Selected Solutions to $Complex \ Analysis$ by Lars Ahlfors

Matt Rosenzweig

Contents

Chapter 4 - Complex Integration	4
Cauchy's Integral Formula	4
4.2.2 Exercise 1	4
4.2.3 Exercise 1	4
4.2.3 Exercise 2	5
Local Properties of Analytical Functions	6
4.3.2 Exercise 2	6
4.3.2 Exercise 4	6
Calculus of Residues	7
4.5.2 Exercise 1	7
4.5.3 Exercise 1	7
4.5.3 Exercise 3	8
Harmonic Functions	10
$4.6.2 \text{ Exercise } 1 \dots \dots$	10
4.6.2 Exercise 2	10
4.6.4 Exercise 1	11
$4.6.4 \text{ Exercise } 5 \dots \dots$	12
$4.6.4 \text{ Exercise } 6 \dots \dots$	13
4.6.5 Exercise 1	13
4.6.5 Exercise 3	13
Chapter 5 - Series and Product Developments	14
Power Series Expansions	14
5.1.1 Exercise 2	14
5.1.2 Exercise 2	15
5.1.2 Exercise 3	16
Partial Fractions and Factorization	16
5.2.1 Exercise 1	16
5.2.1 Exercise 2	17
5.2.2 Exercise 2	18
5.2.3 Exercise 3	18
5.2.3 Exercise 4	19
5.2.4 Exercise 2	19
5.2.4 Exercise 3	20
5.2.5 Exercise 2	20
5.2.5 Exercise 3	21
Entire Functions	22
5.3.2 Exercise 1	22
5.3.2 Exercise 2	23
5.5.5 Exercise 1	23
Normal Families	24
5.5.5 Exercise $3 \ldots $	24
5.5.5 Exercise 4	25

Conformal Mapping, Dirichlet's Problem	27
The Riemann Mapping Theorem	27
6.1.1 Exercise 1	27
6.1.1 Exercise 2	27
Elliptic Functions	28
Weierstrass Theory	28
7.3.2 Exercise 2	29
7.3.3 Exercise 1	29
7.3.3 Exercise 2	30
7.3.3 Exercise 3	30
7.3.3 Exercise 4	31
7.3.3 Exercise 5	31
7.3.3 Exercise 7	32
7.3.5 Exercise 1	32

Chapter 4 - Complex Integration

Cauchy's Integral Formula

4.2.2 Exercise 1

Applying the Cauchy integral formula to $f(z) = e^z$,

$$1 = f(0) = \frac{1}{2\pi i} \oint_{|z|=1} \frac{f(z)}{z} dz \iff 2\pi i = \oint_{|z|=1} \frac{e^z}{z} dz$$

Section 4.2.2 Exercise 2

Using partial fractions, we may express the integrand as

$$\frac{1}{z^2+1} = \frac{i}{2(z+i)} - \frac{i}{2(z-i)}$$

Applying the Cauchy integral formula to the constant function f(z) = 1,

$$\frac{1}{2\pi i} \oint_{|z|=2} \frac{1}{z^2+1} dz = \frac{i}{2} \left(\frac{1}{2\pi i}\right) \oint_{|z|=2} \frac{1}{z+i} dz - \frac{i}{2} \left(\frac{1}{2\pi i}\right) \oint_{|z|=2} \frac{1}{z-i} dz = 0$$

4.2.3 Exercise 1

1. Applying Cauchy's differentiation formula to $f(z) = e^z$,

$$1 = f^{(n-1)}(0) = \frac{(n-1)!}{2\pi i} \oint_{|z|=1} \frac{e^z}{z^n} dz \iff \frac{2\pi i}{(n-1)!} = \oint_{|z|=1} \frac{e^z}{z^n} dz$$

- 2. We consider the following cases:
 - (a) If $n \ge 0, m \ge 0$, then it is obvious from the analyticity of $z^n(1-z)^m$ and Cauchy's theorem that the integral is 0.
 - (b) If $n \ge 0, m < 0$, then by the Cauchy differentiation formula,

$$\oint_{|z|=2} z^n (1-z)^m dz = (-1)^m \oint_{|z|=2} \frac{z^n}{(z-1)^{|m|}} dz = \begin{cases} 0 & n < |m|-1 \\ \frac{(-1)^m 2\pi i}{(|m|-1)!} \frac{n!}{(n-|m|+1)!} = (-1)^{|m|} 2\pi i \binom{n}{|m|-1} & n \ge |m| \end{cases}$$

(c) If $n < 0, m \ge 0$, then by a completely analogous argument,

$$\oint_{|z|=2} z^n (1-z)^m dz = \oint_{|z|=2} \frac{(1-z)^m}{z^{|n|}} dz = \begin{cases} 0 & m < |n|-1\\ \frac{(-1)^{|n|-1}2\pi i}{(|n|-1)!} \frac{m!}{(m-|n|+1)!} = (-1)^{|n|-1}2\pi i \binom{m}{|n|-1} & m \ge n \end{cases}$$

(d) If n < 0, m < 0, then since n(|z| = 2, 0) = n(|z| = 2, 1) = 1, we have by the residue formula that

$$\oint_{|z|=2} (1-z)^m z^n = 2\pi i \operatorname{res}(f;0) + 2\pi i \operatorname{res}(f;1) = \oint_{|z|=\frac{1}{2}} (1-z)^m z^n dz + \oint_{|z-1|=\frac{1}{2}} (1-z)^m z^n dz$$

Using Cauchy's differentiation formula, we obtain

$$\begin{split} \oint_{|z|=2} (1-z)^m z^n dz &= \left[\oint_{|z|=\frac{1}{2}} \frac{(1-z)^{-|m|}}{z^{|n|}} dz + \oint_{|z-1|=\frac{1}{2}} \frac{z^{-|n|}}{(1-z)^{|m|}} dz \right] \\ &= \frac{2\pi i}{(|n|-1)!} \cdot \frac{(|m|+|n|-2)!}{(|m|-1)!} + \frac{(-1)^{|m|}2\pi i}{(|m|-1)!} \cdot \frac{(-1)^{|m|-1}(|n|+|m|-2)!}{(|n|-1)!} \\ &= 2\pi i \left[\binom{|m|+|n|-2}{|n|-1} - \binom{|m|+|n|-2}{|n|-1} \right] = 0 \end{split}$$

3. If $\rho = 0$, then it is trivial that $\oint_{|z|=\rho} |z-a|^{-4} |dz| = 0$, so assume otherwise. If a = 0, then

$$\oint_{|z|=\rho} |z|^{-4} |dz| = \int_0^1 \rho^{-4} 2\pi i \rho dt = \frac{2\pi i}{\rho^3}$$

Now, assume that $a \neq 0$. Observe that

$$\frac{1}{|z-a|^4} = \frac{1}{(z-a)^2 \overline{(z-a)^2}}$$

$$\oint_{|z|=\rho} |z-a|^{-4} |dz| = \oint_{|z|=\rho} \frac{1}{(z-a)^2 \overline{(z-a)^2}} |dz| = \int_0^1 \frac{1}{(\rho e^{2\pi i t} - a)^2 (\rho e^{-2\pi i t} - \overline{a})^2} \rho \frac{2\pi i e^{4\pi i t}}{i e^{4\pi i t}} dt$$

$$= -i \int_0^1 \frac{\rho 2\pi i e^{4\pi i t}}{(\rho e^{2\pi i t} - a)^2 (\rho - \overline{a} e^{2\pi i t})^2} dt = \frac{-i}{\rho} \oint_{|z|=\rho} \frac{z}{(\rho - \frac{\overline{a}}{\rho} z)^2 (z-a)^2} dz = \frac{-i\rho}{\overline{a}^2} \oint_{|z|=\rho} \frac{z}{(z - \frac{\rho^2}{\overline{a}})^2 (z-a)^2} dz$$

We consider two cases. First, suppose $|a| > \rho$. Then $z(z-a)^{-2}$ is holomorphic on and inside $\{|z| = \rho\}$ and $\frac{\rho^2}{\overline{a}}$ lies inside $\{|z| = \rho\}$. By Cauchy's differentiation formula,

$$\oint_{|z|=\rho} |z-a|^{-4} |dz| = 2\pi i \frac{-i\rho}{\overline{a}^2} \left[(z-a)^{-2} - 2z(z-a)^{-3} \right]_{z=\frac{\rho^2}{\overline{a}}} = \frac{2\pi\rho}{\overline{a}^2 (\frac{\rho^2}{\overline{a}} - a)^2} \left[1 - 2\frac{\rho^2}{\overline{a}(\frac{\rho^2}{\overline{a}} - a)} \right]$$
$$= \frac{-2\pi\rho(\rho^2 + |a|^2)}{(\rho^2 - |a|^2)^3} = \frac{2\pi\rho(\rho^2 + |a|^2)}{(|a|^2 - \rho^2)^3}$$

Now, suppose $|a| < \rho$. Then $\frac{\rho^2}{\overline{a}}$ lies outside $|z| = \rho$, so the function $z(z - \frac{\rho^2}{\overline{a}})^{-2}$ is holomorphic on and inside $\{|z| = \rho\}$. By Cauchy's differentiation formula,

$$\begin{split} \oint_{|z|=\rho} |z-a|^{-4} |dz| &= 2\pi i \frac{-i\rho}{\overline{a}^2} \left[(z - \frac{\rho^2}{\overline{a}})^{-2} - 2z(z - \frac{\rho^2}{\overline{a}})^{-3} \right]_{z=a} = \frac{2\pi\rho}{\overline{a}^2 (a - \frac{\rho^2}{\overline{a}})^2} \left[1 - 2\frac{a}{(a - \frac{\rho^2}{\overline{a}})} \right] \\ &= \frac{-2\pi\rho}{(|a|^2 - \rho^2)^2} \frac{(a + \frac{\rho^2}{\overline{a}})}{a - \frac{\rho^2}{\overline{a}}} = \frac{-2\pi\rho(|a|^2 + \rho^2)}{(|a|^2 - \rho^2)^3} = \frac{2\pi\rho(|a|^2 + \rho^2)}{(\rho^2 - |a|^2)^3} \end{split}$$

4.2.3 Exercise 2

Let $f : \mathbb{C} \to \mathbb{C}$ be a holomorphic function satisfying the following condition: there exists R > 0 and $n \in \mathbb{N}$ such that $|f(z)| < |z|^n \quad \forall |z| \ge R$. For every $r \ge R$, we have by the Cauchy differentiation formula that for all m > n,

$$\left| f^{(m)}(a) \right| \le \frac{m!}{2\pi} \oint_{|z|=r} \frac{|z|^n}{|z|^{m+1}} |dz| \le \frac{m!}{r^{m-n}}$$

Noting that $m - n \ge 1$ and letting $r \to \infty$, we have that $f^{(m)}(a) = 0$. Since f is entire, for every $a \in \mathbb{C}$, we may write

$$f(z) = f(a) + f'(a)(z-a) + \dots + \frac{f^{(n)}(a)}{n!}(z-a)^n + f_{n+1}(z)(z-a)^{n+1} \quad \forall z \in \mathbb{C}$$

where f_{n+1} is entire. Since $f_{n+1}(a) = f^{(n+1)}(a) = 0$ and $a \in \mathbb{C}$ was arbitrary, we have that $f_{n+1} \equiv 0$ on \mathbb{C} . Hence, f is a polynomial of degree at most n.

Local Properties of Analytical Functions

4.3.2 Exercise 2

Let $f : \mathbb{C} \to \mathbb{C}$ be an entire function with a nonessential singularity at ∞ . Consider the function $g(z) = f\left(\frac{1}{z}\right)$ at z = 0. Let $n \in \mathbb{N}$ be minimal such that $\lim_{z\to 0} z^n g(z) = 0$. Then the function $z^{n-1}g(z)$ has an analytic continuation h(z) defined on all of \mathbb{C} . By Taylor's theorem, we may express h(z) as

$$z^{n-1}g(z) = h(z) = \underbrace{h(0)}_{c_{n-1}} + \underbrace{\frac{h'(0)}{1!}}_{c_{n-2}} z + \frac{h''(0)}{2!} z^2 + \dots + \underbrace{\frac{h^{(n-1)}(0)}{(n-1)!}}_{c_0} z^{n-1} + h_n(z) z^n \ \forall z \neq 0$$

where $h_n : \mathbb{C} \to \mathbb{C}$ is holomorphic. Hence,

$$\lim_{z \to 0} g(z) - \left[\frac{c_{n-1}}{z^{n-1}} + \frac{c_{n-2}}{z^{n-2}} + \dots + c_0\right] = \lim_{z \to 0} zh_n(z) = 0$$

And

$$\lim_{z \to \infty} g(z) - \left[\frac{c_{n-1}}{z^{n-1}} + \frac{c_{n-2}}{z^{n-2}} + \dots + c_0\right] = \lim_{z \to 0} f(z) = f(0)$$

since f is entire. Note that we also obtain that $c_0 = f(0)$. Hence, $g(z) - \left[\frac{c_{n-1}}{z^{n-1}} + \frac{c_{n-2}}{z^{n-2}} + \cdots + c_0\right]$ (we are abusing notation to denote the continuation to all of \mathbb{C}) is a bounded entire function and is therefore identically zero by Liouville's theorem. Hence,

$$\forall z \neq 0, f(z) = c_{n-1}z^{n-1} + c_{n-2}z^{n-2} + \dots + c_0$$

Since $f(0) = c_0$, we obtain that f is a polynomial.

4.3.2 Exercise 4

Let $f : \mathbb{C} \cup \{\infty\} \to \mathbb{C} \cup \{\infty\}$ be a meromorphic function in the extended complex plane. First, I claim that f has finitely many poles. Since the poles of f are isolated points, they form an at most countable subset $\{p_k\}_{k=1}^{\infty}$ of \mathbb{C} . By definition, the function $\tilde{f}(z) = f\left(\frac{1}{z}\right)$ has either a removable singularity or a pole at z = 0. In either case, there exists r > 0 such that \tilde{f} is holomorphic on D'(0; r). Hence, $\{p_k\}_{k=1}^{\infty} \subset \overline{D}(0; r)$. Since this set is bounded, $\{p_k\}_{k=1}^{\infty}$ has a limit point p. By continuity, $f(p) = \infty$ and therefore p is a pole. Since p is an isolated point, there must exist $N \in \mathbb{N}$ such that $\forall k \geq N, p_k = p$.

Our reasoning in the preceding Exercise 2 shows that for any pole $p_k \neq \infty$ of order m_k , we can write in a neighborhood of p_k

$$f(z) = \underbrace{\left[\frac{c_{m_k}}{(z-p_k)^{m_k}} + \frac{c_{m_k-1}}{(z-p_k)^{m_k-1}} + \dots + \frac{c_1}{z-p_k} + c_0\right]}_{f_k(z)} + g_k(z)$$

where g_k is holomorphic in a neighborhood of p_k . If $p = \infty$ is a pole, then analogously,

$$\tilde{f}(z) = \underbrace{\left[\frac{c_{m_{\infty}}}{z^{m_{\infty}}} + \frac{c_{m_{\infty}-1}}{z^{m_{\infty}-1}} + \dots + \frac{c_1}{z} + c_0\right]}_{\tilde{f}_{\infty}(z)} + \tilde{g}_{\infty}(z)$$

where \tilde{g}_{∞} is holomorphic in a neighborhood of 0. For clarification, the coefficients c_n depend on the pole, but we omit the dependence for convenience. Set $f_{\infty}(z) = \tilde{f}_{\infty}\left(\frac{1}{z}\right)$ and

$$h(z) = f(z) - f_{\infty}(z) - \sum_{k=1}^{n} f_k(z)$$

I claim that h is (or rather, extends to) an entire, bounded function. Indeed, in a neighborhood of each z_k , h can be written as $h(z) = g_k(z) - \sum_{i \neq k} f_k(z)$ and in a neighborhood of z_∞ as $h(z) = g_\infty(z) - \sum_{k=1}^n f_k(z)$, which are sums of holomorphic functions. $\tilde{h}(z) = h\left(\frac{1}{z}\right)$ is evidently bounded in a neighborhood of 0 since the $f_k\left(\frac{1}{z}\right)$ are polynomials and $f\left(\frac{1}{z}\right) - f_\infty\left(\frac{1}{z}\right) = \tilde{g}_\infty(z)$, which is holomorphic in a neighborhood of 0. By Liouville's theorem, h is a constant. It is immediate from the definition of h that f is a rational function.

Calculus of Residues

4.5.2 Exercise 1

Set $f(z) = 6z^3$ and $g(z) = z^7 - 2z^5 - z + 1$. Clearly, f, g are entire, $|f(z)| > |g(z)| \quad \forall |z| = 1$, and $f(z) + g(z) = z^7 - 2z^5 + 6z^3 - z + 1$. By Rouché's theorem, f and f + g have the same number of zeros, which is 3 (counted with order), in the disk $\{|z| < 1\}$.

Section 4.5.2 Exercise 2

Set $f(z) = z^4$ and g(z) = -6z + 3. Clearly, f, g are entire, $|f(z)| > |g(z)| \quad \forall |z| = 2$. By Rouché's theorem, $z^4 - 6z + 3$ has 4 roots (counted with order) in the open disk $\{|z| < 2\}$. Now set f(z) = -6z and $g(z) = z^4 + 3$. Clearly, $|f(z)| > |g(z)| \quad \forall |z| = 1$. By Rouché's theorem, $z^4 - 6z + 3 = 0$ has 1 root in the in the open disk $\{|z| < 1\}$. Observe that if $z \in \{1 \le |z| < 2\}$ is root, then by the reverse triangle inequality,

$$3 = |z| |z^3 - 6| \ge |z| ||z|^3 - 6|$$

So $|z| \in (1,2)$. Hence, the equation $z^4 - 6z + 3 = 0$ has 3 roots (counted with order) with modulus strictly between 1 and 2.

4.5.3 Exercise 1

1. Set $f(z) = \frac{1}{z^2+5z+6} = \frac{1}{(z+3)(z+2)}$. Then f has poles $z_1 = -2, z_2 = -3$ and by Cauchy integral formula,

$$\operatorname{res}(f;z_1) = \frac{1}{2\pi i} \oint_{|z+2|=\frac{1}{2}} \frac{(z+3)^{-1}}{(z+2)} dz = \frac{1}{z+3}|_{z=-2} = 1$$

$$\operatorname{res}(f;z_2) = \frac{1}{2\pi i} \oint_{|z+3|=\frac{1}{2}} \frac{(z+2)^{-1}}{(z+3)} dz = \frac{1}{z+2}|_{z=-3} - 1$$

2. Set $f(z) = \frac{1}{(z^2-1)^2} = \frac{1}{(z-1)^2(z+1)^2}$. Then f has poles $z_1 = -1, z_2 = -1$. Applying Cauchy's differentiation formula, we obtain

$$\operatorname{res}(f;z_1) = \frac{1}{2\pi i} \oint_{|z+1|=1} \frac{(z-1)^{-2}}{(z+1)^2} dz = -2(z-1)^{-3}|_{z=-1} = \frac{1}{4}$$
$$\operatorname{res}(f;z_2) = \frac{1}{2\pi i} \oint_{|z-1|=1} \frac{(z+1)^{-2}}{(z-1)^2} dz = -2(z+1)^{-3}|_{z=1} = -\frac{1}{4}$$

3. $\sin(z)$ has zeros at $k\pi, k \in \mathbb{Z}$, hence $\sin(z)^{-1}$ has poles at $z_k = k\pi$. We can write $\sin(z) = (z - z_k) [\cos(z_k) + g_k(z)]$, where g_k is holomorphic and $g_k(z_k) = 0$. By the Cauchy integral formula,

$$\operatorname{res}(f;z_k) = \frac{1}{2\pi i} \oint_{|z-z_k|=1} \frac{[f'(z_k) + g_k(z)]^{-1}}{(z-z_k)} dz = \frac{1}{f'(z_k) + g(z_k)} = (-1)^k$$

4. Set $f(z) = \cot(z)$. Since $\sin(z)$ has zeros at $z_k = k\pi, k \in \mathbb{Z}$ and $\cos(z_k) \neq 0$, $\cot(z)$ has poles at $z_k, k \in \mathbb{Z}$. We can write $\sin(z) = (z - z_k) [\cos(z_k) + g_k(z)]$, where g_k is holomorphic and $g_k(z_k) = 0$. By Cauchy's integral formula,

$$\operatorname{res}(f; z_k) = \frac{1}{2\pi i} \oint_{|z-z_k|=1} \frac{\cos(z) \left[\cos(z_k) + g_k(z)\right]^{-1}}{(z-z_k)} dz = \frac{\cos(z_k)}{\cos(z_k) + g_k(z_k)} = 1$$

5. It follows from (3) that $f(z) = \sin(z)^{-2}$ has poles at $z_k = k\pi, k \in \mathbb{Z}$. We remark further that $g_k(z) = -\cos(z_k)(z-z_k)^2 + h_k(z)$, where $h_k(z)$ is holomorphic. By the Cauchy differentiation formula,

$$\operatorname{res}(f;z_k) = \frac{1}{2\pi i} \oint_{|z-z_k|=1} \frac{\left[\cos(z_k) + g_k(z)\right]^{-2}}{(z-z_k)^2} dz = -2 \frac{g'_k(z_k)}{(\cos(z_k) + g_k(z_k))^3} = 0$$

6. Evidently, the poles of $f(z) = \frac{1}{z^m(1-z)^n}$ are $z_1 = 0, z_2 = 1$. By Cauchy's differentiation formula,

$$\operatorname{res}(f;z_1) = \frac{1}{2\pi i} \oint_{|z|=\frac{1}{2}} \frac{(1-z)^{-n}}{z^m} dz = \frac{(n+m-2)!}{(n-1)!(m-1)!} = \binom{n+m-2}{m-1}$$
$$\operatorname{res}(f;z_2) = \frac{(-1)^n}{2\pi i} \oint_{|z-1|=\frac{1}{2}} \frac{z^{-m}}{(z-1)^n} dz = \frac{(-1)^n (-1)^{n-1} (m+n-2)!}{(m-1)!} = -\binom{n+m-2}{n-1}$$

4.5.3 Exercise 3

(a) Since $a + \sin^2(\theta) = a + \frac{1 - \cos(2\theta)}{2} = 2[(2a + 1) - \cos(2\theta)]$, we have

$$\int_{0}^{\frac{\pi}{2}} \frac{d\theta}{a+\sin^{2}(\theta)} = 2\int_{0}^{\frac{\pi}{2}} \frac{d\theta}{(2a+1)-\cos(2\theta)} = \int_{0}^{\pi} \frac{dt}{(2a+1)-\cos(t)} = \int_{-\pi}^{0} \frac{d\tau}{(2a+1)+\cos(\tau)} = \int_{0}^{\pi} \frac{d\tau}{(2a+1)+\cos(\tau)}$$

where we make the change of variable $\tau = \theta - \pi$, and the last equality follows from the symmetry of the integrand. Ahlfors p. 155 computes $\int_0^{\pi} \frac{dx}{\alpha + \cos(x)} = \frac{\pi}{\sqrt{\alpha^2 - 1}}$ for $\alpha > 1$. Hence,

$$\int_0^{\frac{\pi}{2}} \frac{d\theta}{a + \sin^2(\theta)} = \frac{\pi}{\sqrt{(2a+1)^2 - 1}}$$

(b) Set

$$f(z) = \frac{z^2}{z^4 + 5z^2 + 6} = \frac{z^2}{(z^2 + 3)(z^2 + 2)} = \frac{z^2}{(z - \sqrt{3}i)(z + \sqrt{3}i)(z - \sqrt{2}i)(z + \sqrt{2}i)}$$

For R >> 0,

$$\gamma_1: [-R, R] \to \mathbb{C}, \gamma_1(t) = t; \gamma_2: [0, \pi] \to \mathbb{C}, \gamma_2(t) = Re^{it}$$

and let γ be the positively oriented closed curve formed by γ_1, γ_2 . By the residue formula and applying the Cauchy integral formula to $\frac{e^{iz}}{z+ai}$ to compute res(f;ai),

$$\int_{\gamma} f(z)dz = 2\pi i \operatorname{res}(f;\sqrt{3}i) + 2\pi i \operatorname{res}(f;\sqrt{2}i)$$

It is immediate from Cauchy's integral formula that

$$2\pi i \operatorname{res}(f;\sqrt{3}i) = \int_{|z-i\sqrt{3}|=\epsilon} \frac{z^2(z+i\sqrt{3})^{-1}(z^2+2)^{-1}}{(z-i\sqrt{3})} dz = 2\pi i \cdot \frac{(i\sqrt{3})^2}{((i\sqrt{3})^2+2)(2i\sqrt{3})} = \sqrt{3}\pi$$
$$2\pi i \operatorname{res}(f;\sqrt{2}i) = \int_{|z-i\sqrt{2}|=\epsilon} \frac{z^2(z+i\sqrt{2})^{-1}(z^2+3)^{-1}}{(z-i\sqrt{2})} dz = 2\pi i \cdot \frac{(i\sqrt{2})^2}{((i\sqrt{2})^2+3)(2i\sqrt{2})} = -\sqrt{2}\pi$$

Using the reverse triangle inequality, we obtain the estimate

$$\left| \int_{\gamma_2} f(z) dz \right| \le \frac{\pi R^3}{|R^2 - 3| |R^2 - 2|} \to 0, R \to \infty$$

Hence,

$$2\int_0^\infty \frac{x^2}{x^4 + 5x^2 + 6} = \int_{-\infty}^\infty \frac{x^2}{x^4 + 5x^2 + 6} dx = (\sqrt{3} - \sqrt{2})\pi \Rightarrow \int_0^\infty \frac{x^2 dx}{x^4 + 5x^2 + 6} = \frac{(\sqrt{3} - \sqrt{2})\pi}{2}$$

(e) We may write

$$\frac{\cos(x)}{x^2 + a^2} = \operatorname{Re} \frac{e^{ix}}{(x^2 + a^2)}$$

So set $f(z) = \frac{e^{iz}}{z^2 + a^2}$, which has simple poles at $\pm ai$. First, suppose that $a \neq 0$. For R >> 0, define

$$\gamma_1: [-R, R] \to \mathbb{C}, \gamma_1(t) = t; \gamma_2: [0, \pi] \to \mathbb{C}, \gamma_2(t) = Re$$

and let γ be the positively oriented closed curve formed by γ_1, γ_2 . By the residue formula,

$$\begin{split} \int_{\gamma} f(z)dz &= 2\pi i \operatorname{res}(f;ai) = 2\pi i \cdot \frac{e^{i(ai)}}{(2ai)} = \frac{\pi e^{-a}}{a} \\ \left| \int_{\gamma_2} f(z)dz \right| &= \left| \int_0^{\pi} \frac{e^{iR[\cos(t)+i\sin(t)]}}{R^2 e^{2it} + a^2} R e^{it} dt \right| = \left| \int_0^{\pi} \frac{e^{iR\cos(t)} e^{-R\sin(t)}}{R^2 e^{2it} + a^2} R e^{it} dt \\ &\leq \int_0^{\pi} \frac{R e^{-R\sin(t)}}{R^2 - a^2} dt \leq \frac{\pi R}{R^2 - a^2} \to 0, R \to \infty \end{split}$$

since $e^{-R\sin(t)} \leq 1$ on $[0,\pi]$. Hence,

$$\int_0^\infty \frac{\cos(x)}{x^2 + a^2} = \operatorname{Re} \frac{1}{2} \int_{-\infty}^\infty \frac{e^{ix}}{x^2 + a^2} dx = \frac{\pi e^{-a}}{2a}$$

If a = 0, then the integral does not converge.

(h) Define $f(z) = \frac{\log(z)}{(1+z^2)}$, where we take the branch of the logarithm with $\arg(z) \in \left[-\frac{\pi}{2}, \frac{3\pi}{2}\right)$. For R >> 0, define

$$\gamma_1: [-R, \frac{-1}{R}] \to \mathbb{C}, \gamma_1(t) = t; \gamma_2: [,\pi] \to \mathbb{C}, \gamma_2(t) = \frac{-1}{R}e^{-it}; \gamma_3: [\frac{1}{R}, R] \to \mathbb{C}, \gamma_3(t) = t; \gamma_4: [0,\pi] \to \mathbb{C}, \gamma_4(t) = Re^{it}$$

and let γ be the positively oriented closed curve formed by the γ_i .

$$\begin{aligned} \left| \int_{\gamma_2} f(z) dz \right| &\leq \int_0^\pi \frac{\left| \log |R|^{-1} \right| + \frac{3\pi}{2}}{\left| \frac{1}{R^2} - 1 \right|} \frac{1}{R} dt \leq \pi \frac{R(\log |R| + \frac{3\pi}{2})}{|R^2 - 1|} \to 0, R \to \infty \\ \left| \int_{\gamma_4} f(z) dz \right| &\leq \int_0^\pi \frac{\left| \log |R| + it \right|}{R^2 - 1} R dt \leq \pi \frac{R(\log |R| + \pi)}{R^2 - 1} \to 0, R \to \infty \end{aligned}$$

By the residue formula and applying the Cauchy integral formula to f(z)/(z+i) to compute res(f;i),

$$\int_{\gamma} f(z)dz = 2\pi i \operatorname{res}(f;i) = 2\pi i \cdot \frac{\log(z)}{(z+i)}|_{z=i} = 2\pi i \cdot \frac{\pi}{2i} = \frac{\pi^2}{2i}$$

Hence,

$$\begin{aligned} \frac{\pi^2}{2} &= \int_{\gamma_1} f(z)dz + \int_{\gamma_3} f(z)dz = \int_{-R}^{-\frac{1}{R}} \frac{\log(te^{i\pi})}{1+t^2}dt + \int_{\frac{1}{R}}^{R} \frac{\log(t)}{1+t^2}dt = \int_{-R}^{-\frac{1}{R}} \frac{\log(|t|)}{1+t^2}dt + \int_{\frac{1}{R}}^{R} \frac{\log(t)}{1+t^2}dt + \pi \int_{-R}^{-\frac{1}{R}} \frac{1}{1+t^2}dt \\ &= 2\int_{\frac{1}{R}}^{R} \frac{\log(t)}{1+t^2} + \pi \int_{\frac{1}{R}}^{R} \frac{1}{1+t^2}dt = 2\int_{\frac{1}{R}}^{R} \frac{\log(t)}{1+t^2} + \frac{\pi^2}{2} \end{aligned}$$

where we've used $\int_0^\infty \frac{1}{1+t^2} dt = \lim_{R \to \infty} \arctan(R) - \arctan(0) = \frac{\pi}{2}$. Hence,

$$\int_{\frac{1}{R}}^{R} \frac{\log(t)}{1+t^2} dt = 0 \Rightarrow \int_{0}^{\infty} \frac{\log(t)}{1+t^2} dt = 0$$

Lemma 1. Let $U, V \subset \mathbb{C}$ be open sets, $F : U \to V$ a holomorphic function, and $u : V \to \mathbb{C}$ a harmonic function. Then $u \circ F : U \to \mathbb{C}$ is harmonic.

Proof. Since $u \circ F$ is harmonic on U if and only if it is harmonic on any open disk contained in U about every point, we may assume without loss of generality that V is an open disk. Then there exists a holomorphic function $G: V \to \mathbb{C}$ such that $u = \operatorname{Re}(G)$. Hence, $G \circ F: U \to \mathbb{C}$ is holomorphic and $\operatorname{Re}(G \circ F) = u \circ F$, which shows that $u \circ F$ is harmonic.

In what follows, a conformal map $f: \Omega \to \mathbb{C}$ is a bijective holomorphic map.

Harmonic Functions

4.6.2 Exercise 1

Let $u: D'(0; \rho) \to \mathbb{R}$ be harmonic and bounded. I am going to cheat a bit and assume Schwarz's theorem for the Poisson integral formula, even though Ahlfors discusses it in a subsequent section. Let

$$P_u(z) = \frac{1}{2\pi} \int_0^{2\pi} \operatorname{Re} \frac{re^{i\theta} - z}{re^{i\theta} + z} u(re^{i\theta}) d\theta$$

denote the Poisson integral for u on some circle of fixed radius $r < \rho$. Since u is continuous, $P_u(z)$ is a harmonic function in the open disk D(0;r) and is continuous on the boundary $\{|z| = r\}$. We want to show that u and P_u agree on the annulus, so that we can define a harmonic extension of u by setting $u(0) = P_u(0)$. Define

$$g(z) = u(z) - P_u(z)$$

and for $\epsilon > 0$ define

$$g_{\epsilon}(z) = g(z) + \epsilon \log\left(\frac{|z|}{r}\right) \ \forall 0 < |z| \le r$$

Then g is harmonic in D'(0;r) and continuous on the boundary. Furthermore, since u is bounded by hypothesis and P_u is bounded by construction on $\overline{D}(0;r)$, we have that g is bounded on $\overline{D}(0;r)$. $g_{\epsilon}(z)$ is harmonic in D'(0;r) and continuous on the boundary since both its terms are. Since $\log(r^{-1}|z|) \to -\infty, z \to 0$, we have that

$$\limsup_{\epsilon \to 0} g_{\epsilon}(z) < 0$$

Hence, there exists $\delta > 0$ such that $0 < |z| \le \delta \Rightarrow g_{\epsilon}(z) \le 0$. Since g_{ϵ} is harmonic on the closed annulus $\{\delta \le |z| \le r\}$, we can apply the maximum principle. Hence, g_{ϵ} assumes its maximum in $\{|z| = \delta\} \cup \{|z| = r\}$. But, $g_{\epsilon}(z) \le 0 \forall |z| = \delta$, by our choice of δ , and since u, P_u agree on $\{|z| = r\}$, we have that $g_{\epsilon}(z) = 0 \forall |z| = r$. Hence,

$$g_{\epsilon}(z) \le 0 \ \forall 0 < |z| \le r$$

Letting $\epsilon \to 0$, we conclude that $g(z) \le 0 \ \forall 0 < |z| \le r$, which shows that $u \le P_u$ on the annulus. Applying the same argument to $h = P_u - u$, we conclude that $u = P_u$ on $0 < |z| \le r$. Setting $u(0) = P_u(0)$ defines a harmonic extension of u on the closed disk.

4.6.2 Exercise 2

If $f: \Omega = \{r_1 < |z| < r_2\} \to \mathbb{C}$ is identically zero, then there is nothing to prove. Assume otherwise. Since the annulus is bounded, f has finitely many zeroes in the region. Hence, for $\lambda \in \mathbb{R}$, the function

$$g(z) = \lambda \log |z| + \log |f(z)|$$

is harmonic in $\Omega \setminus \{a_1, \dots, a_n\}$, where a_1, \dots, a_n are the zeroes of f. Applying the maximum principle to g(z), we see that |g(z)| takes its maximum in $\partial\Omega$. Hence,

$$\lambda \log |z| + \log |f(z)| = g(z) \le \max \left\{ \lambda \log(r_1) + \log(M(r_1)), \lambda \log(r_2) + \log(M(r_2)) \right\} \quad \forall z \in \Omega \setminus \{a_1, \cdots, a_n\}$$

Thus, if |z| = r, then we have the inequality

$$\lambda \log(r) + \log(M(r)) \le \max\left\{\lambda \log(r_1) + \log(M(r_1)), \lambda \log(r_2) + \log(M(r_2))\right\}$$

We now find $\lambda \in \mathbb{R}$ such that the two inputs in the maximum function are equal.

$$\lambda \log(r_1) + \log(M(r_1)) = \lambda \log(r_2) + \log(M(r_2)) \Rightarrow \lambda \log\left(\frac{r_1}{r_2}\right) = \log\left(\frac{M(r_2)}{M(r_1)}\right)$$

Hence, $\lambda = \log\left(\frac{M(r_2)}{M(r_1)}\right) \left(\log\left(\frac{r_1}{r_2}\right)\right)^{-1}$. Exponentiating both sides of the obtained inequality,

$$M(r) \le \exp\left[\log(M(r_2)) + \log\left(\frac{M(r_2)}{M(r_1)}\right) \frac{\log\left(\frac{r_2}{r}\right)}{\log\left(\frac{r_1}{r_2}\right)}\right] = \exp\left[\log(M(r_2) + \log\left(\frac{M(r_1)}{M(r_2)}\right)\alpha\right]$$

$$= M(r_1)^{\alpha} M(r_2)^{1-\alpha}$$

where $\alpha = \log\left(\frac{r_2}{r}\right) \left(\log\left(\frac{r_2}{r_1}\right)\right)^{-1}$. I claim that equality holds if and only if $f(z) = az^{\lambda}$, where $a \in \mathbb{C}, \lambda \in \mathbb{R}$. It is obvious that equality holds if f(z) is of this form. Suppose quality holds. Then by Weierstrass's extreme value theorem, for some $|z_0| = r$, we have

$$|f(z_0)| = M(r) = \left(\frac{r_1}{r}\right)^{\lambda} M(r_1) \Rightarrow \left|z_0^{\lambda} f(z_0)\right| = r_1^{\lambda} M(r_1)$$

But since the bound on the RHS holds for all $r_1 < |z| < r_2$, the Maximum Modulus Principle tells us that $z^{\lambda}f(z) = a \in \mathbb{C} \ \forall r_1 < |z| < r_2$. Hence, $f(z) = az^{-\lambda}$. But λ is an arbitrary real parameter, from which the claim follows.

4.6.4 Exercise 1

We seek a conformal mapping of the upper-half plane \mathbb{H}^+ onto the unit disk \mathbb{D} . lemma The map ϕ given by

$$\phi(z) = i\frac{1+z}{1-z}$$

is a conformal map of \mathbb{D} onto \mathbb{H}^+ and is a bijective continuous map of $\partial \mathbb{D}$ onto $\mathbb{R} \cup \{\infty\}$, where $1 \mapsto \infty$. Its inverse is given by

$$\phi^{-1}(w) = \frac{w-i}{w+i}$$

Proof. The statements about conformality and continuity follow from a general theorem about the group of linear fractional transformations of the Riemann sphere (Ahlfors p. 76), so we just need to verify the images. For $z \in \mathbb{D}$,

$$\operatorname{Im}(\phi(z)) = \operatorname{Im}\left(i\frac{1+z}{1-z} \cdot \frac{1-\overline{z}}{1-\overline{z}}\right) = \frac{1-|z|^2}{|1-z|^2} > 0$$

since |z| < 1. Furthermore, observe that $\operatorname{Im}(\phi(z)) = 0 \iff z \in \partial \mathbb{D}$. In particular, $\phi(1) = \infty$. For $w \in \mathbb{H}^+$,

$$\left|\phi^{-1}(w)\right|^{2} = \frac{w-i}{w+i} \cdot \frac{\overline{w}+i}{\overline{w}-i} = \frac{|w|^{2} - 2\mathrm{Im}(w) + 1}{|w|^{2} + 2\mathrm{Im}(w) + 1} < 1$$

by hypothesis that $\operatorname{Im}(z) > 0$. Furthermore, observe that $|\phi^{-1}(w)| = 1 \iff \operatorname{Im}(w) = 0$.

 $\tilde{U} = U \circ \phi : \partial \mathbb{D} \to \mathbb{C}$ is a piecewise continuous function since U is bounded and we therefore can ignore the fact that $\phi(1) = \infty$. By Poisson's formula, the function

$$P_{\tilde{U}}(z) = \frac{1}{2\pi} \int_0^{2\pi} \operatorname{Re} \frac{e^{i\theta} + z}{e^{i\theta} - z} \tilde{U}(e^{i\theta}) d\theta$$

is a harmonic function in the open disk \mathbb{D} . By Lemma 1, the function

$$P_U(z) = P_{\tilde{U}} \circ \phi^{-1}(z) = \frac{1}{2\pi} \int_0^{2\pi} \operatorname{Re} \frac{e^{i\theta} + \phi^{-1}(z)}{e^{i\theta} - \phi^{-1}(z)} \tilde{U}(e^{i\theta}) d\theta$$

is harmonic in \mathbb{H}^+ . Fix $w_0 \in \mathbb{D}$ and let $x_0 + iy_0 = z_0 = \phi^{-1}(w_0)$. Let $P_{w_0}(\theta)$ denote the Poisson kernel. We apply the change of variable $t = \varphi^{-1}(e^{i\theta})$ to obtain

$$\frac{1}{2\pi}P_{w_0}(\theta)\frac{d\theta}{dt} = \frac{1}{2\pi}\frac{1-\left|\frac{z_0-i}{z_0+i}\right|^2}{\left|\frac{z_0-i}{z_0+i}-\frac{t-i}{t+i}\right|^2} \cdot \frac{\left(1-\frac{t-i}{t+i}\right)^2}{-2\frac{t-i}{t+i}} = \frac{1}{2\pi}\frac{|z_0+i|^2-|z_0-i|^2}{\left|(z_0-i)-\frac{t-i}{t+i}(z_0+i)\right|^2} \cdot \frac{\left((t+i)-(t-i)\right)^2}{-2|t+i|^2}$$
$$= \frac{2}{\pi}\frac{y_0}{\left|(z_0-i)(t+i)-(t-i)(z_0+i)\right|^2} = \frac{2}{\pi}\cdot\frac{y_0}{2|z_0-t|^2} = \frac{1}{\pi}\cdot\frac{y_0}{(x_0-t)^2+y_0^2}$$

Hence,

$$P_U(x,y) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{y}{(x-t)^2 + y^2} U(t) dt$$

is a harmonic function in \mathbb{H}^+ . Furthermore, since the value of $P_{\tilde{U}}(z)$ for |z| = 1 is given by $\tilde{U}(z)$ at the points of continuity and since $\phi^{-1}(\partial \mathbb{D}) = \mathbb{R} \cup \{\infty\}$, we conclude that

$$P_U(x,0) = P_{\tilde{U}} \circ \phi^{-1}(x,0) = \tilde{U} \circ \phi^{-1}(x,0) = U(x,0)$$

at the points of continuity $x \in \mathbb{R}$.

4.6.4 Exercise 5

I couldn't figure out how to show that $\log |f(z)|$ satisfies the mean-value property for $z_0 = 0, r = 1$ without first computing the value of $\int_0^{\pi} \log \sin(\theta) d\theta$.

Since $\sin(\theta) \leq \theta \ \forall \theta \in [0, \frac{\pi}{2}], 1 \geq \frac{\theta}{\sin(\theta)}$ is continuous on $[0, \frac{\pi}{2}]$, where we've removed the singularity at the origin. Hence, for $\delta > 0$,

$$\int_{0}^{\frac{\pi}{2}} \log \left| \frac{\theta}{\sin(\theta)} \right| d\theta = \lim_{\delta \to 0} \int_{\delta}^{\frac{\pi}{2}} \log \left| \frac{\theta}{\sin(\theta)} \right| d\theta = \int_{0}^{\frac{\pi}{2}} \log |\theta| \, d\theta - \lim_{\delta \to 0} \int_{\delta}^{\frac{\pi}{2}} \log |\sin(\theta)| \, d\theta$$

By symmetry, it follows that the improper integral $\int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \log |\sin(\theta)| d\theta$ exists and therefore $\int_{0}^{\pi} \log |\sin(\theta)| d\theta$ exists. Again by symmetry, $\int_{0}^{\frac{\pi}{2}} \log(\sin(\theta)) d\theta = \int_{0}^{\frac{\pi}{2}} \log \cos(\theta) d\theta$, hence

$$\int_0^{\frac{\pi}{2}} \log \sin(\theta) d\theta = \frac{1}{2} \int_0^{\frac{\pi}{2}} \log \sin(\theta) \cos(\theta) d\theta = \frac{1}{2} \int_0^{\frac{\pi}{2}} \log\left(\frac{1}{2}\sin(2\theta)\right) d\theta = \frac{1}{2} \int_0^{\frac{\pi}{2}} \sin(2\theta) d\theta - \frac{\pi}{4} \log(2)$$
$$= \frac{1}{4} \int_0^{\pi} \sin(\vartheta) d\vartheta - \frac{\pi}{4} \log(2)$$

where we make the change of variable $\vartheta = 2\theta$ to obtain the last equality. Since $\int_0^{\pi} \log \sin(\theta) d\theta = 2 \int_0^{\frac{\pi}{2}} \log \sin(\theta) d\theta$, we conclude that

$$\int_0^\pi \log \sin(\theta) d\theta = -\pi \log(2)$$

We now show that for f(z) = 1 + z, $\log |f(z)|$ satisfies the mean-value property for $z_0 = 0, r = 1$. Observe that

$$\log \left| 1 + e^{i\theta} \right| = \frac{1}{2} \log \left| (1 + \cos(\theta))^2 + \sin^2(\theta) \right| = \frac{1}{2} \log \left| 1 + 2\cos(\theta) + \cos^2(\theta) + \sin^2(\theta) \right| = \frac{1}{2} \log |2 + 2\cos(\theta)|$$
$$= \log |2| + \frac{1}{2} \log \left| \frac{1 + \cos(\theta)}{2} \right|$$

Substituting and making the change of variable $2\vartheta = \theta$,

$$\int_{0}^{2\pi} \log\left|1 + e^{i\theta}\right| d\theta = \int_{0}^{2\pi} \left[\log 2 + \frac{1}{2} \log\left|\cos^{2}(\theta)\right|\right] d\theta = 2\pi \log 2 + \int_{0}^{\pi} \log\left|\frac{1 + \cos(2\vartheta)}{2}\right| d\vartheta = 2\pi \log 2 + \int_{0}^{\pi} \log\cos^{2}(\vartheta) d\vartheta$$

By symmetry, integrating $\log \cos^2(\theta)$ over $[0,\pi]$ is the same as integrating $\log |\sin^2(\theta)|$ over $[0,\pi]$. Hence,

$$\int_{0}^{2\pi} \log \left| 1 + e^{i\theta} \right| d\theta = 2\pi \log 2 + \int_{0}^{\pi} \log \left| \sin^{2}(\vartheta) \right| d\vartheta = 2\pi \log 2 + 2 \int_{0}^{\pi} \log \left| \sin(\vartheta) \right| d\vartheta = 0$$

4.6.4 Exercise 6

Let $f : \mathbb{C} \to \mathbb{C}$ be an entire holomorphic function, and suppose that $z^{-1} \operatorname{Re}(f(z)) \to 0, z \to \infty$. By Schwarz's formula (Ahlfors (66) p. 168), we may write

$$f(z) = \frac{1}{2\pi i} \int_{|\zeta| = R} \frac{\zeta + z}{\zeta - z} \operatorname{Re}(f(\zeta)) \frac{d\zeta}{\zeta} \,\,\forall \, |z| < R$$

Let $\epsilon > 0$ be given and $R_0 > 0$ such that $\forall R \ge R_0$, $\left|\frac{\operatorname{Re}(f(z))}{z}\right| < \epsilon$. Let R be sufficiently large that $R > \frac{R}{2} > R_0$. By Schwarz's formula, $\forall \frac{R}{2} \le |z| < R$,

$$|f(z)| \le \frac{R\epsilon}{2\pi} \int_0^{2\pi} \left| \frac{Re^{i\theta} + z}{Re^{i\theta} - z} \right| d\theta \le \frac{R\epsilon}{2\pi} \int_0^{2\pi} \frac{R + |z|}{R - |z|} d\theta = R\epsilon \cdot \frac{R + R}{R - \frac{R}{2}} = 4R\epsilon$$

Fix $z \in \mathbb{C}$ and let $\frac{R}{2} > \max \{R_0, |z|\}$. By Cauchy's differentiation formula,

$$\begin{split} |f'(z)| &= \frac{1}{2\pi} \left| \int_{|w| = \frac{R}{2}} \frac{f(w)}{(w-z)^2} dw \right| \le \frac{1}{2\pi} \int_0^{2\pi} \frac{\frac{R}{2} \left| f(\frac{R}{2} e^{i\theta}) \right|}{\left| \frac{R}{2} e^{i\theta} - z \right|^2} d\theta \\ &\le \frac{1}{2\pi} \frac{R}{2} \cdot 4R\epsilon \int_0^{2\pi} \frac{1}{\left| \frac{R}{2} - |z| \right|^2} d\theta = 8\epsilon \frac{R^2}{(R-2|z|)^2} \end{split}$$

Letting $R \to \infty$, we conclude that $|f'(z)| \le 8\epsilon$. Since $z \in \mathbb{C}$ was arbitrary, we conclude that $|f'(z)| 8\epsilon \forall z \in \mathbb{C}$. Since $\epsilon > 0$ was arbitrary, we conclude that f'(z) = 0, which shows that f is constant.

4.6.5 Exercise 1

Let $f : \mathbb{C} \to \mathbb{C}$ be an entire holomorphic function satisfying $f(\mathbb{R}) \subset \mathbb{R}$ and $f(i \cdot \mathbb{R}) \subset i \cdot \mathbb{R}$. Since $f(\mathbb{R}) \subset \mathbb{R}$, $f(z) - \overline{f(\overline{z})}$ vanishes on the real axis. By the limit-point uniqueness theorem that

$$f(z) = \overline{f(\overline{z})} \,\,\forall z \in \mathbb{C}$$

Since $f(i\mathbb{R}) \subset i\mathbb{R}$, $f(z) + \overline{f(-\overline{z})}$ vanishes on the imaginary axis. By the limit-point uniqueness theorem that

$$f(z) = -f(-\overline{z}) \,\,\forall z \in \mathbb{C}$$

Combining these two results, we have

$$f(z) = -\overline{f(-\overline{z})} = -\overline{f(-\overline{z})} = -f(-z) \ \forall z \in \mathbb{C}$$

4.6.5 Exercise 3

Let $f: \overline{\mathbb{D}} \to \mathbb{C}$ be holomorphic and satisfy $|f(z)| = 1 \forall |z| = 1$. Let $\phi: \mathbb{C} \cup \{\infty\} \to \mathbb{C} \cup \{\infty\}$ be the linear fractional transformation

$$\phi(z) = \frac{z-i}{z+i}$$

Consider the function $g = \phi^{-1} \circ f \circ \phi : \overline{\mathbb{H}}^+ \to \mathbb{C}$. By the maximum modulus principle, $|f(z)| \leq 1 \forall |z| \leq 1$. Hence, $g : \overline{\mathbb{H}}^+ \to \overline{\mathbb{H}}^+$. Since $|f(z)| = 1 \forall |z| = 1$, $\phi^{-1}(f(z)) \in \mathbb{R} \forall |z| = 1$. Hence, $\underline{\tilde{f}}(\mathbb{R}) \subset \mathbb{R}$. By the Schwarz Reflection Principle, g extends to an entire function $g : \mathbb{C} \to \mathbb{C}$ satisfying $g(z) = g(\overline{z})$. Define

$$\tilde{f} = \phi \circ g \circ \phi^{-1} : \mathbb{C} \to \mathbb{C}$$

Then \tilde{f} is meromorphic in \mathbb{C} since ϕ has a pole at z = -i and ϕ^{-1} has a pole at z = 1. In particular, \tilde{f} has finitely many poles. We proved in Problem Set 1 (Ahlfors Section 4.3.2 Exercise 4) that a function meromorphic in the extended complex plane is a rational function, so we need to verify that \tilde{f} doesn't have an essential singularity at ∞ . But in a neighborhood of 0,

$$\tilde{f}\left(\frac{1}{z}\right) = \phi \circ g\left(i\frac{1+\frac{1}{z}}{1-\frac{1}{z}}\right) = \phi \circ g\left(i\frac{z+1}{z-1}\right)$$

which is evidently a meromorphic function. Alternatively, we note that $\forall |z| \ge 1$, $|\tilde{f}(z)| \ge 1$ since g maps $\overline{\mathbb{H}}^-$ onto $\overline{\mathbb{H}}^-$. So the image of \tilde{f} in a suitable neighborhood of ∞ is not dense in \mathbb{C} . The Casorati-Weierstrass theorem then tells us that \tilde{f} cannot have an essential singularity at ∞ .

Chapter 5 - Series and Product Developments

Power Series Expansions

5.1.1 Exercise 2

We know that in the region $\Omega = \{z : \operatorname{Re}(z) > 1\}, \zeta(z)$ exists since

$$\left|\frac{1}{n^{z}}\right| = \frac{1}{n^{\operatorname{Re}(z)}\left|n^{\operatorname{Im}(z)i}\right|} = \frac{1}{n^{\operatorname{Re}(z)}\left|e^{\log(n)\operatorname{Im}(z)i}\right|} = \frac{1}{n^{\operatorname{Re}(z)}}$$

and therefore $\sum_{n=1}^{\infty} \left| \frac{1}{n^z} \right|$ is a convergent harmonic series; absolute convergence implies convergence by completeness. Define $\zeta_N(z) = \sum_{n=1}^N \frac{1}{n^z}$. Clearly, ζ_N is the sum of holomorphic functions on the region Ω . I claim that $(\zeta_N)_{N \in \mathbb{N}}$ converge uniformly to ζ on any compact subset $K \subset \Omega$. Since K is compact and $z \mapsto \operatorname{Re}(z)$ is continuous, by Weierstrass's Extreme Value Theorem $\exists z_0 \in K$ such that $\operatorname{Re}(z_0) = \inf_{z \in K} \operatorname{Re}(z)$. In particular, $\operatorname{Re}(z_0) > 1$ since $z_0 \in \Omega$. Hence, $\left| \frac{1}{n^z} \right| \leq \frac{1}{n^{\operatorname{Re}(z)}} \leq \frac{1}{n^{\operatorname{Re}(z_0)}}$. So by the Triangle Inequality,

$$\forall z \in \Omega, \left| \sum_{n=1}^{N} \frac{1}{n^{z}} \right| \le \sum_{n=1}^{N} \left| \frac{1}{n^{z}} \right| \le \sum_{n=1}^{N} \frac{1}{n^{\operatorname{Re}(z_{0})}} < \sum_{n=1}^{\infty} \frac{1}{n^{\operatorname{Re}(z_{0})}} < \infty$$

By Weierstrass's M-test, we attain that $\zeta_n \to \zeta$ uniformly on K. Therefore by Weierstrass's theorem, ζ is holomorphic in Ω and

$$\zeta'(z) = \lim_{N \to \infty} \zeta'_N(z) = \lim_{N \to \infty} \sum_{n=1}^N -\log(n)e^{-\log(n)z} = \lim_{N \to \infty} \sum_{n=1}^N \frac{-\log(n)}{n^z} = \sum_{n=1}^\infty \frac{-\log(n)}{n^z}$$

Section 5.1.1 Exercise 3

Lemma 2. Set $a_n = (-1)^{n+1}$. If $\sum_{n=1}^{\infty} \frac{a_n}{n^z}$ converges for some z_0 . Then $\sum_{n=1}^{\infty} \frac{a_n}{n^z}$ converges uniformly on $\forall z \in \mathbb{C}$ with $Re(z) \ge Re(z_0)$.

Proof. If $\sum_{n=1}^{\infty} \frac{a_n}{n^{z_0}}$ conveges, there exists an M > 0 which bounds the partial sums. Let $m \leq N \in \mathbb{N}$. Using summation by parts, we may write

$$\sum_{n=m}^{N} \frac{a_n}{n^z} = \sum_{n=m}^{N} \frac{a_n}{n^{z_0}} \frac{1}{n^{z-z_0}} = \frac{1}{N^{z-z_0}} \sum_{n=1}^{m-1} \frac{a_n}{n^{z_0}} - \sum_{n=m}^{N-1} \left(\sum_{k=1}^{n} \frac{a_k}{k^{z_0}}\right) \left(\frac{1}{(n+1)^{z-z_0}} - \frac{1}{n^{z-z_0}}\right)$$

Hence,

$$\sum_{n=m}^{N} \frac{a_n}{n^z} \le M \frac{1}{|N^{z-z_0}|} + M \frac{1}{|n^{z-z_0}|} + M \sum_{n=m}^{N-1} \left| \frac{1}{(n+1)^{z-z_0}} - \frac{1}{n^{z-z_0}} \right|$$

Observe that

$$\left|\frac{1}{(n+1)^{z-z_0}} - \frac{1}{n^{z-z_0}}\right| = \left|e^{-\log(n+1)(z-z_0)} - e^{-\log(n)(z-z_0)}\right| = \left|\frac{-1}{z-z_0}\int_{\log(n)}^{\log(n+1)} e^{-t(z-z_0)}dt\right|$$

$$\leq \frac{1}{|z-z_0|} \int_{\log(n)}^{\log(n+1)} e^{-t(\operatorname{Re}(z) - \operatorname{Re}(z_0))} dt = \frac{|\operatorname{Re}(z) - \operatorname{Re}(z_0)|}{|z-z_0|} \left| e^{-\log(n+1)(\operatorname{Re}(z) - \operatorname{Re}(z_0))} - e^{-\log(n)(\operatorname{Re}(z) - \operatorname{Re}(z_0))} \right|$$

$$\leq e^{-\log(n)(\operatorname{Re}(z) - \operatorname{Re}(z_0))} - e^{-\log(n+1)(\operatorname{Re}(z) - \operatorname{Re}(z_0))} = \frac{1}{n^{\operatorname{Re}(z) - \operatorname{Re}(z_0)}} - \frac{1}{(n+1)^{\operatorname{Re}(z) - \operatorname{Re}(z_0)}}$$

Since this last expression is telescoping as the summation ranges over n, we have that

$$\left|\sum_{n=m}^{N} \frac{a_n}{n^z}\right| \leq \frac{M}{N^{\operatorname{Re}(z)-\operatorname{Re}(z_0)}} + \frac{M}{m^{\operatorname{Re}(z)-\operatorname{Re}(z_0)}} + M \left|\frac{1}{N^{\operatorname{Re}(z)-\operatorname{Re}(z_0)}} - \frac{1}{m^{\operatorname{Re}(z)-\operatorname{Re}(z_0)}}\right|$$
$$\leq \frac{2M}{m^{\operatorname{Re}(z)-\operatorname{Re}(z_0)}} + \frac{M}{m^{\operatorname{Re}(z)-\operatorname{Re}(z_0)}} \left|\left(\frac{m}{N}\right)^{\operatorname{Re}(z)-\operatorname{Re}(z_0)} - 1\right| \leq \frac{4M}{m^{\operatorname{Re}(z)-\operatorname{Re}(z_0)}} \to 0, m \to \infty$$

Hence, the partial sums of $\sum_{n=1}^{N} \frac{a_n}{n^{z-z_0}}$ are Cauchy and therefore converge by completeness.

Corollary 3. If $\sum_{n=1}^{\infty} \frac{a_n}{n^z}$ converges for some $z = z_0$, then $\sum_{n=1}^{\infty} \frac{a_n}{n^z}$ converges uniformly on compact subsets of $\{Re(z) \ge Re(z_0)\}$.

Proof. Let $K \subset {\text{Re}(z) \ge \text{Re}(z_0)}$ be compact. Since $z \mapsto \text{Re}(z)$ is continuous, there exists $z_1 \in K$ such that $\text{Re}(z) \ge \text{Re}(z_1) \ \forall z \in K$. Since $\text{Re}(z_1) \ge \text{Re}(z_0)$, $\sum_{n=1}^{\infty} \frac{a_n}{n^{z_1}}$ converges. The proof of the preceding lemma shows that we have a uniform bound

$$\left|\sum_{n=m}^{N} \frac{a_n}{n^z}\right| \le \frac{4M}{m^{\operatorname{Re}(z) - \operatorname{Re}(z_0)}} \le \frac{4M}{m^{\operatorname{Re}(z_1) - \operatorname{Re}(z_0)}}$$

where M depends only on z_0 . The claim follows immediately from the M-test and completeness.

Since the series $f(z) = \sum_{n=1}^{\infty} \frac{a_n}{n^z}$ converges if we take $z \in \mathbb{R}^{>0}$ (the well-known alternating series), we have by the lemma that $\sum_{n=1}^{\infty} \frac{a_n}{n^z}$ converges $\forall \operatorname{Re}(z) > 0$. We now show that this series is holomorphic on the region $\{\operatorname{Re}(z) > 0\}$.

Define a sequence of functions $(f_N)_{N \in \mathbb{N}}$ by

$$f_N = \sum_{n=1}^N \frac{(-1)^{n+1}}{n^z}$$

It is clear that f_N is holomorphic, being the finite sum of holomorphic functions. Set $\Omega = \{z \in \mathbb{C} : \operatorname{Re}(z) > 0\}$ and let $K \subset \Omega$ be compact. Since the f_N are just the partial sums of the series, we have by the corollary to the lemma that $f_N \to f$ uniformly on K. By Weierstrass's theorem, f is holomorphic in Ω . To see that $(1 - 2^{1-z})\zeta(z) = \sum_{n=1}^{\infty} \frac{a_n}{n^z}$ on {Re(z) > 1}, observe that

$$(1-2^{1-z})\sum_{n=1}^{N}\frac{1}{n^z} - \sum_{n=1}^{N}\frac{(-1)^{n+1}}{n^z} = \sum_{n=1}^{N}\frac{1}{n^z} - 2\sum_{n=1}^{N}\frac{1}{(2n)^z} - \sum_{n=1}^{N}\frac{(-1)^{n+1}}{n^z} = 2\sum_{\substack{N < n \le 2N \\ n \text{ is even}}}\frac{1}{n^z}$$

Since $\sum_{n=1}^{\infty} \frac{1}{n^z}$ is absolutely convergent, we see that by taking N sufficiently large, the RHS can be made less than ϵ for $\epsilon > 0$ given.

5.1.2 Exercise 2

Differentiating $(1 - 2\alpha z + z^2)^{-\frac{1}{2}}$ with respect to z, we obtain

$$p_1(\alpha) = \frac{2\alpha - 2z}{2(1 - 2\alpha z + z^2)^{\frac{3}{2}}}|_{z=0} = \alpha$$

To compute higher order Legendre polynomials, we differentiate $(1 - 2\alpha z + z^2)^{-\frac{1}{2}}$ and its Taylor series to obtain the equality

$$\frac{\alpha - z}{(1 - 2\alpha z + z^2)^{\frac{3}{2}}} = \sum_{n=1}^{\infty} nP_n(\alpha) z^{n-1} \Rightarrow \frac{\alpha - z}{\sqrt{1 - 2\alpha z + z^2}} = (1 - 2\alpha z + z^2) \sum_{n=1}^{\infty} nP_n(\alpha) z^{n-1}$$

Hence,

$$\sum_{n=0}^{\infty} \alpha P_n(\alpha) z^n - \sum_{n=0}^{\infty} P_n(\alpha) z^{n+1} = \sum_{n=0}^{\infty} n P_n(\alpha) z^{n-1} - \sum_{n=0}^{\infty} 2\alpha n P_n(\alpha) z^n + \sum_{n=0}^{\infty} n P_n(\alpha) z^{n+1}$$

Invoking elementary limit properties and using the fact that a function is zero if and only if all its Taylor coefficients are zero, we may equate terms to obtain the recurrence

$$\alpha P_{n+1}(\alpha) - P_n(\alpha) = (n+2)P_{n+2}(\alpha) - 2\alpha(n+1)P_{n+1}(\alpha) + nP_n(\alpha)$$

$$\Rightarrow P_{n+2}(\alpha) = \frac{1}{n+2} \left[(2n+3)\alpha P_{n+1}(\alpha) - (n+1)P_n(\alpha) \right]$$

So,

$$P_{2}(\alpha) = \frac{1}{2} \left(3\alpha^{2} - 1 \right)$$

$$P_{3}(\alpha) = \frac{1}{3} \left(5\alpha \frac{1}{2} (3\alpha^{2} - 1) - 2\alpha \right) = \frac{1}{2} \left(5\alpha^{3} - 3\alpha \right)$$

$$P_{4}(\alpha) = \frac{1}{4} \left(7\alpha \frac{1}{2} (5\alpha^{3} - 3\alpha) - 3\frac{1}{2} (3\alpha^{2} - 1) \right) = \frac{1}{8} (35\alpha^{4} - 30\alpha^{2} + 3)$$

5.1.2 Exercise 3

Observe that

$$\frac{\sin(z)}{z} = \frac{1}{z} \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} z^{2n+1} = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} z^{2n}$$

So, $\frac{\sin(z)}{z} \neq 0$ in some open disk about z = 0. Hence, the function $z \mapsto \log\left(\frac{\sin(z)}{z}\right)$ is holomorphic in an open disk about z = 0, where we take the principal branch of the logarithm. Substituting,

$$\log\left(\frac{\sin(z)}{z}\right) = \log\left(1 - \left(1 - \frac{\sin(z)}{z}\right)\right) = -\sum_{m=1}^{\infty} \frac{\left(1 - \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} z^{2n}\right)^m}{m}$$
$$= -\sum_{m=1}^{\infty} \frac{\left(\frac{1}{3!} z^2 - \frac{1}{5!} z^4 + \frac{1}{7!} z^6 - [z^8]\right)^m}{m}$$

Set $P(z) = \frac{1}{3!}z^2 - \frac{1}{5!}z^4$. Then

$$\log\left(\frac{\sin(z)}{z}\right) = -\left[\frac{z^6}{7!} + \frac{P(z) + [z^8]}{1} + \frac{P(z)^2 + [z^8]}{2} + \frac{P(z)^3 + [z^8]}{3}\right]$$
$$= -\left[\frac{z^2}{3!} - \frac{z^4}{5!} + \frac{z^6}{7!} + \frac{1}{2}\left(\frac{z^4}{(3!)^2} - \frac{2z^6}{(3!)(5!)}\right) + \frac{z^6}{3(3!)^3} + [z^8]\right]$$
$$= -\frac{1}{6}z^2 - \frac{1}{180}z^4 - \frac{1}{2835}z^6 + [z^8]$$

Partial Fractions and Factorization

5.2.1 Exercise 1

From Ahlfors p. 189, we obtain for |z| < 1,

$$z\pi\cot(\pi z) = z\left(\frac{1}{z} + 2\sum_{n=1}^{\infty}\frac{z}{z^2 - n^2}\right) = 1 - 2z^2\sum_{n=1}^{\infty}\frac{1}{n^2} \cdot \frac{1}{1 - \frac{z^2}{n^2}} = 1 - 2z^2\sum_{n=1}^{\infty}\frac{1}{n^2}\left(\sum_{k=0}^{\infty}\left(\frac{z^2}{n^2}\right)^k\right)$$

where we expand $\frac{z^2}{n^2}$ using the geometric series. Since both series are absolutely convergent, we may interchange the order of summation to obtain

$$z\pi\cot(\pi z) = 1 - 2z^2 \sum_{k=0}^{\infty} \left(\sum_{n=1}^{\infty} \frac{1}{n^{2(k+1)}}\right) z^{2k} = 1 - 2\sum_{k=0}^{\infty} \zeta(2k) z^{2k}$$

We now compute the Taylor series for $\pi z \cot(\pi z)$.

$$\pi z \cot(\pi z) = \pi z \frac{\cos(\pi z)}{\sin(\pi z)} = \pi i z \frac{e^{i\pi z} + e^{-i\pi z}}{e^{i\pi z} - e^{-i\pi z}} = \pi i z \frac{e^{i2\pi z} + 1}{e^{i2\pi z} - 1} = \frac{2\pi i z}{e^{2\pi i z} - 1} + \frac{\pi i z (e^{2\pi i z} - 1)}{e^{2\pi i z} - 1} = \pi i z + \frac{2\pi i z}{e^{2\pi i z} - 1}$$

Let $|z| < \frac{1}{2\pi}$. Then

$$z\pi\cot(\pi z) = \pi i z + \frac{2\pi i z}{\sum_{k=1}^{\infty} \frac{(2\pi i z)^k}{k!}} = \pi i z + \frac{1}{1 - \left(-\sum_{k=1}^{\infty} \frac{(2\pi i z)^k}{(k+1)!}\right)} = \pi i z + \sum_{n=0}^{\infty} \left(-\sum_{k=1}^{\infty} \frac{(2\pi i z)^k}{(k+1)!}\right)^n$$
$$= \pi i z + \sum_{k=0}^{\infty} \frac{B_k}{k!} (2\pi i z)^k$$

where we may use the geometric expansion since $\left|\sum_{k=1}^{\infty} \frac{(2\pi i z)^k}{(k+1)!}\right| \leq \sum_{k=1}^{\infty} |2\pi z|^k < 1$ ($|z| < \frac{1}{2\pi}$), and the change in the order of summation is permitted since the series are absolutely convergent. According to Ahlfors, the numbers B_k are called Bernoulli numbers, the values of which one can look up. Since the two series representations for $\pi z \cot(\pi z)$ are equal, the coefficients must agree. Hence,

$$\zeta(2) = \frac{-1}{2} \frac{(2\pi i)^2 B_2}{2!} = \frac{\pi^2}{6}$$
$$\zeta(4) = \frac{-1}{2} \frac{(2\pi i)^4 B_4}{4!} = \frac{16\pi^4}{6} \cdot 60 = \frac{\pi^4}{90}$$
$$\zeta(6) = \frac{-1}{2} \frac{(2\pi i)^6 B_6}{6!} = \frac{32\pi^6}{42 \cdot 6!} = \frac{\pi^6}{21 \cdot 45} = \frac{\pi^6}{945}$$

5.2.1 Exercise 2

We first observe that

$$\sum_{n=-\infty}^{\infty} \frac{1}{z^3 - n^3}$$

converges absolutely, being comparable to $\sum_{n=1}^{\infty} \frac{1}{n^3}$. For $z \neq 0$, we may write (after some laborious computation, which can be found at the end of the solutions)

$$\frac{1}{z^3 - n^3} = \frac{1}{(z - n)(z - ne^{i\frac{2\pi}{3}})(z - ne^{i\frac{4\pi}{3}})} = \frac{1}{(z - n)(e^{i\frac{2\pi}{3}}z - n)(e^{i\frac{4\pi}{3}}z - n)} = \frac{A}{z - n} + \frac{B}{ze^{i\frac{4\pi}{3}} - n} + \frac{C}{ze^{i\frac{2\pi}{3}} - n}$$

where

$$C = \frac{e^{\frac{2\pi}{3}i}}{3z^2} B = \frac{e^{\frac{4\pi}{3}i}}{3z^2} A = \frac{1}{3z^2}$$

Ahlfors p. 189 shows that $\lim_{m\to\infty}\sum_{-m}^m \frac{1}{z-n} = \pi \cot(\pi z), 0 < |z| < 1$. Hence, for 0 < |z| < 1,

$$\lim_{m \to \infty} \sum_{-m}^{m} \frac{1}{z^3 - n^3} = \frac{1}{3z^2} \lim_{m \to \infty} \sum_{-m}^{m} \frac{1}{z - n} + \frac{e^{\frac{2\pi}{3}i}}{3z^2} \lim_{m \to \infty} \sum_{-m}^{m} \frac{1}{ze^{i\frac{2\pi}{3}} - n} + \frac{e^{\frac{4\pi}{3}i}}{3z^2} \lim_{m \to \infty} \sum_{-m}^{m} \frac{1}{ze^{i\frac{4\pi}{3}} - n}$$
$$= \frac{\pi \cot(\pi z)}{3z^2} + \frac{\pi e^{\frac{2\pi}{3}i} \cot(\pi e^{\frac{2\pi}{3}i} z)}{3z^2} + \frac{\pi e^{\frac{4\pi}{3}i} \cot(\pi e^{\frac{4\pi}{3}i})}{3z^2}$$

5.2.2 Exercise 2

In what follows, we will restrict ourselves to $z \in D(0; 1)$. For $n \in \mathbb{Z}^{\geq 0}$, define

$$P_n(z) = (1+z)(1+z^2)\cdots(1+z^{2^n}) = \prod_{i=1}^n (1+z^{2^i})$$

First, I claim that $(1-z)P_n(z) = (1-z^{2^{n+1}})$. Suppose the claim is true for some n, then

$$(1-z)P_{n+1}(z) = \left[(1-z)P_n(z)\right](1+z^{2^{n+1}}) = (1-z^{2^{n+1}})(1+z^{2^{n+1}}) = \left(1-z^{2^{n+2}}\right) = \left(1-z^{2^{(n+1)+1}}\right)$$

The base case is trivial, so the result follows by induction. Therefore,

$$\left|P_n(z) - \frac{1}{1-z}\right| \le \frac{1}{1-|z|} \left|(1-z)P_n(z) - 1\right| = |z|^{2^{n+1}} \to 0, n \to \infty$$

since |z| < 1. Since $\frac{1}{1-|z|}$, |z| are bounded on any compact subset of D(0; 1), we remark that the convergence is uniform on compact subsets of D(0; 1).

5.2.3 Exercise 3

First, note that even though the function $z \mapsto \sqrt{z}$ is not entire for any branch choice, the function $f(z) = \cos(\sqrt{z})$ is. Indeed, substituting into the definition of $\cos(z)$,

$$f(z) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} (\sqrt{z})^{2n}$$

Since changing the choice of branch only results in a sign change, we see that $(\sqrt{z})^{2n} = z^n$, and therefore

$$f(z) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} z^n$$

which is evidently an entire function, being a power series with infinite radius of convergence. Observe that f(z) has zero set $\left\{ \left(\frac{(2n+1)\pi}{2}\right)^2 : n \in \mathbb{Z} \right\}$. Since $\sin(z+\frac{\pi}{2}) = \cos(z)$, $\cos(\pi z)$ can be written as $\cos(\pi z) = \pi \left(z+\frac{1}{2}\right) \prod_{n \neq 0} \left(1-\frac{z+\frac{1}{2}}{n}\right) e^{\frac{z+\frac{1}{2}}{n}} = \pi \left(z+\frac{1}{2}\right) \prod_{n \neq 0} \left(\frac{2n-1}{2n}-\frac{2z}{2n}\right) e^{\frac{1}{2n}+\frac{z}{n}}$ $= \frac{\pi}{2} \left(1-\frac{z}{\frac{-1}{2}}\right) \prod_{n \neq 0} \frac{2n-1}{2n} \left(1-\frac{z}{\frac{2n-1}{2}}\right) e^{\frac{1}{2n}+\frac{z}{n}} = \frac{\pi}{2} \prod_{n=1}^{\infty} \left(1-\frac{1}{4n^2}\right) \left(1-\frac{z^2}{\frac{(2n-1)^2}{4}}\right)$

Using the infinite product representation of $\sin(z)$, we have

$$\frac{2}{\pi} = \frac{\sin\left(\frac{\pi}{2}\right)}{\frac{\pi}{2}} = \prod_{n=1}^{\infty} \left(1 - \frac{\left(\frac{\pi}{2}\right)^2}{n^2 \pi^2}\right) = \prod_{n=1}^{\infty} \left(1 - \frac{4}{n^2}\right)$$

Hence,

$$\cos(\pi z) = \prod_{n=1}^{\infty} \left(1 - \frac{z^2}{\frac{(2n-1)^2}{4}} \right) \Rightarrow \cos(z) = \prod_{n=1}^{\infty} \left(1 - \frac{z^2}{\left(\frac{(2n-1)\pi}{2}\right)^2} \right)$$

Hence, f(z) has the canonical product representation

$$f(z) = \prod_{n=1}^{\infty} \left(1 - \frac{z}{\left(\frac{(2n-1)\pi}{2}\right)^2} \right)$$

Since

$$\sum_{n=1}^{\infty} \left(\frac{(2n-1)\pi}{2}\right)^{-2} = \frac{\pi^2}{4} \sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} < \infty$$

being comparable to $\sum \frac{1}{n^2}$, we see that f(z) is an entire function of genus zero.

5.2.3 Exercise 4

Let f(z) be an entire function of genus h. Let $\{a_n \neq 0\}_{n \in \mathbb{N}}$ denotes the (at most countable) set of nonzero zeroes of f and h_c denote the genus of the canonical product. We may write

$$f(z) = z^m e^{g(z)} \prod_{n=1}^{\infty} \left(1 - \frac{z}{a_n} \right) e^{\frac{z}{a_n} + \frac{1}{2} \left(\frac{z}{a_n} \right)^2 + \dots + \frac{1}{h_c} \left(\frac{z}{a_n} \right)^{h_c}}$$

where g(z) is a polynomial and $h = \max(\deg(g(z)), h_c)$. Hence,

$$f(z^2) = z^{2m} e^{g(z^2)} \prod_{n=1}^{\infty} \left(1 - \frac{z^2}{a_n}\right) e^{\frac{z^2}{a_n} + \frac{1}{2}\left(\frac{z^2}{a_n}\right)^2 + \dots + \frac{1}{h_c}\left(\frac{z^2}{a_n}\right)^{h_c}}$$

 $=z^{2m}e^{g(z^2)}\prod_{n=1}^{\infty}\left(1-\frac{z}{\sqrt{a_n}}\right)\left(1+\frac{z}{\sqrt{a_n}}\right)e^{\frac{z}{\sqrt{a_n}}+\frac{1}{2}\left(\frac{z}{\sqrt{a_n}}\right)^2+\dots+\frac{1}{2h_c+1}\left(\frac{z}{\sqrt{a_n}}\right)^{2h_c+1}}e^{\frac{z}{-\sqrt{a_n}}+\frac{1}{2}\left(\frac{z}{-\sqrt{a_n}}\right)^2+\dots+\frac{1}{2h_c+1}\left(\frac{z}{-\sqrt{a_n}}\right)^{2h_c+1}}e^{\frac{z}{\sqrt{a_n}}+\frac{1}{2}\left(\frac{z}{\sqrt{a_n}}\right)^2+\dots+\frac{1}{2h_c+1}\left(\frac{z}{\sqrt{a_n}}\right)^{2h_c+1}}e^{\frac{z}{-\sqrt{a_n}}+\frac{1}{2}\left(\frac{z}{\sqrt{a_n}}\right)^2+\dots+\frac{1}{2h_c+1}\left(\frac{z}{\sqrt{a_n}}\right)^{2h_c+1}}e^{\frac{z}{\sqrt{a_n}}+\frac{1}{2}\left(\frac{z}{\sqrt{a_n}}\right)^2+\dots+\frac{1}{2h_c+1}\left(\frac{z}{\sqrt{a_n}}\right)^{2h_c+1}}e^{\frac{z}{\sqrt{a_n}}+\frac{1}{2}\left(\frac{z}{\sqrt{a_n}}\right)^2+\dots+\frac{1}{2h_c+1}\left(\frac{z}{\sqrt{a_n}}\right)^{2h_c+1}}e^{\frac{z}{\sqrt{a_n}}+\frac{1}{2}\left(\frac{z}{\sqrt{a_n}}\right)^2+\dots+\frac{1}{2h_c+1}\left(\frac{z}{\sqrt{a_n}}\right)^{2h_c+1}}e^{\frac{z}{\sqrt{a_n}}+\frac{1}{2}\left(\frac{z}{\sqrt{a_n}}\right)^2+\dots+\frac{1}{2h_c+1}\left(\frac{z}{\sqrt{a_n}}\right)^{2h_c+1}}e^{\frac{z}{\sqrt{a_n}}+\frac{1}{2}\left(\frac{z}{\sqrt{a_n}}\right)^2+\dots+\frac{1}{2h_c+1}\left(\frac{z}{\sqrt{a_n}}\right)^{2h_c+1}}e^{\frac{z}{\sqrt{a_n}}+\frac{1}{2}\left(\frac{z}{\sqrt{a_n}}\right)^2+\dots+\frac{1}{2h_c+1}\left(\frac{z}{\sqrt{a_n}}\right)^{2h_c+1}}e^{\frac{z}{\sqrt{a_n}}}e^{\frac{z}{\sqrt{a_n}}+\frac{1}{2}\left(\frac{z}{\sqrt{a_n}}\right)^2+\dots+\frac{1}{2h_c+1}\left(\frac{z}{\sqrt{a_n}}\right)^{2h_c+1}}e^{\frac{z}{\sqrt{a_n}}}e^$

where we've chosen some branch of the square root. If we define $b_1 = \sqrt{a_1}, b_2 = -\sqrt{a_1}, \cdots$. Then

$$\tilde{f}(z) = f(z^2) = z^{2m} e^{g(z^2)} \prod_{n=1}^{\infty} \left(1 - \frac{z}{b_n}\right) e^{\frac{z}{b_n} + \frac{1}{2} \left(\frac{z}{b_n}\right)^2 + \dots + \frac{1}{2h_c + 1} \left(\frac{z}{b_n}\right)^{2h_c + 1}}$$

the breaking up of the product being justified since the individual products converge absolutely by virtue of

$$\sum \frac{1}{|b_n|^{2h_c+1+1}} = \sum \frac{1}{|a_n|^{h_c+1}} < \infty$$

I claim that the genus of \tilde{f} is bounded from below by h. If h = 0, then there is nothing to prove; assume otherwise. If $h = \deg(g(z)) > 0$, then $\tilde{h} \ge \deg(g(z^2)) > h$; so assume that $h = h_c$. We will show that the genus \tilde{h}_c of the canonical product associated to (b_n) is bounded from below by $2h_c$. Suppose $\tilde{h}_c < 2h_c$. Since $a_n \to \infty$ and therefore $b_n \to \infty$ by continuity, we have that for all n sufficiently large $|b_n| > 1$. So it suffices to consider the case $\tilde{h}_c = 2h_c - 1$. Then

$$\infty > \sum_{n=1}^{\infty} \frac{1}{|b_n|^{\tilde{h}_c+1}} = \sum_{n=1}^{\infty} \frac{1}{|b_n|^{2h_c-1+1}} = \sum_{n=1}^{\infty} \frac{1}{|a_n|^{h_c}}$$

But this shows that the genus of the canonical product associated to (a_n) is at most $h_c - 1$, which is obviously a contradiction. Taking f_{r} to be a polynomial shows that this bound is sharp.

I claim that the genus of f is bounded from above by 2h + 1. Indeed, $2h + 1 \ge 2 \deg(g(z)) = \deg(g(z^2))$, and we showed above that $\tilde{h}_c \le 2h_c + 1 \le 2h + 1$. This bound is also sharp since we can take

$$f(z) = \prod_{n=1}^{\infty} \left(1 - \frac{z}{n^2}\right) \Rightarrow f(z^2) = \prod_{n \neq 0} \left(1 - \frac{z}{n}\right) e^{\frac{z}{n}}$$

f(z) is clearly an entire function of genus 0, and the genus of the canonical product associated to $(n)_{n\in\mathbb{Z}}$ is 1, from which we conclude the genus of $f(z^2)$ is 1.

5.2.4 Exercise 2

Using Legendre's duplication formula for the gamma function (Ahlfors p. 200),

$$\Gamma\left(\frac{1}{6}\right) = \sqrt{\pi}\Gamma\left(2\cdot\frac{1}{6}\right)2^{1-2\cdot\frac{1}{6}}\Gamma\left(\frac{1}{6}+\frac{1}{2}\right)^{-1} = \sqrt{\pi}2^{\frac{2}{3}}\Gamma\left(\frac{1}{3}\right)\Gamma\left(\frac{2}{3}\right)$$

Applying the formula $\Gamma(z)\Gamma(1-z) = \frac{\pi}{\sin(\pi z)}$ (Ahlfors p. 199), we obtain

$$\Gamma\left(\frac{1}{6}\right) = \sqrt{\pi}2^{\frac{2}{3}}\Gamma\left(\frac{1}{3}\right)\Gamma\left(\frac{1}{3}\right)\frac{\sin\left(\pi\cdot\frac{1}{3}\right)}{\pi} = 2^{-\frac{1}{3}}\left(\frac{3}{\pi}\right)^{\frac{1}{2}}\left(\Gamma\left(\frac{1}{3}\right)\right)^{2}$$

5.2.4 Exercise 3

It is clear from the definition of the Gamma function that for each $k \in \mathbb{Z}^{\leq 0}$,

$$f(z) = \begin{cases} \left(1 + \frac{z}{k}\right) \Gamma(z) & k \neq 0\\ z\Gamma(z) & k = 0 \end{cases}$$

extends to a holomorphic function in an open neighborhood of k. We abuse notation and denote the extension also by $(1 + \frac{z}{k}) \Gamma(z)$ and $z\Gamma(z)$. lemma For any $k \in \mathbb{Z}^{>0}$,

$$\Gamma(z) = \frac{\Gamma(z+k)}{\prod_{j=1}^{k} (z+j-1)} \; \forall z \notin \mathbb{Z}$$

Proof. Recall that $\Gamma(z)$ has the property that the $\Gamma(z+1) = z\Gamma(z)$. We proceed by induction. The base case is trivial, so assume that $\Gamma(z) = \frac{\Gamma(z+k)}{\prod_{j=1}^{k} (z+j-1)}$ for some $k \in \mathbb{N}$. Then

$$\frac{\Gamma(z+(k+1))}{\prod_{j=1}^{k+1}(z+j-1)} = \frac{\Gamma((z+k)+1)}{\prod_{j=1}^{k+1}(z+j-1)} = \frac{(z+k)\Gamma(z+k)}{\prod_{j=1}^{k+1}(z+j-1)} = \frac{\Gamma(z+k)}{\prod_{j=1}^{k}(z+j-1)!} = \Gamma(z)$$

Corollary 4. For any $k \in \mathbb{Z}^{\leq 0}$,

$$\lim_{z \to k} (z - k)\Gamma(z) = \frac{(-1)^k}{|k|!}$$

Proof. Fix $k \in \mathbb{Z}^{\leq 0}$. Immediate from the preceding lemma is that

$$\lim_{z \to -|k|} (z+|k|)\Gamma(z) = \lim_{z \to -|k|} (z+|k|) \frac{\Gamma(z+|k|+1)}{\prod_{j=1}^{k+1} (z+|j|-1)} = \frac{\Gamma(1)}{(-1)(-2)\cdots(-|k|)} = \frac{(-1)^k}{|k|!}$$

Let $k \in \mathbb{Z}^{\leq 0}$. Then

$$\operatorname{res}\left(\Gamma;k\right) = \frac{1}{2\pi i} \int_{|z-k| = \frac{1}{2}} \Gamma(z) dz = \frac{1}{2\pi i} \int_{|z-k| = \frac{1}{2}} \frac{(1 - \frac{z}{k})\Gamma(z)}{1 - \frac{z}{k}} dz = \frac{1}{2\pi i} \int_{|z-k| = \frac{1}{2}} \frac{(z-k)\Gamma(z)}{z-k} dz$$

Since the function $(1 + \frac{z}{k})\Gamma(z)$ extends to a holomorphic function in a neighborhood of k, by Cauchy's integral formula,

$$\frac{1}{2\pi i} \int_{|z-k|=\frac{1}{2}} \frac{(z-k)\,\Gamma(z)}{z-k} dz = (z-k)\,\Gamma(z)|_{z=k} = \frac{(-1)^k}{|k|!}$$

where use the preceding lemma to obtain the last equality. Thus,

$$\operatorname{res}\left(\Gamma;k\right) = \frac{(-1)^k}{|k|!} \; \forall k \in \mathbb{Z}^{\leq 0}$$

5.2.5 Exercise 2

Lemma 5.

$$\int_0^\infty \log\left(\frac{1}{1-e^{-2\pi x}}\right) dx = \frac{\pi}{12}$$

Proof. Let $1 >> \delta > 0$. Consider the function $\frac{\log(1-z)}{z}$, which has the power series representation

$$\frac{\log(1-z)}{z} = -\frac{1}{z}\sum_{n=1}^{\infty}\frac{1}{n}z^n = \sum_{n=1}^{\infty}\frac{1}{n}z^{n-1} \; \forall \, |z| < 1$$

with the understanding that the singularity at z = 0 is removable. Since the convergence is uniform on compact subsets, we may integrate over the contour $\gamma_{\delta} : [0, 1 - \delta] \to \mathbb{C}, \gamma_{\delta}(t) = t$ term by term, Thus,

$$\int_{\gamma_{\delta}} \frac{\log(1-z)}{z} dz = \int_{0}^{1-\delta} \frac{\log(1-t)}{t} dt = \sum_{n=1}^{\infty} \frac{1}{n^2} (1-\delta)^n \to \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}]$$

since the function $f(x) = \sum_{n=1}^{\infty} \frac{x^n}{n^2}$ is left-continuous at x = 1. Hence,

$$\int_0^1 \frac{\log(1-t)}{t} dt = \sum_{n=1}^\infty \frac{1}{n^2} = \frac{\pi^2}{6}$$

We now make the change of variable $t = e^{-2\pi x}$ to obtain

$$\frac{\pi^2}{6} = \int_0^\infty \frac{\log(1 - e^{-2\pi x})}{e^{-2\pi x}} - 2\pi e^{-2\pi x} dx = -2\pi \int_0^\infty \log(1 - e^{-2\pi x}) dx$$

which gives

$$\int_{0}^{\infty} \log\left(\frac{1}{1 - e^{-2\pi x}}\right) dx = \int_{0}^{\infty} -\log\left(1 - e^{-2\pi x}\right) dx = \frac{\pi}{12}$$

For $x \in \mathbb{R}^{>0}$, Stirling's formula (Ahlfors p. 203-4) for $\Gamma(z)$ tells us that

$$\Gamma(x) = \sqrt{2\pi} x^{x-\frac{1}{2}} e^{-x} e^{J(x)}$$

where

$$J(x) = \frac{1}{\pi} \int_0^\infty \frac{x}{\eta^2 + x^2} \log\left(\frac{1}{1 - e^{-2\pi\eta}}\right) d\eta$$

The preceding lemma tells us that

$$J(x) = \frac{1}{x} \cdot \frac{1}{\pi} \int_0^\infty \frac{x^2}{x^2 + \eta^2} \log\left(\frac{1}{1 - e^{-2\pi\eta}}\right) d\eta \le \frac{1}{x} \cdot \frac{1}{\pi} \int_0^\infty \log\left(\frac{1}{1 - e^{-2\pi\eta}}\right) d\eta = \frac{1}{x} \cdot \frac{1}{\pi} \cdot \frac{\pi}{12} = \frac{1}{12x}$$

where we've used $0 < \frac{x^2}{x^2 + \eta^2} \le 1 \ \forall \eta$. Set

$$\theta(x) = 12xJ(x)$$

It is obvious that $\theta(x) > 0$ and $\theta(x) < 1$ since $\frac{x^2}{x^2 + \eta^2} < 1$ almost everywhere, and therefore the preceding inequality is strict. We thus conclude that

$$\Gamma(x) = \sqrt{2\pi} x^{x - \frac{1}{2}} e^{-x} e^{\frac{\theta(x)}{12x}} \quad 0 < \theta(x) < 1$$

5.2.5 Exercise 3

Take $f(z) = e^{-z^2}$, and for R >> 0, define

$$\gamma_1: [0,R] \to \mathbb{C}, \gamma_1(t) = t; \gamma_2: [0,\frac{\pi}{4}] \to \mathbb{C}, \gamma_2(t) = Re^{it}; \gamma_3: [0,R] \to \mathbb{C}, \gamma_3(t) = (R-t)e^{i\frac{\pi}{4}}$$

and let γ be the positively oriented closed curve defined by the γ_i .

$$\left| \int_{\gamma_2} f(z) dz \right| = \left| \int_0^{\frac{\pi}{4}} e^{-R\cos(2t) - iR\sin(2t)} Rie^{it} dt \right| \le \int_0^{\frac{\pi}{4}} e^{-R\cos(2t)} R dt$$

Since $\cos(2t)$ is nonnegative and $\cos(2t) \ge 2t$ (this is immediate from $\frac{d}{dt}\cos(2t) = -2\sin(2t) \ge -2$ on $[0, \frac{\pi}{4}]$) for $t \in [0, \frac{\pi}{4}]$, we have

$$\int_0^{\frac{\pi}{4}} e^{-R\cos(2t)} R dt \le \int_0^{\frac{\pi}{4}} e^{-2Rt} R dt = -\frac{1}{2} \left[e^{-R\frac{\pi}{2}} - 1 \right] \to 0, R \to \infty$$

Since f is an entire function, by Cauchy's theorem,

$$0 = \int_{\gamma} f(z)dz = \int_{\gamma_1} f(z)dz + \int_{\gamma_2} f(z)dz + \int_{\gamma_3} f(z)dz$$

and letting $R \to \infty$,

$$\int_0^\infty e^{-x^2} dx = \lim_{R \to \infty} e^{i\frac{\pi}{4}} \int_0^R e^{-(R-t)^2 e^{i\frac{\pi}{2}}} dt = \lim_{R \to \infty} e^{i\frac{\pi}{4}} \int_0^R e^{-i(R-t)^2} dt = e^{i\frac{\pi}{4}} \int_0^\infty e^{-iy^2} dy$$

where we make the substitution y = R - t. Substituting $\int_0^\infty e^{-x^2} dx = 2^{-1} \sqrt{\pi}$,

$$\int_0^\infty \cos(x^2) dx - i \int_0^\infty \sin(x^2) dx = \int_0^\infty e^{-ix^2} dx = e^{-i\frac{\pi}{4}} \frac{\sqrt{\pi}}{2} = \frac{\sqrt{\pi}}{2\sqrt{2}} - i\frac{\sqrt{\pi}}{2\sqrt{2}}$$

Equating real and imaginary parts, we obtain the Fresnel integrals

$$\int_0^\infty \cos(x^2) dx = \frac{\sqrt{\pi}}{2\sqrt{2}}$$
$$\int_0^\infty \sin(x^2) dx = \frac{\sqrt{\pi}}{2\sqrt{2}}$$

Entire Functions

5.3.2 Exercise 1

We will show that the following two definitions of the **genus** of an entire function f are equivalent:

1. If

$$f(z) = z^{m} e^{g(z)} \prod_{n=1}^{\infty} \left(1 - \frac{z}{a_{n}}\right) e^{\sum_{j=1}^{h} \frac{1}{j} \left(\frac{z}{a_{n}}\right)^{j}}$$

where h is the genus of the canonical product associated to (a_n) , then the genus of f is max $(\deg(g(z)), h)$. If no such representation exists, then f is said to be of infinite genus.

2. The genus of f is the minimal $h \in \mathbb{Z}^{\geq 0}$ such that

$$f(z) = z^m e^{g(z)} \prod_{n=1}^{\infty} \left(1 - \frac{z}{a_n}\right) e^{\sum_{j=1}^h \frac{1}{j} \left(\frac{z}{a_n}\right)^j}$$

where $\deg(g(z)) \leq h$. If no such h exists, then f is said to be of infinite genus.

Proof. Suppose f has finite genus h_1 with respect to definition (1). If $h_1 = h$, then $\deg(g(z)) \leq h_1$. Hence, f is of a finite genus h_2 with respect to definition (2), and $h_2 \leq h_1$. Assume otherwise. By definition of the genus of the canonical product, the expression

$$\sum_{n=1}^{\infty} \sum_{j=h+1}^{h_1} \frac{1}{j} \left(\frac{z}{a_n}\right)^j = \sum_{j=h+1}^{h_1} \frac{1}{j} \left(\sum_{n=1}^{\infty} \frac{1}{a_n^j}\right) z^j$$

defines a polynomial of degree h_1 . Hence, we may write

$$f(z) = z^m e^{g(z) - \sum_{n=1}^{\infty} \sum_{j=h+1}^{h_1} \frac{1}{j} \left(\frac{z}{a_n}\right)^j} \prod_{n=1}^{\infty} \left(1 - \frac{z}{a_n}\right) e^{\sum_{j=1}^{h_1} \frac{1}{j} \left(\frac{z}{a_n}\right)^j} = z^m e^{\tilde{g}(z)} \prod_{n=1}^{\infty} \left(1 - \frac{z}{a_n}\right) e^{\sum_{j=1}^{h_1} \frac{1}{j} \left(\frac{z}{a_n}\right)^j}$$

where we $\tilde{g}(z)$ is a polynomial of degree h_1 . Hence, f is of finite genus h_2 with respect to definition (2) and $h_2 \leq h_1$.

Now suppose that f has finite genus h_2 with respect to definition (2). Reversing the steps of the previous argument, we attain that f has finite genus h_1 with respect to definition (1), and $h_1 \leq h_2$. It follows immediately that definitions (1) and (2) are equivalent if f has finite genus with respect to either (1) and (2), and by proving the contrapositives, we see that (1) and (2) are equivalent for all entire functions f. \Box

5.3.2 Exercise 2

lemma Let $a \in \mathbb{C}$ and r > 0. Then

$$\inf_{|z|=r} |z - |a|| = |r - |a|| \text{ and } \sup_{|z|=r} |z - |a|| = r + |a|$$

Proof. By the triangle inequality and reverse inequality, we have the double inequality

$$|r - |a|| = ||z| - |a|| \le |z - |a|| \le |z| + |a| = r + |a|$$

Hence, $\inf |z - |a|| \ge |r - |a||$ and $\sup |z - |a|| \le r + |a|$. But these values are attained at z = r and z = -r, respectively.

By Weierstrass's extreme value theorem, |f| and |g| attain both their maximum and minimum on the circle $\{|z| = r\}$ at $z_{M,f}, z_{M,g}$ and $z_{m,f}, z_{m,g}$, respectively. The preceding lemma shows that $z_{M,g} = -r$ and $z_{m,g} = r$. Consider the expression

$$\frac{f(z)}{g(z)} \bigg| = \left| \frac{z^m \prod_{n=1}^{\infty} \left(1 - \frac{z}{a_n}\right)}{z^m \prod_{n=1}^{\infty} \left(1 - \frac{z}{|a_n|}\right)} \right| = \prod_{n=1}^{\infty} \frac{|z - a_n|}{|z - |a_n||}$$

We have

$$\left| \frac{f(z_{M,f})}{g(z_{M,g})} \right| = \left| \frac{f(z_{M,f})}{g(-r)} \right| = \prod_{n=1}^{\infty} \frac{\left| re^{i\theta_{M,f}} - a_n \right|}{r + |a_n|} = \prod_{n=1}^{\infty} \frac{\left| re^{i(\theta_{M,f} - \arg(a_n))} - |a_n| \right|}{r + |a_n|}$$

$$\leq \prod_{n=1}^{\infty} \frac{\sup_{|z|=r} |z - |a_n||}{r + |a_n|} = \prod_{n=1}^{\infty} \frac{r + |a_n|}{r + |a_n|} = 1$$

Hence, $|f(z_{M,f})| \leq |g(z_{M,g})|$. Since

$$|z_{m,f} - a_n| = \left| r e^{i(\theta_{m,f} - \arg(a_n))} - |a_n| \right| \ge |r - |a_n|| \quad \forall n \in \mathbb{N}$$

we have that

$$\left|\frac{f(z_{m,f})}{g(z_{m,g})}\right| = \left|\frac{f(z_{m,f})}{g(r)}\right| = \prod_{n=1}^{\infty} \frac{|z_{m,f} - a_n|}{|r - |a_n||} \ge \prod_{n=1}^{\infty} \frac{|z_{m,f} - a_n|}{|z_{m,f} - a_n|} = 1$$

Hence, $|f(z_{m,f})| \ge |g(z_{m,g})|$.

5.5.5 Exercise 1

Let Ω be a fixed region and \mathcal{F} be the family of holomorphic functions $f : \Omega \to \mathbb{C}$ with $\operatorname{Re}(f(z)) > 0 \ \forall z \in \Omega$. I claim that \mathcal{F} is normal. Consider the family of functions

$$\mathcal{G} = \left\{ g : \Omega \to \mathbb{C} : g = e^{-f} \text{ for some } f \in \mathcal{F} \right\}$$

Since $\operatorname{Re}(f(z)) > 0 \ \forall f \in \mathcal{F}$, we have

$$\left|e^{-f(z)}\right| = \left|e^{-\operatorname{Re}(f(z))-i\operatorname{Im}(f(z))}\right| = \left|e^{-\operatorname{Re}(f(z))}\right| \le 1$$

Hence, \mathcal{G} is uniformly bounded on compact subsets of Ω and is therefore a normal family. Fix a sequence $(f_n)_{n \in \mathbb{N}} \subset \mathcal{F}$, and consider the sequence $g_n = e^{-f_n}$. (g_n) has a convergent subsequence (g_{n_k}) which converges to a holomorphic function g on compact sets (Weierstrass's theorem). Since g_{n_k} is nonvanishing for each k, g is either identically zero or nowhere zero by Hurwitz theorem. If g is identically zero, then it is immediate that f_{n_k} tends to ∞ uniformly on compact sets. Now, suppose that g is nowhere zero. $g(K) \subset \mathbb{D} \setminus \{0\}$ is compact by continuity. By the Open Mapping Theorem, for each $z \in K$, there exists r > 0 such that $D(g(z); r) \subset g(\Omega) \subset \mathbb{D} \setminus \{0\}$. The disks $D(g(z); 4^{-1}r)$ form an open cover of g(K), so by compactness,

$$g(K) \subset \bigcup_{i=1}^{n} D(g(z_i); 4^{-1}r_i) \subset \bigcup_{i=1}^{n} \overline{D}(g(z_i); 2^{-1}r_i) \subset \bigcup_{i=1}^{n} D(g(z_i); r_i) \subset \mathbb{D} \setminus \{0\}$$

On each $D(g(z_i); r_i)$, we can choose a branch of the logarithm such that $\log(z)$ is holomorphic on $D(g(z_i); r_i)$, and in particular uniformly continuous on $\overline{D}(g(z_i); 2^{-1}r_i)$. For each *i*, choose $\delta_i > 0$ such that

$$w, w' \in \overline{D}(g(z_i); r_i) |w - w'| < \delta_i \Rightarrow |\log(w) - \log(w')| < \epsilon$$

Set $\delta = \min_{1 \le i \le n} \delta_i$, choose $k_0 \in \mathbb{N}$ such that $k \ge k_0 \Rightarrow |g_{n_k}(z) - g(z)| < \delta \ \forall z \in K$. Then for $1 \le i \le n$,

$$\forall k \ge k_0 \quad \left| \log\left(e^{-f_{n_k}(z)}\right) - \log(g(z)) \right| < \epsilon \; \forall z \in g^{-1}\left(\overline{D}(g(z_i); 2^{-1}r_i)\right)$$

It is not a priori true that $\log(e^{-f_{n_k}(z)}) = -f_{n_k}(z)$; the imaginary parts differ by an integer multiple of $2\pi i$. But the function given by $\frac{1}{2\pi i} \left[\log(e^{-f_{n_k}(z)}) + f_{n_k}(z) \right]$ is continuous and integer-valued on any open disk about each z_i in Ω , and therefore must be a constant $m \in \mathbb{Z}$ in that disk as a consequence of connectedness. Taking a new covering of g(K), if necessary, such that $D(g(z_i); r_i)$ is contained in the image under g of such a disk (which we can do by the Open Mapping Theorem), we may assume that for each $z \in g^{-1}(D(g(z_i); r_i))$,

$$2\pi m_i = \lim_{k \to \infty} \left[\log \left(e^{-f_{n_k}(z)} \right) + f_{n_k}(z) \right] = \log(g(z)) + \lim_{k \to \infty} f_{n_k}(z)$$

Taking $k_0 \in \mathbb{N}$ larger if necessary, we conclude that

$$\forall k \ge k_0 \left| \log\left(e^{-f_{n_k}(z)}\right) - \log(g(z)) \right| = |f_{n_k}(z) - \left[-\log(g(z)) + 2\pi m_i\right]| < \epsilon \ \forall z \in g^{-1}\left(\overline{D}(g(z_i); 2^{-1}r_i)\right)$$

Since $K \subset \bigcup_{i=1}^{n} g^{-1} \left(\overline{D}(g(z_i); 2^{-1}r_i) \right)$, we conclude from the uniqueness of limits that $f_{n_k}(z)$ converges to $\lim_{k \to \infty} f_{n_k}(z)$ uniformly on K.

Suppose in addition that $\{\operatorname{Re}(f) : f \in \mathcal{F}\}$ is uniformly bounded on compact sets. I claim that \mathcal{F} is then locally bounded. Let $K \subset \Omega$ be compact, and let L > 0 be such that $\operatorname{Re}(f)(z) \leq L \ \forall z \in K \ \forall f \in \mathcal{F}$. Then

$$\left|e^{f(z)}\right| = e^{\operatorname{Re}(f(z))} \le e^L \ \forall z \in K \ \forall f \in \mathcal{F}$$

Hence, $\{g = e^f : f \in \mathcal{F}\}$ is a locally bounded family, and therefore its derivatives are locally bounded. Since $\operatorname{Re}(f) > 0 \ \forall f \in \mathcal{F}$, we have that

$$|f'(z)| \le |f'(z)e^{f(z)}| = |g'(z)|$$

which shows that $\{f': f \in \mathcal{F}\}$ is a locally bounded family. Since K is compact, there exist $z_1, \dots, z_n \in K$ and $r_1, \dots, r_n > 0$ such that $K \subset \bigcup_{i=1}^n D(z_i; \frac{r_i}{2})$ and $D(z_i; r_i) \subset \Omega$. By Cauchy's theorem,

$$f(z) = \int_{[z_i, z]} f'(z) dz \ \forall z \in D\left(z_i; \frac{r_i}{2}\right) \Rightarrow |f(z)| \le M_i r_i \ \forall z \in D\left(z_i; \frac{r_i}{2}\right)$$

where $[z, z_i]$ denotes the straight line segment, and M_i is a uniform bound for $\{f' : f \in \mathcal{F}\}$ on $D(z_i; 2^{-1}r_i)$. Setting $M = \max_{1 \le i \le n} M_i$ and $r = \max_{1 \le i \le n} r_i$, we conclude that

$$|f(z)| \le Mr \; \forall z \in K \; \forall f \in \mathcal{F}$$

Normal Families

5.5.5 Exercise 3

Let $f : \mathbb{C} \to \mathbb{C}$ be an entire holomorphic function. Define a family of entire functions \mathcal{F} by

$$\mathcal{F} = \{g: \mathbb{C} \to \mathbb{C} : g(z) = f(kz), k \in \mathbb{C}\}$$

Fix $0 \le r_1 < r_2 \le \infty$. I claim that \mathcal{F} is normal (in the sense of Definition 3 p. 225) in the annulus $r_1 < |z| < r_2$ if and only if f is a polynomial.

Suppose $f = a_0 + a_1 z + \dots + a_n z^n$ is a polynomial, where $a_n \neq 0$. By Ahlfors Theorem 17 (p. 226), it suffices to show that the expression

$$\rho(g) = \frac{2|g'(z)|}{1+|g(z)|^2} \ g \in \mathcal{F}$$

is locally bounded. Since g(z) = f(kz) for some $k \in \mathbb{C}$, it suffices to show that $\frac{2|f'(z)|}{1+|f(z)|^2}$ is bounded on \mathbb{C} . The function F(z) given by

$$F(z) = \frac{2\left|f'\left(z^{-1}\right)\right|}{1+\left|f(z^{-1})\right|^2} = \frac{2\left|a_1z^{2n} + 2a_2z^{2n-1} + \dots + na_nz^{n+1}\right|}{\left|z\right|^{2n} + \left|a_0z^n + a_1z^{n-1} + \dots + a_n\right|^2}$$

is continuous in a neighborhood of 0 with $F(0) \neq +\infty$ since $a_n \neq 0$. Hence, $|F(z)| \leq M_1 \forall |z| \leq \delta$, which shows that

$$\frac{2|f'(z)|}{1+|f(z)|^2} \le M_1 \ \forall |z| \ge \frac{1}{\delta}$$

 $\frac{2|f'(z)|}{1+|f(z)|^2}$ is continuous on the compact set $\overline{D}(0; \frac{1}{\delta})$ and therefore bounded by some M_2 . Taking $M = \max\{M_1, M_2\}$, we obtain the desired result.

Now suppose that \mathcal{F} is normal in $r_1 < |z| < r_2$. If f is bounded, then we're done by Liouville's theorem. Assume otherwise. Let $(f_n)_{n \in \mathbb{N}} \subset \mathcal{F}$ be a sequence given by

$$f_n(z) = f(\kappa_n z)$$
 for some $\kappa_n \in \mathbb{C}$

where $\kappa_n \to \infty, n \to \infty$. Since \mathcal{F} is normal, (f_n) has a subsequence $(f_{n_k})_{k \in \mathbb{N}}$ which either tends to ∞ , uniformly on compact subsets of $\{r_1 < |z| < r_2\}$, or converges to some limit function g in likewise fashion. Fix $\delta > 0$ small and consider the compact subset $\{r_1 + \delta \leq |z| \leq r_2 - \delta\}$. If $f_{n_k} \to g$, then I claim that fis bounded on \mathbb{C} , which gives us a contradiction. Indeed, fix $z_0 \in \mathbb{C}$. Since (f_{n_k}) converges uniformly on $\{r_1 + \delta \leq |z| \leq r_2 - \delta\}$, (f_{n_k}) is uniformly bounded by some M > 0 on this set. Let $|\kappa_{n_k}(r_1 + \delta)| \geq |z_0|$. By the Maximum Modulus Principle, |f(z)| is bounded on the disk $D(0; |\kappa_{n_k}(r_1 + \delta)|)$ by some |f(w)| for some w on the boundary. Hence,

$$|f(z_0)| \le |f(w)| = |f_{n_k}(z)| \le M$$
 for some $z \in \{|z| = r_1 + \delta\}$

Since z_0 was arbitrary, we conclude that f is bounded.

I now claim that f has finitely many zeroes. Suppose not. Let $(a_n)_{n \in \mathbb{N}}$ be the sequence of zeroes of f ordered by increasing modulus, and consider the sequence of functions $f_n(z) = f_n(r^{-1}a_nz)$, where $r_1 < r < r_2$ is fixed. Our preceding work shows that (f_n) has a subsequence (f_{n_k}) which tends to ∞ on the compact set $\{|z| = r\}$. But this is a contradiction since $f_{n_k}(r) = 0 \ \forall k \in \mathbb{N}$.

If we can show that f has a pole at ∞ , then we're done by Ahlfors Section 4.3.2 Exercise 2 (Problem Set 1). Let $f_n(z) = f(nz)$, and let $(f_{n_k})_{k \in \mathbb{N}}$ be a subsequence which tends to ∞ on compact sets. Let M > 0 be given. Fix $r_1 < r < r_2$. Then $f_{n_k} \to \infty$ uniformly on $\{|z| = r\}$, so there exists $k_0 \in \mathbb{N}$ such that for $k \ge k_0$, $|f_{n_k}(z)| > M \forall |z| = r$. Taking k_0 larger if necessary, we may assume that $|f(z)| > 0 \forall |z| \ge rn_{k_0}$. Let $z \in \mathbb{C}, |z| \ge rn_{k_0}$, and choose k so that $n_k r > |z|$. By the Minimum Modulus Principle, |f| assumes its minimum on the boundary of the annulus $\{n_{k_0}r \le |w| \le rn_k\}$. But

$$\min\left\{\inf_{|w|=n_{k_0}r} |f(w)|, \inf_{|w|=n_kr} |f(w)|\right\} > M$$

and therefore,

$$|f(z)| \ge \inf_{n_{k_0}r \le |w| \le n_k r} |f(w)| > M$$

Since z was arbitrary, we conclude that $|f(z)| > M \ \forall |z| \ge rn_{k_0}$. Since M > 0 was arbitrary, we conclude that f has a pole at ∞ .

5.5.5 Exercise 4

Let \mathcal{F} be a family of meromorphic functions in a given region Ω , which is not normal in Ω . By Ahlfors Theorem 17 (p. 226), there must exist a compact set $K \subset \Omega$ such that the expression

$$\rho(f)(z) = \frac{2|f'(z)|}{1+|f(z)|^2} \ f \in \mathcal{F}$$

is not locally bounded on K. Hence, we can choose a sequence of functions $(f_n) \subset \mathcal{F}$ and of points $(z_n) \subset K$ such that

$$\frac{2\left|f_{n}'(z_{n})\right|}{1+\left|f_{n}(z_{n})\right|^{2}}\nearrow\infty, n\to\infty$$

Suppose for every $z \in \Omega$, there exists an open disk $D(z; r_z) \subset \Omega$ on which \mathcal{F} is normal, equivalently $\rho(f)$ is locally bounded. Let $M_z > 0$ bound $\rho(f)$ on the closed disk $\overline{D}(z; 2^{-1}r_z)$. The collection $\{D(z; 2^{-1}r_z) : z \in K\}$ forms an open cover of K. By compactness, there exist finitely many disks $D(z_1; 2^{-1}r_1), \cdots, D(z_n; 2^{-1}r_n)$ such that

$$K \subset \bigcup_{i=1}^{n} D(z_i; 2^{-1}r_i) \text{ and } \forall i = 1, \cdots, n \ |\rho(f)(z)| \leq M_i \ \forall z \in \overline{D}(z_i; 2^{-1}r) \ \forall f \in \mathcal{F}$$

Setting $M = \max_{1 \le i \le n} M_i$, we conclude that

$$|\rho(f)(z)| \le M \ \forall z \in K \ \forall f \in \mathcal{F}$$

This is obviously a contradiction since $\lim_{n\to\infty} \rho(f_n)(z_n) = +\infty$. We conclude that there must exist $z_0 \in \Omega$ such that \mathcal{F} is not normal in any neighborhood of z_0 .

Conformal Mapping, Dirichlet's Problem

The Riemann Mapping Theorem

6.1.1 Exercise 1

Lemma 6. Let $f : \Omega \to \mathbb{C}$ be a holomorphic function on a symmetric region Ω (i.e. $\Omega = \overline{\Omega}$). Then the function $g : \Omega \to \mathbb{C}, g(z) = \overline{f(\overline{z})}$ is holomorphic.

Proof. Writing z = x + iy, if f(z) = u(x, y) + iv(x, y), where u, v are real, then $g(z) = u(x, -y) - iv(x, -y) = \bar{u}(x, y) + i\bar{v}(x, y)$. It is then evident that g is continuous and u, v have C^1 partials. We verify the Cauchy-Riemann equations.

$$\frac{\partial \bar{u}}{\partial x}(x,y) = \frac{\partial u}{\partial x}(x,-y); \quad \frac{\partial \bar{u}}{\partial y}(x,y) = -\frac{\partial u}{\partial y}(x,-y)$$
$$\frac{\partial \bar{v}}{\partial x}(x,y) = -\frac{\partial v}{\partial x}(x,-y); \quad \frac{\partial \bar{v}}{\partial y}(x,y) = \frac{\partial v}{\partial y}(x,-y)$$

The claim follows immediately from the fact that u, v satisfy the Cauchy-Riemann equations.

Let $\Omega \subset \mathbb{C}$ be simply connected symmetric region, $z_0 \in \Omega$ be real, and $f : \Omega \to \mathbb{D}$ be the unique conformal map satisfying $f(z_0) = 0$, $f'(z_0) > 0$ (as guaranteed by the Riemann Mapping Theorem). Define $g(z) = \overline{f(\overline{z})}$. Then $g : \Omega \to \mathbb{D}$ is holomorphic by the lemma and bijective, being the composition of bijections; hence, g is conformal. Furthermore, $g(z_0) = 0$ since $z_0, f(z_0) \in \mathbb{R}$. Since

$$0 < f'(z_0) = \frac{\partial u}{\partial x}(z_0) = \frac{\partial u}{\partial x}(\overline{z_0}) = g'(z_0)$$

we conclude by uniqueness that f = g. Equivalently, $\overline{f(z)} = f(\overline{z}) \ \forall z \in \Omega$.

6.1.1 Exercise 2

Suppose now that Ω is symmetric with respect to z_0 (i.e. $z \in \Omega \iff 2z_0 - z \in \Omega$). I claim that f satisfies

$$f(z) = 2f(z_0) - f(2z_0 - z) = -f(2z_0 - z)$$

Define $g: \Omega \to \mathbb{D}$ by $g(z) = -f(2z_0 - z)$. Clearly, g is conformal, being the composition of conformal maps, and $g(z_0) = 0$. Furthermore, by the chain rule, $g'(z_0) = f'(z_0) > 0$. We conclude from the uniqueness statement of the Riemann Mapping Theorem that $g(z) = f(z) \ \forall z \in \Omega$.

Elliptic Functions

Weierstrass Theory

7.3.2 Exercise 1

Let f be an even elliptic function periods ω_1, ω_2 . If f is constant then there is nothing to prove, so assume otherwise. First, suppose that 0 is neither a zero nor a pole of f. Observe that since f is even, its zeroes and poles occur in pairs. Since f is elliptic, f has the same number of poles as zeroes. So, let a_1, \dots, a_n , and b_1, \dots, b_n denote the incongruent zeroes and poles of f in some fundamental parallelogram P_a , where $a_i \not\equiv -a_j \mod M, b_i \not\equiv -b_j \mod M \ \forall i, j$ and where we repeat for multiplicity. Define a function g by

$$g(z) = f(z) \left(\prod_{k=1}^{n} \frac{\wp(z) - \wp(a_k)}{\wp(z) - \wp(b_k)} \right)^{-1}$$

and where \wp is the Weierstrass *p*-function with respect to the lattice generated by ω_1, ω_2 . I claim that g is a holomorphic elliptic function. Since $\wp(z) - \wp(a_k)$ and $\wp(z) - \wp(b_k)$ have double poles at each $z \in M$ for all k, g has a removable singularity at each $z \in M$. For each $k, \wp(z) - \wp(b_k)$ has the same poles as \wp and is therefore an elliptic function of order 2. Since $b_k \neq 0$ and \wp is even, it follows that $\wp(z) - \wp(b_k)$ has zeroes of order 1 at $z = \pm b_k$. From our convention for repeating zeroes and poles, we conclude that g has a removable singularity at $\pm b_k$. The argument that g has removable singularity at each a_k is completely analogous. Clearly,

$$g(z + \omega_1) = g(z + \omega_2) = g(z)$$
 for $z \notin a_i + M \cup b_i + M \cup M$

so by continuity, we conclude that g is a holomorphic elliptic function with periods ω_1, ω_2 and is therefore equal to a constant C. Hence,

$$f(z) = C \prod_{k=1}^{n} \frac{\wp(z) - \wp(a_k)}{\wp(z) - \wp(b_k)}$$

Since f is even, its Laurent series about the origin only has nonzero terms with even powers. So if f vanishes or has a pole at the origin, the order is $2m, m \in \mathbb{N}$. Suppose that f vanishes with order 2m. The function given by

$$\tilde{f}(z) = f(z) \cdot \wp(z)^m$$

is elliptic with periods ω_1, ω_2 . \tilde{f} has a removable singularity at z = 0, since $\wp(z)^k$ has a pole of order 2k at z = 0. Hence, we are reduced to the previous case of elliptic function, so applying the preceding argument, we conclude that

$$\tilde{f}(z) = C \prod_{k=1}^{n} \frac{\wp(z) - \wp(a_k)}{\wp(z) - \wp(b_k)} \Rightarrow f(z) = \frac{C}{\wp(z)^m} \prod_{k=1}^{n} \frac{\wp(z) - \wp(a_k)}{\wp(z) - \wp(b_k)}$$

If f has a pole of order 2m at the origin, then the function given by

$$\tilde{f}(z) = \frac{f(z)}{\wp(z)^m}$$

is elliptic with periods ω_1, ω_2 and has a removable singularity at the origin. From the same argument, we conclude that

$$f(z) = C\wp(z)^m \prod_{k=1}^n \frac{\wp(z) - \wp(a_k)}{\wp(z) - \wp(b_k)}$$

7.3.2 Exercise 2

Let f be an elliptic function with periods ω_1, ω_2 . By Ahlfors Theorem 5 (p. 271), f has the same number of zeroes and poles counted with multiplicity. Let $a_1, \dots, a_n, b_1, \dots, b_n$ denote the incongruent zeroes and poles of f, respectively, where we repeat for multiplicity. By Ahlfors Theorem p. 271, $\sum_{k=1}^{n} b_k - a_k \in M$, so replacing a_1 by $a'_1 = a_1 + \sum_{k=1}^{n} b_k - a_k$, we may assume without loss of generality that $\sum_{k=1}^{n} b_k - a_k = 0$. Define a function g by

$$g(z) = f(z) \left(\prod_{k=1}^{n} \frac{\sigma(z-a_k)}{\sigma(z-b_k)}\right)^{-1}$$

where σ is the entire function (Ahlfors p. 274) given by

$$\sigma(z) = z \prod_{\omega \neq 0} \left(1 - \frac{z}{\omega} \right) e^{\frac{z}{w} + \frac{1}{2} \left(\frac{z}{w}\right)^2}$$

g has removable singularities at $a_i + M, b_i + M$ for $1 \le i \le n$. I claim that g is elliptic with periods ω_1, ω_2 . Recall (Ahlfors p. 274) that σ satisfies

$$\sigma(z+\omega_1) = -\sigma(z)e^{-\eta_1\left(z+\frac{\omega_1}{2}\right)} \text{ and } \sigma(z+\omega_2) = -\sigma(z)e^{-\eta_2\left(z+\frac{\omega_2}{2}\right)} \forall z \in \mathbb{C}$$

where $\eta_2 \omega_1 - \eta_1 \omega_2 = 2\pi i$ (Legendre's relation). Hence, for $z \neq b_i + M, a_i + M$,

$$g(z+\omega_1) = f(z+\omega_1) \left(\prod_{k=1}^n \frac{\sigma(z-a_k+\omega_1)}{\sigma(z-b_k+\omega_1)}\right)^{-1} = f(z) \left(\prod_{k=1}^n \frac{-\sigma(z-a_k)e^{\eta_1\left(z-a_k+\frac{\omega_1}{2}\right)}}{-\sigma(z-b_k)e^{\eta_1\left(z-b_k+\frac{\omega_1}{2}\right)}}\right)^{-1}$$
$$= e^{\eta_1 \sum_{k=1}^n a_k-b_k} f(z) \left(\prod_{k=1}^n \frac{\sigma(z-a_k)}{\sigma(z-b_k)}\right)^{-1} = g(z)$$

By continuity, we conclude that $g(z + \omega_1) = g(z) \ \forall z \in \mathbb{C}$. Analogously, for $z \neq b_i + M, a_i + M$,

$$g(z+\omega_2) = f(z+\omega_2) \left(\prod_{k=1}^n \frac{\sigma(z-a_k+\omega_2)}{\sigma(z-b_k+\omega_2)}\right)^{-1} = f(z) \left(\prod_{k=1}^n \frac{-\sigma(z-a_k)e^{\eta_2(z-a_k+\frac{\omega_2}{2})}}{-\sigma(z-b_k)e^{\eta_2(z-b_k+\frac{\omega_2}{2})}}\right)^{-1}$$
$$= e^{\eta_2 \sum_{k=1}^n a_k-b_k} f(z) \left(\prod_{k=1}^n \frac{\sigma(z-a_k)}{\sigma(z-b_k)}\right)^{-1} = g(z)$$

By continuity, we conclude that $g(z + \omega_2) = g(z) \quad \forall z \in \mathbb{C}$. Since g is an entire elliptic function, it is constant by Ahlfors Theorem 3 (p. 270). We conclude that for some $C \in \mathbb{C}$,

$$f(z) = C \prod_{k=1}^{n} \frac{\sigma(z - a_k)}{\sigma(z - b_k)}$$

7.3.3 Exercise 1

_

Fix a rank-2 lattice $M \subset \mathbb{C}$ and $u \notin M$. Then

$$\wp(z) - \wp(u) = -\frac{\sigma(z-u)\sigma(z+u)}{\sigma(z)^2\sigma(u)^2}$$

Proof. I first claim that the RHS is periodic with respect to M. Let ω_1, ω_2 be generators of M and let $\eta_1 \omega_2 - \eta_2 \omega_1 = 2\pi i$. For $z \notin M$,

$$-\frac{\sigma(z+\omega_1-u)\sigma(z+\omega_1+u)}{\sigma(z+\omega_1)^2\sigma(u)^2} = -\frac{\sigma(z-u)e^{\eta_1(z-u+\frac{\omega_1}{2})}\sigma(z+u)e^{\eta_1(z+u+\frac{\omega_1}{2})}}{\sigma(z)^2e^{2\eta_1(z+\frac{\omega_1}{2})}\sigma(u)^2} = -\frac{\sigma(z-u)\sigma(z+u)e^{2\eta_1(z+\frac{\omega_1}{2})}}{\sigma(z)^2\sigma(u)^2e^{2\eta_1(z+\frac{\omega_1}{2})}} = -\frac{\sigma(z-u)\sigma(z+u)e^{\eta_1(z+\frac{\omega_1}{2})}}{\sigma(z)^2\sigma(u)^2e^{2\eta_1(z+\frac{\omega_1}{2})}} = -\frac{\sigma(z-u)\sigma(z+\frac{\omega_1}{2})}{\sigma(z)^2\sigma(u)^2e^{2\eta_1(z+\frac{\omega_1}{2})}} = -\frac{\sigma(z-u)\sigma(z+\frac{\omega_1}{2})}{\sigma(z)^2\sigma(u)^2e^{2\eta_1(z+\frac{\omega_1}{2})}} = -\frac{\sigma(z-u)\sigma(z+\frac{\omega_1}{2})}{\sigma(z)^2\sigma(u)^2e^{2\eta_1(z+\frac{\omega_1}{2})}} = -\frac{\sigma(z-\frac{\omega_1}{2})}{\sigma(z)^2\sigma(u)^2e^{2\eta_1(z+\frac{\omega_1}{2})}} = -\frac{\sigma(z-\frac{\omega_1}{2})}{\sigma(z)^2\sigma(u)^2e^{2\eta_1(z+\frac{\omega_1}{2})}} = -\frac{\sigma(z-\frac{\omega_1}{2})}{\sigma(z)^2\sigma(u)^2e^{2\eta_1(z+\frac{\omega_1}{2})}} = -\frac{\sigma(z-\frac{\omega_1}{2})}{\sigma(z)^2\sigma(u)^2e^{2\eta_1(z+\frac{\omega_1}{2})}} = -\frac{\sigma(z-\frac{\omega_1}{2})}{\sigma(z)^2\sigma(u)^2e^{2\eta_1(z+\frac{\omega_1}{2})}} = -\frac{\sigma(z-\frac{\omega_1}{2})}{\sigma(z)^2\sigma(u)^2e^{2\eta_1(z+\frac{\omega_1}{2})}} = -\frac{\sigma(z-\frac{\omega_1}{2})}{\sigma(z)^2\sigma(u)^2e^{2\eta_1(z+\frac{\omega_1}{2})}}$$

The argument for ω_2 is completely analogous. The RHS has zeroes at $\pm u$ and a double pole at 0. Hence, by the same reasoning used above, we see that

$$\wp(z) - \wp(u) = -C \frac{\sigma(z-u)\sigma(z+u)}{\sigma(z)^2 \sigma(u)^2}$$
 for some $C \in \mathbb{C}$

To find conclude that C = 1, we first note that $\wp(z) - \wp(u)$ has a coefficient of 1 for the z^{-2} term in its Laurent expansion. If we show that the Laurent expansion of the f(z) also has a coefficient of 1 for the z^{-2} , then it follow from the uniquenuess of Laurent expansions that C = 1.

$$-\frac{\sigma(z-u)\sigma(z+u)}{\sigma(z)^{2}\sigma(u)^{2}} = -\frac{(z^{2}-u^{2})\prod_{\omega\neq0}\left(1-\frac{z-u}{\omega}\right)e^{\frac{z-u}{\omega}+\frac{1}{2}\left(\frac{z-u}{\omega}\right)^{2}}\prod_{\omega\neq0}\left(1-\frac{z+u}{\omega}\right)e^{\frac{z+u}{\omega}+\frac{1}{2}\left(\frac{z+u}{\omega}\right)^{2}}}{z^{2}\sigma(u)^{2}\left(\prod_{\omega\neq0}\left(1-\frac{z}{\omega}\right)e^{\frac{z}{\omega}+\frac{1}{2}\left(\frac{z}{\omega}\right)^{2}}\right)^{2}}$$

$$= -\frac{\prod_{\omega\neq0}\left(1-\frac{z-u}{\omega}\right)e^{\frac{z-u}{\omega}+\frac{1}{2}\left(\frac{z-u}{\omega}\right)^{2}}\prod_{\omega\neq0}\left(1-\frac{z+u}{\omega}\right)e^{\frac{z+u}{\omega}+\frac{1}{2}\left(\frac{z+u}{\omega}\right)^{2}}}{\sigma(u)^{2}\left(\prod_{\omega\neq0}\left(1-\frac{z}{\omega}\right)e^{\frac{z}{\omega}+\frac{1}{2}\left(\frac{z}{\omega}\right)^{2}}\right)^{2}}$$

$$+\frac{1}{z^{2}}\cdot\frac{u^{2}\prod_{\omega\neq0}\left(1-\frac{z-u}{\omega}\right)e^{\frac{z-u}{\omega}+\frac{1}{2}\left(\frac{z-u}{\omega}\right)^{2}}\prod_{\omega\neq0}\left(1-\frac{z+u}{\omega}\right)e^{\frac{z+u}{\omega}+\frac{1}{2}\left(\frac{z+u}{\omega}\right)^{2}}}{\sigma(u)^{2}\left(\prod_{\omega\neq0}\left(1-\frac{z}{\omega}\right)e^{\frac{z}{\omega}+\frac{1}{2}\left(\frac{z}{\omega}\right)^{2}}\right)^{2}}$$

$$g_{2}(z)$$

Observe that both $g_1(z)$ and $g_2(z)$ are holomorphic in a neighborhood of 0 since we have eliminated the double pole at 0. Hence, the coefficient of the z^{-2} in the Laurent expansion of f(z) is given by $g_2(0)$. But since σ is an odd function, it is immediate that $g_2(0) = 1$.

7.3.3 Exercise 2

With the hypotheses of the preceding problem,

$$\frac{\wp'(z)}{\wp(z) - \wp(u)} = \zeta(z - u) + \zeta(z + u) - 2\zeta(z)$$

Proof. For $z \neq u+M$, we can choose a branch of the logarithm holomorphic in a neighborhood of $\wp(z) - \wp(u)$. Taking the derivative of the log of both sides and using the chain rule,

$$\frac{\wp'(z)}{\wp(z) - \wp(u)} = \frac{\partial}{\partial z} \left[\log(-\sigma(z-u)) + \log(\sigma(z-u)) - \log(\sigma(u)^2 \sigma(z)^2) \right]$$
$$= \frac{\sigma'(z-u)}{\sigma(z-u)} + \frac{\sigma'(z+u)}{\sigma(z+u)} - \frac{2\sigma'(z)}{\sigma(z)} = \zeta(z-u) + \zeta(z+u) - 2\zeta(z)$$

where we've used $\frac{\sigma'(w)}{\sigma(w)} = \zeta(w) \ \forall w \in \mathbb{C}$ (Ahlfors p. 274).

7.3.3 Exercise 3

With the same hypotheses as above, for $z \neq -u + M$,

$$\zeta(z+u) = \zeta(z) + \zeta(u) + \frac{1}{2} \frac{\wp'(z) - \wp'(u)}{\wp(z) - \wp(u)}$$

Proof. Since the last term has a removable singularity at z = u + M, by continuity, we may also assume that $z \neq u + M$. First, observe that by replacing switching u and z in the argument for the last identity, we have that

$$\frac{\wp'(u)}{\wp(z) - \wp(u)} = -\left[\zeta(u - z) + \zeta(z + u) - 2\zeta(u)\right] = \zeta(z - u) - \zeta(z + u) + 2\zeta(u)$$

			•

where we've used the fact that $\sigma(z)$ is odd and therefore $\zeta(z) = \frac{\sigma'(z)}{\sigma(z)}$ is also odd. Hence,

$$\frac{\wp'(z) - \wp'u}{\wp(z) - \wp(u)} = (\zeta(z-u) + \zeta(z+u) - 2\zeta(z)) - (\zeta(z-u) - \zeta(z+u) + 2\zeta(u)) = 2\zeta(z+u) - 2\zeta(z) - 2\zeta(u)$$

The stated identity follows immediately.

7.3.3 Exercise 4

By Ahlfors Section 7.3.3 Exercise 3,

$$\zeta(z+u) = \zeta(z) + \zeta(u) + \frac{1}{2} \left(\frac{\wp'(z) - \wp'(u)}{\wp(z) - \wp(u)} \right)$$

Differentiating both sides with respect to z and using $-\zeta'(w) = \wp(w) \ \forall w \in \mathbb{C} \setminus M$, we obtain

$$-\wp(z+u) = -\wp(z) + \frac{1}{2} \left(\frac{\wp''(z)}{\wp(z) - \wp(u)} - \frac{(\wp'(z) - \wp'(u))\wp'(z)}{(\wp(z) - \wp(u))^2} \right)$$

We seek an expression for $\wp''(z)$ in terms of $\wp(z)$. For $z \neq \frac{\omega_1}{2}, \frac{\omega_2}{2}, \frac{\omega_1+\omega_2}{2} + M$,

$$\wp'(z)^2 = 4\wp(z)^3 - g_2\wp(z) - g_2 \Rightarrow 2\wp'(z)\wp''(z) = 12\wp(z)^2\wp'(z) - g_2\wp'(z) \Rightarrow \wp''(z) = 6\wp(z)^2 - \frac{g_2}{2}$$

We conclude from continuity that $\wp''(z) = 6\wp(z)^2 - \frac{g_2}{2}$. Substituting this identity in,

$$-\wp(z+u) = -\wp(z) + \frac{1}{2} \left(\frac{6\wp(z)^2 - \frac{g_2}{2}}{\wp(z) - \wp(u)} - \frac{(\wp'(z) - \wp'(u))\wp'(z)}{(\wp(z) - \wp(u))^2} \right)$$

Applying the same arguments as above except taking u to be variable, we obtain that

$$-\wp(z+u) = -\wp(u) + \frac{1}{2} \left(-\frac{6p(u)^2 - \frac{g_2}{2}}{p(z) - p(u)} + \frac{(\wp'(z) - \wp'(u))\wp'(u)}{(\wp(z) - \wp(u))^2} \right)$$

Hence,

$$\begin{aligned} -2\wp(z+u) &= -\wp(z) + -\wp(u) + \frac{1}{2} \left(\frac{6(\wp(z)^2 - \wp(u)^2)}{\wp(z) - \wp(u)} - \frac{(\wp'(z) - \wp'(u))^2}{(\wp(z) - \wp(u))^2} \right)^2 &= 2\wp(z) + 2\wp(u) - \frac{1}{2} \left(\frac{\wp'(z) - \wp'(u)}{\wp(z) - \wp(u)} \right)^2 \\ \Rightarrow \wp(z+u) &= -\wp(z) - \wp(u) + \frac{1}{4} \left(\frac{\wp'(z) - \wp'(u)}{\wp(z) - \wp(u)} \right)^2 \end{aligned}$$

7.3.3 Exercise 5

Using the identity obtained in the previous exercise, we have by the continuity of \wp that

$$\wp(2z) = \lim_{u \to z} \wp(z+u) = \lim_{u \to z} \left[-\wp(z) - \wp(u) + \frac{1}{4} \left(\frac{\wp'(z) - \wp'(u)}{\wp(z) - \wp(u)} \right)^2 \right]$$
$$= \lim_{u \to z} \left[-\wp(u) - \wp(z) + \frac{1}{4} \left(\frac{\frac{\wp'(z) - \wp'(u)}{z-u}}{\frac{\wp(z) - \wp(u)}{z-u}} \right)^2 \right] = -2\wp(z) + \frac{1}{4} \left(\frac{\wp''(z)}{\wp'(z)} \right)^2$$

where we use the continuity of $w \mapsto w^2$ to obtain the last expression.

7.3.3 Exercise 7

Fix $u, v \notin M$ such that $|u| \neq |v|$, and define a function $f : \mathbb{C} \setminus M \to \mathbb{C}$ by

$$f(z) = \det \begin{pmatrix} \wp(z) & \wp'(z) & 1\\ \wp(u) & \wp'(u) & 1\\ \wp(v) & -\wp'(v) & 1 \end{pmatrix} = -\wp'(z)(\wp(u) - \wp(v)) + \wp'(u)(\wp(z) - \wp(v)) + \wp'(v)(\wp(z) - \wp(u))$$
$$= \underbrace{(\wp'(u) + \wp'(v))}_{A} \wp(z) + \underbrace{(\wp(v) - \wp(u))}_{B} \wp'(z) + \underbrace{-(\wp'(u)\wp(v) + \wp'(v)\wp(u))}_{C}$$

where we use Laplace expansion for determinants. By our choice of u, v and the fact that the Weierstrass function is elliptic of order 2, $B \neq 0$. Hence, f(z) is an elliptic function of order 3 with poles at the lattice points of M. Since the determinant of any matrix with linearly dependent rows is zero, f has zeroes at u, -v. Since f has order 3, it has a third zero z, and by Abel's Theorem (Ahlfors p. 271 Theorem 6),

$$u - v + z \equiv 0 \mod M \Rightarrow z = v - u$$

We conclude that

$$\det \begin{pmatrix} \wp(z) & \wp'(z) & 1\\ \wp(u) & \wp'(u) & 1\\ \wp(u+z) & -\wp'(u+z) & 1 \end{pmatrix} = 0$$

7.3.5 Exercise 1

Since λ is invariant under $\Gamma(2)$ and $\Gamma \setminus \Gamma(2)$ is generated by the linear fractional transformations $\tau \mapsto \tau + 1$ and $\tau \mapsto -\tau^{-1}$, it suffices to show that $J(\tau+1) = J(\tau)$ and $J(-\tau^{-1}) = J(\tau)$. Recall that λ satisfies the functional equations

$$\lambda(\tau+1) = \frac{\lambda(\tau)}{\lambda(\tau)-1}$$
 and $\lambda\left(-\frac{1}{\tau}\right) = 1 - \lambda(\tau)$

So,

$$J(\tau+1) = \frac{4}{27} \frac{(1-\lambda(\tau+1)+\lambda(\tau+1)^2)^3}{\lambda(\tau+1)^2(1-\lambda(\tau+1))^2} = \frac{4}{27} \frac{(1-\lambda(\tau)(\lambda(\tau)-1)^{-1}+\lambda(\tau)^2(\lambda(\tau)-1)^{-2})^3}{\lambda(\tau)^2(\lambda(\tau)-1)^{-2}(1-\lambda(\tau)(\lambda(\tau)-1)^{-1})^2} \cdot \frac{(\lambda(\tau)-1)^6}{(\lambda(\tau)-1)^6}$$
$$= \frac{4}{27} \frac{\left((\lambda(\tau)-1)^2-\lambda(\tau)(\lambda(\tau)-1)+\lambda(\tau)^2\right)^3}{\lambda(\tau)^2(\lambda(\tau)-1)^2} = \frac{4}{27} \frac{(1-\lambda(\tau)+\lambda(\tau)^2)^3}{\lambda(\tau)^2(\lambda(\tau)-1)^2} = J(\tau)$$
and

$$J\left(-\frac{1}{\tau}\right) = \frac{4}{27} \frac{\left(1 - (1 - \lambda(\tau)) + (1 - \lambda(\tau))^2\right)^3}{(1 - \lambda(\tau))^2(1 - (1 - \lambda(\tau)))^2} = \frac{4}{27} \frac{\left(1 - \lambda(\tau) + \lambda(\tau)^2\right)^3}{\lambda(\tau)^2(1 - \lambda(\tau))^2} = J(\tau)$$

Observe that

$$J(\tau) = \frac{4}{27} \frac{\left(1 - \lambda(\tau) + \lambda(\tau)^2\right)^3}{\lambda(\tau)^2 (1 - \lambda(\tau))^2} = \frac{4}{27} \frac{(\lambda(\tau) - e^{i\frac{\pi}{3}})^3 (\lambda(\tau) - e^{-i\frac{\pi}{3}})^3}{\lambda(\tau)^2 (1 - \lambda(\tau))^2}$$

So, $J(\tau)$ assumes the value 0 on $\lambda^{-1}(\{e^{\pm i\frac{\pi}{3}}\})$. Since λ is a bijection on $\overline{\Omega} \cup \Omega'$, $J(\tau)$ has two zeroes, each of order 3. We proved in Problem Set 8 that

$$g_2 = -4(e_1e_2 + e_1e_3 + e_2e_3) = 0$$

for $\tau = e^{i\frac{2\pi}{3}}$. So using the identity for $J(\tau)$ proved below, $J(e^{i\frac{2\pi}{3}}) = 0$. Using the invariance of $J(\tau)$ under Γ , we see that $J(e^{i\frac{\pi}{3}}) = 0$.

 $J(\tau)$ assumes the value 1 on $\lambda^{-1}(\{\lambda_1, \dots, \lambda_6\})$, where the λ_i are the roots of degree 6 the polynomial

$$p(z) = 4(1 - z + z^2)^3 - 27z^2(1 - z)^2$$

It is easy to check that

$$e_3 = \wp\left(\frac{1+i}{2}; i\right) = -\wp\left(\frac{i+1}{2}; i\right) = -e_3 \Rightarrow e_3 = 0$$

Since $e_1 + e_2 + e_3 = 0$ (see below for argument), we have $e_1 = -e_2$ and therefore

$$\lambda(i) = \frac{e_3 - e_2}{e_1 - e_2} = \frac{1}{2}$$

Since each point in \mathbb{H}^+ is congruent modulo 2 to a point in $\overline{\Omega} \cup \Omega'$, λ maps this fundamental conformally onto $\mathbb{C} \setminus \{0, 1\}$, and $J(\tau)$ is invariant under Γ , we conclude $J(\tau)$ assumes the value 1 at $\tau = i, 1 + i, \frac{i+1}{2}$. I claim that these are these are the only possible points up to modulo 2 congruence. Suppose $J(\tau) = 1$ for $\tau \notin \{i, 1 + i, \frac{i+1}{2}\}$. If we let S_1, \dots, S_6 denote the complete set of mutually incongruent transformations, then since $\tau \notin \{e^{i\frac{\pi}{3}}, e^{i\frac{2\pi}{3}}\}$ (otherwise $J(\tau) = 0$), $S_1\tau, \dots, S_6\tau \in \overline{\Omega} \cup \Omega'$ are distinct, hence the $\lambda(S_i\tau)$ are distinct roots of p(z), and we obtain that p(z) has more than 6 roots, a contradiction. Moreover, this argument shows that the polynomial p(z) has three roots, which by inspection, we see are given by $\{-1, \frac{1}{2}, 2\}$.

I claim that $J(\tau)$ assumes the value 1 with order 2 at $\tau = i, 1 + i, \frac{i+1}{2}$. We need to show that the zeroes of p(z) are each of order 2. Indeed, one can verify that

$$p(z) = 4(1 - z + z^2)^3 - 27z^2(1 - z)^2 = (z - 2)^2(2z - 1)^2(z + 1)^2$$

Substituting $\lambda = \frac{e_3 - e_2}{e_1 - e_2}$, we have

$$J(\tau) = \frac{4}{27} \frac{\left(1 - (e_3 - e_2)(e_1 - e_2)^{-1} + (e_3 - e_2)^2(e_1 - e_2)^{-2}\right)^3}{(e_3 - e_2)^2(e_1 - e_2)^{-2}(e_1 - e_3)^2(e_1 - e_2)^{-2}}$$
$$= \frac{4}{27} \frac{\left((e_1 - e_2)^2 - (e_3 - e_2)(e_1 - e_2) + (e_3 - e_2)^2\right)^3}{(e_3 - e_2)^2(e_1 - e_3)^2(e_1 - e_2)^2}$$
$$= \frac{4}{27} \frac{\left(e_1^2 - 2e_1e_2 + e_2^2 - e_3e_1 + e_3e_2 + e_2e_1 - e_2^2 + e_3^2 - 2e_3e_2 + e_2^2\right)^3}{(e_3 - e_2)^2(e_1 - e_3)^2(e_1 - e_2)^2}$$

Since

$$4z^{3} - g_{2}z - g_{3} = 4(z - e_{1})(z - e_{2})(z - e_{3}) = 4(z^{2} - (e_{1} + e_{2})z + e_{1}e_{2})(z - e_{3}) = 4(e_{1} + e_{2} + e_{3})z^{2} + \cdots$$

we have that $e_1 + e_2 + e_3 = 0$ and so,

 $0 = (e_1 + e_2 + e_3)^2 = e_1^2 + e_2^2 + e_3^2 + 2e_1e_2 + 2e_1e_3 + 2e_2e_3 \Rightarrow e_1^2 + e_2^2 + e_3^3 = -2(e_1e_2 + e_1e_3 + e_2e_3)$

Substituting this identity in,

$$J(\tau) = \frac{4}{27} \frac{\left(-2(e_1e_2 + e_2e_3 + e_1e_3) - (e_1e_2 + e_2e_3 + e_1e_3)\right)^3}{(e_3 - e_2)^2(e_1 - e_3)^2(e_1 - e_2)^2} = -4 \frac{\left(e_1e_2 + e_2e_3 + e_1e_3\right)^3}{(e_3 - e_2)^2(e_1 - e_3)^2(e_1 - e_2)^2}$$