—1)"". If Y2 | %2 converges for some zy. Then Y.~ | %= converges uniformly on
Vz € C with Re(z) > Re(z).

Proof. If 5°>°  %n conveges, there exists an M > 0 which bounds the partial sums. Let m < N € N. Using

n=1 n?0
summation by parts, we may write

al an 1= an gl n 1 1
Hence, N o
nz;n Nzl 20| + M|nz17z0| + Mng;n (n+ 1)z7z0 o nzl—zo
Observe that
1 1

4 flog(ntD)
/ e—t(z—zo)dt
!

og(n)

( = _ ‘6—1082(”4'1)(2—20) _ o log(n)(z—20)| _
n + 1 zZ—20 nz—zo

14



!
1 osln 1) e—t(Re(2)—Re(20)) gy — [Re(2) — Re(z0)| o~ log(n+1)(Re(2)—Re(20)) _ ,— log(n)(Re(z)~Re(z0))

= |z = 20| Jiog(n) |z — 2o

< ¢ loa(n)(Re(z)—Re(z)) _ ,— log(n+1)(Re(z)~Re(z0)) _ 1 _ 1
- nRe(z)—Re(zo) (n + 1)Re(z)—Re(zo)

Since this last expression is telescoping as the summation ranges over n, we have that
N
QA
2 o
n=m

2M M m\ Re(z)—Re(zo0) AM
= jRe(z)—Re(z0) + mRe(z)—Re(z0) (N) " 7| = mRe(z)—Re(zo)

< M M
— NRe(z)—Re(z0) + mRe(z)—Re(

1
M ’NRe z)—Re(z0) mRe(z)—Re(z(J)

20) t

—0,m — o0

Hence, the partial sums of Zn 1 725 are Cauchy and therefore converge by completeness. O
Corollary 3. If Zn 1 5= converges for some z = zg, then Zn 1 2 conveges uniformly on compact subsets

of {Re(z) = Re(20)}

Proof. Let K C {Re(z) > Re(zo)} be compact. Since z — Re(z) is continuous, there exists z; € K such that
Re(z) > Re(z1) Vz € K. Since Re(z1) > Re(z0), .- 2& converges. The proof of the preceding lemma
shows that we have a uniform bound

N
(275
2
n=m

where M depends only on zy. The claim follows immediately from the M-test and completeness. O

< 4M < 4M
— mBe(z)—Re(z0) — ymRe(z1)—Re(20)

Since the series f(z) = Y.~ | %2 converges if we take z € R™? (the well-known alternating series), we
have by the lemma that Y ° | 92 converges VRe(z) > 0. We now show that this series is holomorphic on the
region {Re(z) > 0}.

Define a sequence of functions (fn)nen by

n+1

R

It is clear that fu is holomorphic, being the finite sum of holomorphic functions. Set Q = {z € C : Re(z) > 0}
and let K C 2 be compact. Since the fy are just the partial sums of the series, we have by the corollary to
the lemma that fy — f uniformly on K. By Weierstrass’s theorem, f is holomorphic in €.

To see that (1 —2'7%)¢(2) = > 07, %2 on {Re(z) > 1}, observe that

-~ 1 N N
2 ZZ? Z =22l

n+1

:‘H

n=1 N<n<2N
n is even

Since Zn 1 nz is absolutely convergent, we see that by taking N sufficiently large, the RHS can be made
less than € for € > 0 given.

5.1.2 Exercise 2

1

Differentiating (1 — 20z + 22)72 with respect to z, we obtain

200 — 22
2(1 — 20z 4 22)2

pl(Oé) = |z:0 =«

-

2

To compute higher order Legendre polynomials, we differentiate (1 — 20z + 22) and its Taylor series to

obtain the equality

a—z > a—z =
_ —_— = (1-2az+2* nP,(a)z" 1
(1-2az+ 22)2 2:: \/1—2a2+z2 ( )n; (@)

15



Hence,

i aPp(a)z" — i P (a)z" ™ = i nP,(a)z" ! — i 2an P, (a)z" + i nP,(a)z" !
n=0 n=0 n=0 n=0 n=0

Invoking elementary limit properties and using the fact that a function is zero if and only if all its Taylor
coefficients are zero, we may equate terms to obtain the recurrence

aPpii(a) — Py(a) = (n+2)Phya(a) — 2a(n+ 1) Pryi(a) + nPy(a)

= Prsale) = = [0+ 8)aPons (@) — (1 + DE,(o)]
So, .
Py(a) = 3 (3% — 1)
Ps(a) = % (5a (3a% —1) — 2a) = % (50° — 3a)

1 1 1
Py(a) = (7a2(5a3 —3a) — 35(3042 — 1)) = §(35O‘4 —30a% +3)

1
4
5.1.2 Exercise 3

Observe that

. oo

Sln Z _ l i n L2l Z (_1)n 22
z (2n + (2n +1)!
n=0 n=0

So, gm(z) # 0 in some open disk about z = 0. Hence, the function z — log (M) is holomorphic in an open

disk about z = 0, where we take the principal branch of the logarithm. Substituting,

()l () -z’

m=1

sin(z)\ 20 P2)+ 28] P()?+1[8  P(2)3+[28
1°g< 2 ) - [7' S ]
22 24 281 24 226 25
= {3! I ((3!)2 - (3!)(5!)) HECIE [28]}
—_ 7122 o izél o LZG + [2’8]

6 180 2835

Partial Fractions and Factorization

5.2.1 Exercise 1
From Ahlfors p. 189, we obtain for |z| < 1,

0 1 oo 22 k
zmeot(mz) = ( —1—2222 )_1_2222 _1_2222712<Z(nz>>
n k=0

2
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where we expand fL—z using the geometric series. Since both series are absolutely convergent, we may inter-
change the order of summation to obtain

oo oo 1 oo
zmcot(mz) = 1 — 222 Z (Z 2(k+1)> 22k =1— 22 C(2k)2%*

k=0 \n=1"" k=0
We now compute the Taylor series for 7wz cot(mz).

cos(mz) . eTE 4 TR _e?m 4 2miz miz(e2™* — 1) ) 2miz
mzeot(mz) = T2— = Tiz— — = Tiz— = — . =miz+ ———
Sll’l(’]TZ) iz _ oIz et2mz _ ] e2miz _ | e2miz _ | e2miz _ |

Let |z| < 5=. Then

rs) — mis 4 202 o 1 ,+§:<m2mz>
zmeot(mz) = miz + ———————— = miz = Tiz
(2miz)k (2miz)k
Z}iil ﬂkl'z ( Zk 1 (kﬂ:ﬁy) n=0 1 k+ Dt
(o)
B
=miz + Z k—f(?ﬂ'iz)k

k=0

where we may use the geometric expansion since ’Zk 1 (21;::?)? < S l2rzF < 1 (|2] < 5), and the

change in the order of summation is permitted since the series are absolutely convergent. According to
Ahlfors, the numbers By are called Bernoulli numbers, the values of which one can look up. Since the two
series representations for wz cot(mz) are equal, the coefficients must agree. Hence,

-1 (2mi)?By w2
2 [ S —
Q( ) 2 2! 6
—1(2mi)*By  167* m
4 = — = . 60 == —
@) 2 4! 6 90
C(6) = ;1(27ri)636 320 % Lé;
2 6! C42-6! 21-45 945
5.2.1 Exercise 2
We first observe that
= 1
Y. 5o
n=-—oo

converges absolutely, being comparable to ZZO 1 73+ For z # 0, we may write (after some laborious compu-

tation, which can be found at the end of the solutlons)
1 1 1 A B C

= - - = - , = +— +—
2B —nd (z-n)(z—netF)(z—netT)  (z—n)(eFz—n)(eFTz—n) -1 2T —n  zei3T —n

where ) .
et est 1
C = B = = —
322 322 322
Ahlfors p. 189 shows that lim,, e >, s = mcot(mz),0 < |z| < 1. Hence, for 0 < |2| < 1,
m 27 4
. 1 eTZ 1 est
Jm > s =g i Y g AE%OZ Tt T,}gan
—m

Teot(rz)  wedicot(meFiz)  meTicot(mes )
322 322 322
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5.2.2 Exercise 2

In what follows, we will restrict ourselves to z € D(0;1). For n € Z=°, define

Po(2) = (1+2) (1+z2)...(1+22n) =ﬁ(1+z21‘)

=1

First, I claim that (1 — z)P,(2) = (1 — 22" ). Suppose the claim is true for some n, then

1—2)P,11(2) =[(1 —2)P,(z 1—1—2271+1 = 1—;;2"Jrl 1—1—2271+1 = 1—,2271+2 = 1—22(n+l)+1
+
The base case is trivial, so the result follows by induction. Therefore,

1 1
P,(z) ———| <
(2) z| T 1—|z]

T [(1—2)P.(2) — 1| = |z|2nJrl —0,n = o0

since |z| < 1. Since 1%|2|’ |z| are bounded on any compact subset of D(0; 1), we remark that the convergence
is uniform on compact subsets of D(0;1).

5.2.3 Exercise 3

First, note that even though the function z — +/z is not entire for any branch choice, the function f(z) =
cos(y/z) is. Indeed, substituting into the definition of cos(z),

~
—
N
SN~—
I
(e
—~| 7
| |
3|
S— [ —
- 3
—
D
N
[)
3

n=0

Since changing the choice of branch only results in a sign change, we see that (1/2)?" = 2", and therefore

oo

1"
1) =Y e

n=0

which is evidently an entire function, being a power series with infinite radius of convergence. Observe that

2
f(2) has zero set {(W) in € Z}. Since sin(z + §) = cos(z), cos(mz) can be written as

1 z+ 3\ =3 1 2n—1 22\ .,-
oo (DL (-75) = (D5 2)-

n#0

s z on —1 z Le T 1 22
. _ _ sntes — 2 _ -~
D) (1 —21) H m <1 2n2—1)62 D) H (1 4n2) (1 (2n1)2>

n#0
Using the infinite product representation of sin(z), we have

izsﬁl(’é):ﬁ<1_%>=ﬁ(l—;>

3
2 n=1

Hence,

2 22
COS 7TZ H — 2n 1)2 = COS = H 77‘-

Hence, f(z) has the canonical product representation

=1l 1-—=
n=1

i(W)_:Zi o —1p2 =%

we see that f(z) is an entire function of genus zero.

Since

1

being comparable to » | 5,

18



5.2.3 Exercise 4

Let f(z) be an entire function of genus h. Let {a, # 0}, y denotes the (at most countable) set of nonzero
zeroes of f and h. denote the genus of the canonical product. We may write

o
_ mea(2) 1— 2 & +3 (&) + (&)
f(z)=2"e nl:[l< an)e

where ¢(z) is a polynomial and h = max (deg(g(z)), h.). Hence,

2

f(Zz) = Z2meg(32) ﬁ (1 _ 52) e%n+%(§7)2+“‘+%(;7)hc
n=1 n

0o 2 2he+1 2 2he+1
1 1 1 1
= 2mea() [ <1 _ .z ) (1 L2 ) At () Hrmin () it (=) e (=)
n=1 v n v n
where we’ve chosen some branch of the square root. If we define b; = /a1,by = — /a1, --. Then

F2) = f(22) = 22mes(+) H (1 - Z) e 3 (&) e ()"
the breaking up of the product being justified since the individual products converge absolutely by virtue of

1
ZW:Z

a7
n

I claim that the genus of f is bounded from below by h. If h = 0, then there is nothing to prove; assume
otherwise. If h = deg(g(z)) > 0, then h > deg(g(z?)) > h; so assume that h = h.. We will show that the
genus h,. of the canonical product associated to (b,,) is bounded from below by 2h.. Suppose h. < 2h,.. Since
a, — oo and therefore b, — oo by continuity, we have that for all n sufficiently large |b,| > 1. So it suffices
to consider the case iLC = 2h, — 1. Then

> 1 > 1 =1
0>y e = TS D
n=1 |bn|hc+1 n=1 ‘bn‘ ‘ n=1 |an| ‘

But this shows that the genus of the canonical product associated to (a,) is at most h. — 1, which is obviously
a contradiction. Taking f to be a polynomial shows that this bound is sharp.

I claim that the genus of f is bounded from above by 2h + 1. Indeed, 2h +1 > 2deg(g(z)) = deg(g(z?)), and
we showed above that Ec < 2h.+ 1 < 2h + 1. This bound is also sharp since we can take

10 =T (1= 5) = 5= [ (- 2) 5
n=1 n#0

f(z) is clearly an entire function of genus 0, and the genus of the canonical product associated to (n),ecz is
1, from which we conclude the genus of f(z?)is 1.

5.2.4 Exercise 2
Using Legendre’s duplication formula for the gamma function (Ahlfors p. 200),

() e e () e ()

Applying the formula I'(2)['(1 — z) = —~— (Ahlfors p. 199), we obtain

sin(mz)

(1) = v (D) (3) 2R s (1) (1 (1))

19
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5.2.4 Exercise 3

It is clear from the definition of the Gamma function that for each k € Z=0,

J@+8)T() k#£0
JG) = {zf(z)k k=0

extends to a holomorphic function in an open neighborhood of k. We abuse notation and denote the extension
also by (1+ £)I'(z) and 2I'(2). lemma For any k € Z>°,

I'(z+k)
i (z+j—1)

Proof. Recall that I'(z) has the property that the I'(z+1) = 2I'(z). We proceed by induction. The base case

I'(z) = V¢ Z

is trivial, so assume that I'(z) = % for some k € N. Then
j=1{#
Fz+(k+1))  T(z+k)+1)  (z+k)I(z+Ek) I'(z+k) 1)
[HGe+i-0 I5Ge+i-0 IE5G+i-0 T G+i-1)
O
Corollary 4. For any k € Z=9,
: C(—1)k
lim (= K0(2) =~
Proof. Fix k € Z=°. Immediate from the preceding lemma is that
: . I'(z+ k| +1) (1) (—1)*
lim (z+ |k)T(2) = lim (z+ |k = =
A e T = I G W e Ty T o e R
O
Let k € Z=°. Then
1 1 (1-2)'(2) 1 (z—k)D(2)
Tk D(z)dz = — LS PLS/ E=0lE),
res(Th) = 5 /| RIS = P e ) T R Sy

Since the function (1 + %) I'(z) extends to a holomorphic function in a neighborhood of k, by Cauchy’s

integral formula,
1 (z—k)T(2) (—1)k
e N N e — (s — KT =)
27 /Z | z—k dz = (2 = F)L(2)]==r |k|!

where use the preceding lemma to obtain the last equality. Thus,

res (I k) = (-1* vk € Z=°
R

5.2.5 Exercise 2

Lemma 5.
& 1 T
log(—— )dz =2
/0 Og(1—e—2m> T 12

Proof. Let 1 >> § > 0. Consider the function log(%z), which has the power series representation

Lt 121 _3 Loy <

n=1

3
3

20



with the understanding that the singularity at z = 0 is removable. Since the convergence is uniform on

compact subsets, we may integrate over the contour 7s : [0,1 — 6] — C,v5(¢) =t term by term, Thus,

log(1 — 2) /1_5 log(1 —1t) =1 n =1 2
—dz = ——dt = —(1-9¢ — = —
[m z N 0 t n;l n? ( ) - n;l n? 6 ]

since the function f(z) =7, TTZ is left-continuous at x = 1. Hence,
1 oo 2
log(1 —¢ 1
/ e )dt - Z 2 = =
0 t —'n 6
n=1

We now make the change of variable t = e 2™ to obtain

2

[e ] 1 1 _ 27z e e]
T _ / M — 2me ™ dy = —27T/ log(1 — e ?™)dx

> 1 > —27mx T

For z € R>0, Stirling’s formula (Ahlfors p. 203-4) for I'(z) tells us that

which gives

I(z) = Vorz® ze el (®)

1 /[~ =z 1
J(x)=— 1 d
($) T A 772 + 12 0g <1 _ 6_27”7) n

The preceding lemma tells us that

where

0(x) = 122J (x)

_ 2
:1/‘2 +772

It is obvious that 6(z) > 0 and #(x) < 1 since
inequality is strict. We thus conclude that

I(z) = V2t leee T 0 < O(z) <1

5.2.5 Exercise 3
Take f(z) = e=*", and for R >> 0, define
™

v : [0, R] = C,y(t) =t;7v2 : [0, 1

and let v be the positively oriented closed curve defined by the ~;.

f(Z)dZ — /Z e—Rcos(2t)—iRsin(2t)RZ-eitdt < /Z e—Rcos(Zt)Rdt
72 0 0
Since cos(2t) is nonnegative and cos(2t) > 2¢ (this is immediate from < cos(2t) = —2sin(2t) > —2 on [0,

for ¢t € [0, 7], we have

™ ™

ks 1 1 x
/ e—RCOS(Qt)Rdt < / e—QRtht _ _5 I:e—RE _ ]_} — 0’ R — o0
0 0
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] = C,72(t) = Re; 73 : [0, R] — C,y3(t) = (R — t)e's

us

4

< 1 almost everywhere, and therefore the preceding
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Since f is an entire function, by Cauchy’s theorem,

O:Lf(z)dz: i f(z)dz+L2 f(z)dz+/% F(2)dz

and letting R — oo,

o0 2 - R 2 iT . R . 2
/ e ¥ dr = lim elz/ e (B=D7¢"2 gt — lim eZZ/ e R=)" gy
0 0 0

R— o0 R— o

. o0 . 2
=it / e "V dy
0
where we make the substitution y = R — t. Substituting fooo e~ dy = 2-Y /7,

/ cos(z?)dx — z/ sin(z?)dr = / e~ dy = e % VT = VT zﬁ
0 0 0 2 2V2 2V/2

Equating real and imaginary parts, we obtain the Fresnel integrals

0o ) B ﬁ
/0 cos(z®)dx = o

/OOO sin(z?)dz = 2\{/2

Entire Functions

5.3.2 Exercise 1
We will show that the following two definitions of the genus of an entire function f are equivalent:

1. If -
_ meale) 2} &)
f(z)=2z2"e H(l (ln>6 =1
n=1
where h is the genus of the canonical product associated to (a,,), then the genus of f is max (deg(g(z)), h).

If no such representation exists, then f is said to be of infinite genus.

2. The genus of f is the minimal h € Z=" such that

2) = 2™e9(2) (1 - Z) eXi=1 H&E)
f(2) 1] -

where deg(g(z)) < h. If no such h exists, then f is said to be of infinite genus.

Proof. Suppose f has finite genus hy with respect to definition (1). If hy = h, then deg(g(z)) < hy. Hence,
f is of a finite genus hy with respect to definition (2), and he < hy. Assume otherwise. By definition of the
genus of the canonical product, the expression

R A T N B N T W

_ - — _ _ J

>y i) i(zs)
j=h+1 j=h+1 n=1

defines a polynomial of degree h,. Hence, we may write

F(2) = 2o St () (1 _ Z) (i (@) = e [ (1 _ Z) S (=)
an
n=1

where we g(z) is a polynomial of degree h;. Hence, f is of finite genus hy with respect to definition (2) and
ho < hi.

Now suppose that f has finite genus ho with respect to definition (2). Reversing the steps of the previous
argument, we attain that f has finite genus h; with respect to definition (1), and hy < ho. It follows
immediately that definitions (1) and (2) are equivalent if f has finite genus with respect to either (1) and
(2), and by proving the contrapositives, we see that (1) and (2) are equivalent for all entire functions f. O
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5.3.2 Exercise 2

lemma Let a € C and » > 0. Then

ll?f |z — la|]| = |r —|a|| and sup |z —|a|| =7 + ||
Z|=Tr

Proof. By the triangle inequality and reverse inequality, we have the double inequality
Ir —lal| = ||z — la]| < |z = lal| < |2] + |a] = 7 + a

Hence, inf |z — |a|| > |r — |a|| and sup |z — |a|| < 7 + |a|. But these values are attained at z = r and z = —r,
respectively. O

By Weierstrass’s extreme value theorem, |f| and |g| attain both their maximum and minimum on the
circle {|z| =7} at zp 7, 2mg and 2, 7, Zm,g, Tespectively. The preceding lemma shows that zp, , = —r and
Zm,qg = 7. Consider the expression

'f(z) B mHn 1( “") _ﬁ |z — an|
90| [, (1- )| s el
We have ,
‘f(ZMJ)’ _ ‘f(ZMf ‘ H |7~619M F_ an’ ﬁ ‘Tez(GM,f—arg(an)) _ |an|’
garg) | EER PRI | "+l
< ﬁ Sup\z\:r |Z - ‘a”H . ﬁ r+ |an| -1
] T+ |an] n:17"—|—|a”|
Hence, |f(zar,f)| < |9(2n,q)|- Since
g — aa] = [reiOms =@ o] > fr —Jan| Yo € N

we have that

’f(zm,f)
9(

Zm,g)

f(zm.g) I |2 an| 11 |2 an|
m,f m,f — Un m,f — Un
’ g(r) ’ o I =lanll T

-1 ‘vaf - an‘

Hence, [f(zm, )| 2 19(2m,q)|-

5.5.5 Exercise 1

Let Q be a fixed region and F be the family of holomorphic functions f : Q@ — C with Re(f(z)) > 0Vz € Q.
I claim that F is normal. Consider the family of functions

Q:{g:Q—HC:g:e_f forsomefe}'}
Since Re(f(z)) > 0 Vf € F, we have
‘e—ﬂz)

_ ‘efRe(f(Z))*iIm(f(Z))’ _ ‘gRe(f(Z))

<1

Hence, G is uniformly bounded on compact subsets of {2 and is therefore a normal family. Fix a sequence
(fn)nen C F, and consider the sequence g, = e~/. (g,) has a convergent subsequence (g, ) which converges
to a holomorphic function g on compact sets (Weierstrass’s theorem). Since gy, is nonvanishing for each k,
g is either identically zero or nowhere zero by Hurwitz theorem. If g is identically zero, then it is immediate
that f,, tends to oo uniformly on compact sets. Now, suppose that g is nowhere zero. g(K) C D\ {0}
is compact by continuity. By the Open Mapping Theorem, for each z € K, there exists r > 0 such that
D(g(2);7) C g(2) € D\ {0}. The disks D(g(z);4~r) form an open cover of g(K), so by compactness,

n n n

9(K) C U D(g(z);47 ') C U D(g(z);27 ') C U D(g(zi);mi) c D\ {0}

i=1 i=1 i=1
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On each D(g(z;);7i), we can choose a branch of the logarithm such that log(z) is holomorphic on D(g(2;);7:),
and in particular uniformly continuous on D(g(z;); 27 r;). For each i, choose &; > 0 such that

w,w' € D(g(zi);ri) |w—w'| <6 = |log(w) —log(w')| < e

Set § = minj<;<y, d;, choose ko € N such that k > ko = |gn, (2) — g(2)| < d Vz € K. Then for 1 <i < mn,
Wk > ko [log (e7+()) ~log(g(2))| < e vz € g7 (Dlg(z):2 ')

It is not a priori true that log(e=/m(*)) = — fn, (2); the imaginary parts differ by an integer multiple of 27i.
But the function given by 5= [log(e™/"+(*)) + f,, (2)] is continuous and integer-valued on any open disk
about each z; in 2, and therefore must be a constant m € Z in that disk as a consequence of connectedness.
Taking a new covering of g(K), if necessary, such that D(g(z;);r;) is contained in the image under g of such a

disk (which we can do by the Open Mapping Theorem), we may assume that for each z € g~ (D(g(z;); 7)),

2mm; = Jim [log (7)) + £, ()] = log(g(=) + lim £, (2)

oo

Taking ko € N larger if necessary, we conclude that
Wk = ko [log (¢ /) ~log(g(2))| = i (2) — [~ log(g(2)) + 2mmi]| < € V2 € g (Dlg(z1):2"'1)

Since K C U, 97" (D(g(2:);27'r;)), we conclude from the uniqueness of limits that f,, (z) converges to
limg 00 frn, (2) uniformly on K.

Suppose in addition that {Re(f) : f € F} is uniformly bounded on compact sets. I claim that F is then
locally bounded. Let K C € be compact, and let L > 0 be such that Re(f)(z) < L Vz € K Vf € F. Then

‘ef(Z) =R <l vae KVfeF

Hence, { g=¢el:feF } is a locally bounded family, and therefore its derivatives are locally bounded. Since
Re(f) > 0 Vf € F, we have that

/') < |f'(2)eP @) = 1d'(2)]

which shows that {f’: f € F} is a locally bounded family. Since K is compact, there exist z1,---, 2z, € K
and r1,--- ,rp, > 0 such that K C (J;_; D(z; %) and D(z;7;) C Q. By Cauchy’s theorem,

r;

flz)= / f(2)dzVz e D (zi; %) = |f(z)] < Myr; Vz€ D (zi; é)
[zi,z]
where [z, z;] denotes the straight line segment, and M; is a uniform bound for {f’ : f € F} on D(z;27 ;).
Setting M = maxi<;<n M; and r = maxj<i<y 73, we conclude that

|f(2)| < MrVze KVYfeF

Normal Families

5.5.5 Exercise 3

Let f : C — C be an entire holomorphic function. Define a family of entire functions F by
F={g:C—C:g(z) = f(kz),k € C}
Fix 0 < 7 < rg < oo. I claim that F is normal (in the sense of Definition 3 p. 225) in the annulus
r1 < |z| < re if and only if f is a polynomial.
Suppose f =ag + a1z + -+ + a,z™ is a polynomial, where a,, # 0. By Ahlfors Theorem 17 (p. 226), it
suffices to show that the expression
2|g'(2)|

p(g) = 5 g€ F

14 g(2)]
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2|f'(2)]

AT is bounded on C.

is locally bounded. Since g(z) = f(kz) for some k € C, it suffices to show that
The function F(z) given by

. 2|f/ (z*l)’ B 2|alz2n+2a222n71+...+nanzn+1|

CIEFEOE T ez faz

is continuous in a neighborhood of 0 with F(0) # +oo since a,, # 0. Hence, |F(z)| < My V|z| < 4, which
shows that

2101 1
L’Z”Q < ]\41 A4 | Z‘ > g
1+f(2)]
ﬁlfcf&'? is continuous on the compact set D(0; %) and therefore bounded by some M. Taking M =

max { M, Mz}, we obtain the desired result.

Now suppose that F is normal in 7y < |z| < ry. If f is bounded, then we’re done by Liouville’s theorem.
Assume otherwise. Let (f)nen C F be a sequence given by

fn(2) = f(knz) for some k,, € C

where k, — o0o,n — o0o0. Since F is normal, (f,) has a subsequence (fy,)ren which either tends to oo,
uniformly on compact subsets of {r; < |z| < ra}, or converges to some limit function g in likewise fashion.
Fix 6 > 0 small and consider the compact subset {r; + 6 < |z| <re — ¢}, If f,, — g, then I claim that f
is bounded on C, which gives us a contradiction. Indeed, fix zy € C. Since (fp,) converges uniformly on
{r1 +9 <|z| <7y — 38}, (fn,) is uniformly bounded by some M > 0 on this set. Let |k, (r1 + )| > |20|. By
the Maximum Modulus Principle, |f(z)| is bounded on the disk D(0; |y, (11 + §)|) by some | f(w)| for some
w on the boundary. Hence,

£ (z0)| < |f(w)| = [fny(2)] < M for some z € {|z] = r1 + 6}

Since zy was arbitrary, we conclude that f is bounded.

I now claim that f has finitely many zeroes. Suppose not. Let (a,)nen be the sequence of zeroes of f ordered
by increasing modulus, and consider the sequence of functions f,,(2) = f,.(r ta,z), where ry < r < ry is
fixed. Our preceding work shows that (f,) has a subsequence (f,,) which tends to co on the compact set
{|z] = r}. But this is a contradiction since f,, (r) =0 Vk € N.

If we can show that f has a pole at oo, then we're done by Ahlfors Section 4.3.2 Exercise 2 (Problem Set
1). Let fo(z) = f(nz), and let (f,,)ken be a subsequence which tends to co on compact sets. Let M > 0
be given. Fix r; < r < r3. Then f,, — oo uniformly on {|z| =r}, so there exists ko € N such that for
k > ko, |fu,(2)] > M V|z| = r. Taking ko larger if necessary, we may assume that |f(z)] > 0 V|z| > rng,.
Let z € C,|z| > rng,, and choose k so that nir > |z|. By the Minimum Modulus Principle, |f| assumes its
minimum on the boundary of the annulus {ny,r < |w| < rn;}. But

min{|winf If(w)[, inf |f(w)|}>M

=Ny T |w|=ngr

and therefore,
1f(2)] = inf  [f(w)| > M

Mgy T<|w|<ngr

Since z was arbitrary, we conclude that |f(z)| > M V|z| > rng,. Since M > 0 was arbitrary, we conclude
that f has a pole at oo.

5.5.5 Exercise 4

Let F be a family of meromorphic functions in a given region €2, which is not normal in 2. By Ahlfors
Theorem 17 (p. 226), there must exist a compact set K C € such that the expression

o 2
P = o feF
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is not locally bounded on K. Hence, we can choose a sequence of functions (f,) C F and of points (z,) C K

such that ol ¢
A I
L+ | fa(zn)]

Suppose for every z € €2, there exists an open disk D(z;7,) C €2 on which F is normal, equivalently p(f) is lo-
cally bounded. Let M, > 0 bound p(f) on the closed disk D(z;27 7). The collection {D(z;27'r.): z € K}
forms an open cover of K. By compactness, there exist finitely many disks D(21;271r1), -, D(2,;27 )
such that .
K C U D(z;27 ') and Vi=1,--- ,n |p(f)(2)| < M; Vz € D(2;;2 ') Vf € F
i=1

Setting M = maxi<;<n M;, we conclude that
()| < MVze K VfeF

This is obviously a contradiction since lim,, o p(frn)(2zn) = +00. We conclude that there must exist zp €
such that F is not normal in any neighborhood of zj.
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Conformal Mapping, Dirichlet’s
Problem

The Riemann Mapping Theorem

6.1.1 Exercise 1

Lemma 6. Let f : Q — C be a holomorphic function on a symmetric region 2 (i.e. Q = Q). Then the
function g : Q — C, g(z) = f(Z) is holomorphic.

Proof. Writing z = x+ iy, if f(2) = u(x,y) +iv(z,y), where u, v are real, then g(z) = u(z, —y) —iv(x, —y) =
@(x,y) +iv(x,y). It is then evident that g is continuous and u,v have C! partials. We verify the Cauchy-
Riemann equations.

ou ou ou ou
%(az,y) - %(ZE, 7y)a @(Iay) - 787y($’ 7y)

o0v ov o0v ov
%(x,y) = —%(w, —Y); @(x,y) = @(% —y)

The claim follows immediately from the fact that u, v satisfy the Cauchy-Riemann equations. O

Let © C C be simply connected symmetric region, zg € {2 be real, and f : 0 — D be the unique conformal
map satisfying f(z0) = 0, f'(20) > 0 (as guaranteed by the Riemann Mapping Theorem). Define g(z) = f(Z).
Then g : 2 — D is holomorphic by the lemma and bijective, being the composition of bijections; hence, g is
conformal. Furthermore, g(z9) = 0 since zg, f(z0) € R. Since

ou ou

0 < f'(z0) = 876(20) = %(%) = g'(20)

we conclude by uniqueness that f = g. Equivalently, f(z) = f(Z) Vz € Q.

6.1.1 Exercise 2
Suppose now that 2 is symmetric with respect to zp (i.e. 2 € Q < 229 — z € Q). I claim that f satisfies
f(z) =2f(20) — f(220 — 2) = —[(220 — 2)

Define g : Q@ — D by g(z) = —f(220 — 2). Clearly, g is conformal, being the composition of conformal maps,
and ¢g(z0) = 0. Furthermore, by the chain rule, ¢’(z0) = f'(20) > 0. We conclude from the uniqueness
statement of the Riemann Mapping Theorem that g(z) = f(z) Vz € Q.
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Elliptic Functions

Weierstrass Theory

7.3.2 Exercise 1

Let f be an even elliptic function periods wy,ws. If f is constant then there is nothing to prove, so assume
otherwise. First, suppose that 0 is neither a zero nor a pole of f. Observe that since f is even, its zeroes
and poles occur in pairs. Since f is elliptic, f has the same number of poles as zeroes. So, let a1,--- ,an,
and by,--- ,b, denote the incongruent zeroes and poles of f in some fundamental parallelogram P,, where
a; # —a; mod M,b; Z —b; mod M Vi, j and where we repeat for multiplicity. Define a function g by

n -1
o (1 £ = o)
o) =10 (,I_I o(z) — o(br)
and where g is the Weierstrass p-function with respect to the lattice generated by wi,ws. I claim that g
is a holomorphic elliptic function. Since p(z) — p(ax) and p(z) — p(bx) have double poles at each z € M
for all k, g has a removable singularity at each z € M. For each k, p(z) — p(bx) has the same poles as
and is therefore an elliptic function of order 2. Since by, # 0 and g is even, it follows that p(z) — p(bx) has
zeroes of order 1 at z = +b,. From our convention for repeating zeroes and poles, we conclude that g has
a removable singularity at £b;. The argument that g has removable singularity at each ax is completely

analogous. Clearly,
9(z +wi) = g(z +w) = g(2) for z ¢ a; + MUb; + M UM

so by continuity, we conclude that g is a holomorphic elliptic function with periods wi,ws and is therefore
equal to a constant C'. Hence,

7 9(2) — plar)
fQ)=Cl| —F—F—
/}:[1 ©(2) — (bk)
Since f is even, its Laurent series about the origin only has nonzero terms with even powers. So if f vanishes
or has a pole at the origin, the order is 2m, m € N. Suppose that f vanishes with order 2m. The function
given by B
f(2)=f(z)-p(z)"
is elliptic with periods wi, ws. f has a removable singularity at z = 0, since p(z)* has a pole of order 2k at

z = 0. Hence, we are reduced to the previous case of elliptic function, so applying the preceding argument,
we conclude that

z 7 9(2) — plar) C  yr o2) — plar)
z)=C z) =
e kl;[l o(z) — plb) 1) p(z)m kl;[l 0(z) — p(br)
If f has a pole of order 2m at the origin, then the function given by
-

is elliptic with periods wy,ws and has a removable singularity at the origin. From the same argument, we

conclude that
_ Oy TT £2) — 9(ax)
f& = o 100 —Ca,
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7.3.2 Exercise 2

Let f be an elliptic function with periods wy,ws. By Ahlfors Theorem 5 (p. 271), f has the same number
of zeroes and poles counted with multiplicity. Let aq,--- ,an, b1, ,b, denote the incongruent zeroes and
poles of f, respectively, where we repeat for multiplicity. By Ahlfors Theorem p. 271, Y7, by —ay € M, so
replacing a; by a} = a1 + Y. j_, by — aj, we may assume without loss of generality that > ;_, bx — ay = 0.

Define a function g by 1
mazﬂ@<Hjij$D

k=1

where o is the entire function (Ahlfors p. 274) given by
_ A enti()
O’(Z)—ZH (1 w)e 2
w#0

g has removable singularities at a; + M, b; + M for 1 < ¢ < n. I claim that g is elliptic with periods w1, ws.
Recall (Ahlfors p. 274) that o satisfies

o(z4wy) = —a(z)e_m(”'%) and o(z + we) = —U(z)e_nz(z""%z) VzeC
where now; — mws = 27i (Legendre’s relation). Hence, for z £ b; + M, a; + M,

9(z +w1) = f(z +w1) (H a(z—aM) = f(2) (H —o(z —ag

s 0(z = b+ wi)

n

— M Zk=1 % —bk f( M - = a(z
- ﬂ)(HU@_mJ o)

k=1

By continuity, we conclude that g(z 4+ wq) = g(z) Vz € C. Analogously, for z £ b; + M,a; + M,

"oz — ap + wsy - b —o(z—a eWQ(Z_ak‘*‘ ) !
g(z +w2) = f(z + w2) <H (k+)> = f(2) (H ( k) ))
k

pait o(z — by + wa) =1 —o(z — bk)enz(szlﬁr

ok e

n

—1
— "2 Xk=1 bk £( M = a(z
- ﬂ)(HU@_mJ o)

k=1

By continuity, we conclude that g(z +ws) = g(z) Vz € C. Since g is an entire elliptic function, it is constant
by Ahlfors Theorem 3 (p. 270). We conclude that for some C € C,

7.3.3 Exercise 1
Fix a rank-2 lattice M C C and v ¢ M. Then

o) = _a(z —u)o(z + u)
p(z) — p(u) o(2)20(u)?

Proof. 1 first claim that the RHS is periodic with respect to M. Let wi,ws be generators of M and let
Mmws — Nowy = 2mi. For z ¢ M,
o(z 4w —u)o(z +w +u) o(z —w)em G N o (z 4 u)emGHtT) gz —u)o(z + u)e?nG+3)

oletw)iow? 0(2)2e2n+F o (u)? 0(2)20(u)2e?n -+ )

_ o(z—uo(z+u) _ s
B o(z)?%0(u)? 1)
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The argument for ws is completely analogous. The RHS has zeroes at £u and a double pole at 0. Hence, by
the same reasoning used above, we see that

zZ)— u)=— U(Z—U)U(Z+U) or some
p(z) — p(u) = -C 2 (2)20 ()2 f cecC

To find conclude that C' = 1, we first note that p(z) — p(u) has a coefficient of 1 for the 272 term in its
Laurent expansion. If we show that the Laurent expansion of the f(z) also has a coefficient of 1 for the 272,
then it follow from the uniquenuess of Laurent expansions that C' = 1.

z—u

ol = wo(+u) (2wt [l (1= 252 e H L (1 - ) 08T

) ) 200 ([Lugo (1 - 3) 24 )’

o(z)%0(u)?

Hw;ﬁo (1 — z;u) eZ:JuJF%(%)Q Hw;ﬁo (1 . ZIU) e o +%( + )2
2
o) (TLpo (1 - 2) 5105
91(2)
1 UZHUJ#O (1—%) e%""%(%)z Hw750 (1_ Z:u)e w,_,'_%( + )2
+272 241(2)2)2
o(w)? (Tpo (1 2) 273 (E))

92(%)

Observe that both g;(z) and g2(z) are holomorphic in a neighborhood of 0 since we have eliminated the
double pole at 0. Hence, the coefficient of the 272 in the Laurent expansion of f(z) is given by g2(0). But
since o is an odd function, it is immediate that g2(0) = 1. O

7.3.3 Exercise 2
With the hypotheses of the preceding problem,
@' (2)
—————— =((z—u)+{(z+u) —2((z
ORI AR A

Proof. For z # u+ M, we can choose a branch of the logarithm holomorphic in a neighborhood of u(z) — g (u).
Taking the derivative of the log of both sides and using the chain rule,

o(z) — p(u) % [log(—0(z — u)) +log(o(x — u)) — log(o(u)*a(2)*)]

_o-y) oty 2002 zZtu) =26z
= ot—w) T oltera) o0 C(z —u) + (2 +u) —2((2)

where we've used 22 — ((w) Yw € C (Ahlfors p. 274). O

o(w)

7.3.3 Exercise 3

With the same hypotheses as above, for z # —u + M,

19'(2) — ' (u)
2 p(z) — p(u)

Proof. Since the last term has a removable singularity at z = u+ M, by continuity, we may also assume that
z # u+ M. First, observe that by replacing switching u and z in the argument for the last identity, we have
that

((z+u) = ¢(2) +¢(u) +

= —[C(u—2) +{(z +u) = 20(w)] = ((z — u) = C(z + u) + 2((u)
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where we’ve used the fact that o(z) is odd and therefore ((z) = o;((;)) is also odd. Hence,

M— z—u z+u)—2¢(2) — (C(z—u) —C(z+u u)) = 2¢(z +u) —2¢(2) — 2¢(u
o02) = o) = (C(z —u) + {(z +u) = 2¢(2)) — (€(z — u) = ¢(z + ) + 2¢(u)) = 2¢(z + u) — 2¢(2) — 2¢(v)
The stated identity follows immediately. O

7.3.3 Exercise 4
By Ahlfors Section 7.3.3 Exercise 3,

NN O R0
C(z+u)—C()+<()+2(p(z)p(U)>

Differentiating both sides with respect to z and using —(’(w) = p(w) Yw € C\ M, we obtain

() (66 - P w)e)
oo+ =000+ 3 (o5~ e L)
We seek an expression for p”(z) in terms of p(z). For z # 9L, 42 «idwz 4 pf

¢'(2)" = 49(2)" = 920(2) — g2 = 20/ ()" (2) = 12(2)*¢' () — 920 (2) = ¢ (2) = 6p(2)* —
We conclude from continuity that p”(z) = 6p(2)? — 2. Substituting this identity in,

160z - %  (¢'(x) = p'(w)'(2)
(75 - o)

—pltu) =90+ 5 | Sy o) (p(2) = p(u))?

Applying the same arguments as above except taking u to be variable, we obtain that

ol ) = —ofuy 4 L (6P =5 (9(2) — (W) (w)
olz +u) = —pl ”2( 2 —pw) T (o(7) - )

Hence,

o) — — oo L (8GR —p?) (@) =g @)\, 1 (9(E) o )
2o(e+0) = ~ote)+—oto)+3 (MEEZ G - BT ) —wteran— )

(V]

7.3.3 Exercise 5

Using the identity obtained in the previous exercise, we have by the continuity of © that

'(2) — o (u 2

()9 (W) \ ? 2
. 1[5 1(¢"(2)
= lim [—p(U) —pl)+ 7 (W(z)_mu) > ] =—2p(2) + ; (@’(2))

where we use the continuity of w — w? to obtain the last expression.
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7.3.3 Exercise 7
Fix u,v ¢ M such that |u| # |v|, and define a function f: C\ M — C by

p(z) (2 1
f(z) =det [ p(u) @'(u) 1| =—p"(2)(p)—p))+ e u)(pz) - p©) + o' (v)(p(2) — p(u))
p(v) —p'(v) 1

= (¢'(u) + ¢'(v) p(2) + (p(v) — p(u)) P'(2) + = (' (W)p(v) + ¢’ (v)p(u))
A B C

where we use Laplace expansion for determinants. By our choice of u,v and the fact that the Weierstrass
function is elliptic of order 2, B # 0. Hence, f(z) is an elliptic function of order 3 with poles at the lattice
points of M. Since the determinant of any matrix with linearly dependent rows is zero, f has zeroes at u, —v.
Since f has order 3, it has a third zero z, and by Abel’s Theorem (Ahlfors p. 271 Theorem 6),

u—v+2=0 mod M =z=v—u

We conclude that

©(2) o(z) 1
det p(u) o' (u) 1|=0
plutz) —plutz) 1

7.3.5 Exercise 1

Since A is invariant under I'(2) and I' \ I'(2) is generated by the linear fractional transformations 7 — 7+ 1
and 7 — —7 1, it suffices to show that J(7 + 1) = J(7) and J(—7"1) = J(7). Recall that \ satisfies the
functional equations

AMT+1) = )\(>T\§Tzl and A<—1> =1-X\)

So,
Jr+1) = 4 A=A+ +A+1D)?)? 4 A= M)A =D+ M) A7) 1)) (A7) —1)°
2T AT +12(1=AT+1))2 2T A7) — )2 (1= AF)(A(r) — 1)1 (A(T) - 1)°
_ 4 (M) =1 = AD)AT) — 1) + AT )2)° _ 4 (A=A A — I
27 A(T)2(A(1) — 1)? 27 M7)?(A(1) — 1)
and
1\ 4 (1-(1=-x0)+1-A)2)° 4 (1-An)+Ar0)?2)°
I(3) = 3 T A = 2 e =)

Observe that 5 ‘ ‘

4 (LA +AD)?)" 4 (A7) —e3)3(A(r) — e *8)°

27 AN1)2(1 = A(1))2 27 A(T)2(1 = A(7))?

So, J() assumes the value 0 on A~* ({3 }). Since \ is a bijection on QU €', J(7) has two zeroes, each
of order 3. We proved in Problem Set 8 that

J(r) =

g2 = —4(ejeq + e1e3 + ege3) =0
for 7 = €' . So using the identity for J(7) proved below, J(e! ) = 0. Using the invariance of .J() under
T, we see that J(e'5) = 0.
J(7) assumes the value 1 on A1 ({\1,--+, Ag}), where the \; are the roots of degree 6 the polynomial

p(z) = 4(1 — 2 + 2%)% — 2722(1 — 2)?

1+z‘ i+1 .
e3=p |55t = o5t =-e3=>e3=0
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It is easy to check that




Since e; + es + ez = 0 (see below for argument), we have e; = —ey and therefore

€3 — €9 1

(i) = -

€1 — €y 2

Since each point in HT is congruent modulo 2 to a point in Q U ', A\ maps this fundamental conformally
onto C\ {0,1}, and J(7) is invariant under I', we conclude J(7) assumes the value 1 at 7 =4,1 +4, 2. 1
claim that these are these are the only possible points up to modulo 2 congruence. Suppose J(7) = 1 for

' {i, 1+14, %} If we let Sq,--- , Sg denote the complete set of mutually incongruent transformations, then
since 7 ¢ {e’%,ei%’r} (otherwise J(7) = 0), S17,- -+, SeT € QU are distinct, hence the A(S;7) are distinct
roots of p(z), and we obtain that p(z) has more than 6 roots, a contradiction. Moreover, this argument shows
that the polynomial p(z) has three roots, which by inspection, we see are given by {71, %, 2}.

I claim that J(7) assumes the value 1 with order 2 at 7 = 4,1+ i, ©5*. We need to show that the zeroes of
p(z) are each of order 2. Indeed, one can verify that

p(z) =4(1 — 2+ 2%)% = 272%(1 — 2)? = (2 — 2)%(22 — 1)*(2 + 1)?

Substituting \ = %, we have

J(r) = 4 (1—(e3 —ea)(er —e2) " 4 (e3 — e2)?(e1 — 62)_2)3
27 (e3 —ea)%(e; —ea)72(eg —e3)?(eg —ea)2

_ 4 ((e1 — e2)? — (e3 — e2)(e1 — €2) + (e3 — 62)2)3
o 27 (63 — 62)2(61 — 63)2(61 — 62)2

3
4 (e% — 2e1e9 + e% — e3zeq] + ezeq + egeq — e% + e?,) — 2e3es + e%)

27 (e3 —e2)%(e1 —e3)?(e1 — e2)?

Since
423 —goz—gs=4(z—e1)(z—ex)(z —e3) = 4(2% — (e1 + ex)z + erea)(z —e3) = 4(e; +ea +e3)2> + - -
we have that e; + es + e3 = 0 and so,
0=(e1 +ex+ 63)2 = e% + eg + e% + 2e1e9 + 2e1e3 + 2e0e3 = e% + e% + eg = —2(ejeq + ere3 + ese3)
Substituting this identity in,

J(T) _ i (—2(6162 + eqe3 + 6163) — (6162 + eqe3 + 6183))3 _ 4 (6162 + eqe3 + 6163)3
27 (63 - 62)2(61 - 63)2(61 - 62)2 (63 — 62)2(61 — 63)2(61 — 62)2
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