Selected Solutions to Complex Analysis by Lars Ahlfors
Matt Rosenzweig

Contents

Chapter 4 - Complex Integration 4
Cauchy's Integral Formula 4
4.2.2 Exercise 1 4
4.2.3 Exercise 1 4
4.2.3 Exercise 2 5
Local Properties of Analytical Functions 6
4.3.2 Exercise 2 6
4.3.2 Exercise 4 6
Calculus of Residues 7
4.5.2 Exercise 1 7
4.5.3 Exercise 1 7
4.5.3 Exercise 3 8
Harmonic Functions 10
4.6.2 Exercise 1 10
4.6.2 Exercise 2 10
4.6.4 Exercise 1 11
4.6.4 Exercise 5 12
4.6.4 Exercise 6 13
4.6.5 Exercise 1 13
4.6.5 Exercise 3 13
Chapter 5 - Series and Product Developments 14
Power Series Expansions 14
5.1.1 Exercise 2 14
5.1.2 Exercise 2 15
5.1.2 Exercise 3 16
Partial Fractions and Factorization 16
5.2.1 Exercise 1 16
5.2.1 Exercise 2 17
5.2.2 Exercise 2 18
5.2.3 Exercise 3 18
5.2.3 Exercise 4 19
5.2.4 Exercise 2 19
5.2.4 Exercise 3 20
5.2.5 Exercise 2 20
5.2.5 Exercise 3 21
Entire Functions 22
5.3.2 Exercise 1 22
5.3.2 Exercise 2 23
5.5.5 Exercise 1 23
Normal Families 24
5.5.5 Exercise 3 24
5.5.5 Exercise 4 25
Conformal Mapping, Dirichlet's Problem 27
The Riemann Mapping Theorem 27
6.1.1 Exercise 1 27
6.1.1 Exercise 2 27
Elliptic Functions 28
Weierstrass Theory 28
7.3.2 Exercise 2 29
7.3.3 Exercise 1 29
7.3.3 Exercise 2 30
7.3.3 Exercise 3 30
7.3.3 Exercise 4 31
7.3.3 Exercise 5 31
7.3.3 Exercise 7 32
7.3.5 Exercise 1 32

Chapter 4 - Complex Integration

Cauchy's Integral Formula

4.2.2 Exercise 1

Applying the Cauchy integral formula to $f(z)=e^{z}$,

$$
1=f(0)=\frac{1}{2 \pi i} \oint_{|z|=1} \frac{f(z)}{z} d z \Longleftrightarrow 2 \pi i=\oint_{|z|=1} \frac{e^{z}}{z} d z
$$

Section 4.2.2 Exercise 2

Using partial fractions, we may express the integrand as

$$
\frac{1}{z^{2}+1}=\frac{i}{2(z+i)}-\frac{i}{2(z-i)}
$$

Applying the Cauchy integral formula to the constant function $f(z)=1$,

$$
\frac{1}{2 \pi i} \oint_{|z|=2} \frac{1}{z^{2}+1} d z=\frac{i}{2}\left(\frac{1}{2 \pi i}\right) \oint_{|z|=2} \frac{1}{z+i} d z-\frac{i}{2}\left(\frac{1}{2 \pi i}\right) \oint_{|z|=2} \frac{1}{z-i} d z=0
$$

4.2.3 Exercise 1

1. Applying Cauchy's differentiation formula to $f(z)=e^{z}$,

$$
1=f^{(n-1)}(0)=\frac{(n-1)!}{2 \pi i} \oint_{|z|=1} \frac{e^{z}}{z^{n}} d z \Longleftrightarrow \frac{2 \pi i}{(n-1)!}=\oint_{|z|=1} \frac{e^{z}}{z^{n}} d z
$$

2. We consider the following cases:
(a) If $n \geq 0, m \geq 0$, then it is obvious from the analyticity of $z^{n}(1-z)^{m}$ and Cauchy's theorem that the integral is 0 .
(b) If $n \geq 0, m<0$, then by the Cauchy differentiation formula,

$$
\oint_{|z|=2} z^{n}(1-z)^{m} d z=(-1)^{m} \oint_{|z|=2} \frac{z^{n}}{(z-1)^{|m|}} d z= \begin{cases}0 & n<|m|-1 \\ \frac{(-1)^{m} 2 \pi i}{(|m|-1)!} \frac{n!}{(n-|m|+1)!}=(-1)^{|m|} 2 \pi i\binom{n}{|m|-1} & n \geq|m|\end{cases}
$$

(c) If $n<0, m \geq 0$, then by a completely analogous argument,

$$
\oint_{|z|=2} z^{n}(1-z)^{m} d z=\oint_{|z|=2} \frac{(1-z)^{m}}{z^{|n|}} d z=\left\{\begin{array}{ll}
0 & m<|n|-1 \\
\frac{(-1)^{|n|-1} 2 \pi i}{(|n|-1)!} \frac{m!}{(m-|n|+1)!}
\end{array}=(-1)^{|n|-1} 2 \pi i\binom{m}{|n|-1} \quad m \geq n .\right.
$$

(d) If $n<0, m<0$, then $\operatorname{sincen}(|z|=2,0)=n(|z|=2,1)=1$, we have by the residue formula that

$$
\oint_{|z|=2}(1-z)^{m} z^{n}=2 \pi i \operatorname{res}(f ; 0)+2 \pi i \operatorname{res}(f ; 1)=\oint_{|z|=\frac{1}{2}}(1-z)^{m} z^{n} d z+\oint_{|z-1|=\frac{1}{2}}(1-z)^{m} z^{n} d z
$$

Using Cauchy's differentiation formula, we obtain

$$
\begin{aligned}
& \oint_{|z|=2}(1-z)^{m} z^{n} d z=\left[\oint_{|z|=\frac{1}{2}} \frac{(1-z)^{-|m|}}{z^{|n|}} d z+\oint_{|z-1|=\frac{1}{2}} \frac{z^{-|n|}}{(1-z)^{|m|}} d z\right] \\
& =\frac{2 \pi i}{(|n|-1)!} \cdot \frac{(|m|+|n|-2)!}{(|m|-1)!}+\frac{(-1)^{|m|} 2 \pi i}{(|m|-1)!} \cdot \frac{(-1)^{|m|-1}(|n|+|m|-2)!}{(|n|-1)!} \\
& =2 \pi i\left[\binom{|m|+|n|-2}{|n|-1}-\binom{|m|+|n|-2}{|n|-1}\right]=0
\end{aligned}
$$

3. If $\rho=0$, then it is trivial that $\oint_{|z|=\rho}|z-a|^{-4}|d z|=0$, so assume otherwise. If $a=0$, then

$$
\oint_{|z|=\rho}|z|^{-4}|d z|=\int_{0}^{1} \rho^{-4} 2 \pi i \rho d t=\frac{2 \pi i}{\rho^{3}}
$$

Now, assume that $a \neq 0$. Observe that

$$
\begin{gathered}
\frac{1}{|z-a|^{4}}=\frac{1}{(z-a)^{2} \overline{(z-a)}^{2}} \\
\oint_{|z|=\rho}|z-a|^{-4}|d z|=\oint_{|z|=\rho} \frac{1}{(z-a)^{2}(\bar{z}-\bar{a})^{2}}|d z|=\int_{0}^{1} \frac{1}{\left(\rho e^{2 \pi i t}-a\right)^{2}\left(\rho e^{-2 \pi i t}-\bar{a}\right)^{2}} \rho \frac{2 \pi i e^{4 \pi i t}}{i e^{4 \pi i t}} d t \\
=-i \int_{0}^{1} \frac{\rho 2 \pi i e^{4 \pi i t}}{\left(\rho e^{2 \pi i t}-a\right)^{2}\left(\rho-\bar{a} e^{2 \pi i t}\right)^{2}} d t=\frac{-i}{\rho} \oint_{|z|=\rho} \frac{z}{\left(\rho-\frac{\bar{a}}{\rho} z\right)^{2}(z-a)^{2}} d z=\frac{-i \rho}{\bar{a}^{2}} \oint_{|z|=\rho} \frac{z}{\left(z-\frac{\rho^{2}}{\bar{a}}\right)^{2}(z-a)^{2}} d z
\end{gathered}
$$

We consider two cases. First, suppose $|a|>\rho$. Then $z(z-a)^{-2}$ is holomorphic on and inside $\{|z|=\rho\}$ and $\frac{\rho^{2}}{\bar{a}}$ lies inside $\{|z|=\rho\}$. By Cauchy's differentiation formula,

$$
\begin{gathered}
\oint_{|z|=\rho}|z-a|^{-4}|d z|=2 \pi i \frac{-i \rho}{\bar{a}^{2}}\left[(z-a)^{-2}-2 z(z-a)^{-3}\right]_{z=\frac{\rho^{2}}{\bar{a}}}=\frac{2 \pi \rho}{\bar{a}^{2}\left(\frac{\rho^{2}}{\bar{a}}-a\right)^{2}}\left[1-2 \frac{\rho^{2}}{\bar{a}\left(\frac{\rho^{2}}{\bar{a}}-a\right)}\right] \\
=\frac{-2 \pi \rho\left(\rho^{2}+|a|^{2}\right)}{\left(\rho^{2}-|a|^{2}\right)^{3}}=\frac{2 \pi \rho\left(\rho^{2}+|a|^{2}\right)}{\left(|a|^{2}-\rho^{2}\right)^{3}}
\end{gathered}
$$

Now, suppose $|a|<\rho$. Then $\frac{\rho^{2}}{\bar{a}}$ lies outside $|z|=\rho$, so the function $z\left(z-\frac{\rho^{2}}{\bar{a}}\right)^{-2}$ is holomorphic on and inside $\{|z|=\rho\}$. By Cauchy's differentiation formula,

$$
\begin{aligned}
& \oint_{|z|=\rho}|z-a|^{-4}|d z|=2 \pi i \frac{-i \rho}{\bar{a}^{2}}\left[\left(z-\frac{\rho^{2}}{\bar{a}}\right)^{-2}-2 z\left(z-\frac{\rho^{2}}{\bar{a}}\right)^{-3}\right]_{z=a}=\frac{2 \pi \rho}{\bar{a}^{2}\left(a-\frac{\rho^{2}}{\bar{a}}\right)^{2}}\left[1-2 \frac{a}{\left(a-\frac{\rho^{2}}{\bar{a}}\right)}\right] \\
&=\frac{-2 \pi \rho}{\left(|a|^{2}-\rho^{2}\right)^{2}} \frac{\left(a+\frac{\rho^{2}}{\bar{a}}\right)}{a-\frac{\rho^{2}}{\bar{a}}}=\frac{-2 \pi \rho\left(|a|^{2}+\rho^{2}\right)}{\left(|a|^{2}-\rho^{2}\right)^{3}}=\frac{2 \pi \rho\left(|a|^{2}+\rho^{2}\right)}{\left(\rho^{2}-|a|^{2}\right)^{3}}
\end{aligned}
$$

4.2.3 Exercise 2

Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be a holomorphic function satisfying the following condition: there exists $R>0$ and $n \in \mathbb{N}$ such that $|f(z)|<|z|^{n} \forall|z| \geq R$. For every $r \geq R$, we have by the Cauchy differentiation formula that for all $m>n$,

$$
\left|f^{(m)}(a)\right| \leq \frac{m!}{2 \pi} \oint_{|z|=r} \frac{|z|^{n}}{|z|^{m+1}}|d z| \leq \frac{m!}{r^{m-n}}
$$

Noting that $m-n \geq 1$ and letting $r \rightarrow \infty$, we have that $f^{(m)}(a)=0$. Since f is entire, for every $a \in \mathbb{C}$, we may write

$$
f(z)=f(a)+f^{\prime}(a)(z-a)+\cdots+\frac{f^{(n)}(a)}{n!}(z-a)^{n}+f_{n+1}(z)(z-a)^{n+1} \forall z \in \mathbb{C}
$$

where f_{n+1} is entire. Since $f_{n+1}(a)=f^{(n+1)}(a)=0$ and $a \in \mathbb{C}$ was arbitary, we have that $f_{n+1} \equiv 0$ on \mathbb{C}. Hence, f is a polynomial of degree at most n.

Local Properties of Analytical Functions

4.3.2 Exercise 2

Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be an entire function with a nonessential singularity at ∞. Consider the function $g(z)=f\left(\frac{1}{z}\right)$ at $z=0$. Let $n \in \mathbb{N}$ be minimal such that $\lim _{z \rightarrow 0} z^{n} g(z)=0$. Then the function $z^{n-1} g(z)$ has an analytic continuation $h(z)$ defined on all of \mathbb{C}. By Taylor's theorem, we may express $h(z)$ as

$$
z^{n-1} g(z)=h(z)=\underbrace{h(0)}_{c_{n-1}}+\underbrace{\frac{h^{\prime}(0)}{1!}}_{c_{n-2}} z+\frac{h^{\prime \prime}(0)}{2!} z^{2}+\cdots+\underbrace{\frac{h^{(n-1)}(0)}{(n-1)!}}_{c_{0}} z^{n-1}+h_{n}(z) z^{n} \forall z \neq 0
$$

where $h_{n}: \mathbb{C} \rightarrow \mathbb{C}$ is holomorphic. Hence,

$$
\lim _{z \rightarrow 0} g(z)-\left[\frac{c_{n-1}}{z^{n-1}}+\frac{c_{n-2}}{z^{n-2}}+\cdots+c_{0}\right]=\lim _{z \rightarrow 0} z h_{n}(z)=0
$$

And

$$
\lim _{z \rightarrow \infty} g(z)-\left[\frac{c_{n-1}}{z^{n-1}}+\frac{c_{n-2}}{z^{n-2}}+\cdots+c_{0}\right]=\lim _{z \rightarrow 0} f(z)=f(0)
$$

since f is entire. Note that we also obtain that $c_{0}=f(0)$. Hence, $g(z)-\left[\frac{c_{n-1}}{z^{n-1}}+\frac{c_{n-2}}{z^{n-2}}+\cdots+c_{0}\right]$ (we are abusing notation to denote the continuation to all of \mathbb{C}) is a bounded entire function and is therefore identically zero by Liouville's theorem. Hence,

$$
\forall z \neq 0, f(z)=c_{n-1} z^{n-1}+c_{n-2} z^{n-2}+\cdots+c_{0}
$$

Since $f(0)=c_{0}$, we obtain that f is a polynomial.

4.3.2 Exercise 4

Let $f: \mathbb{C} \cup\{\infty\} \rightarrow \mathbb{C} \cup\{\infty\}$ be a meromorphic function in the extended complex plane. First, I claim that f has finitely many poles. Since the poles of f are isolated points, they form an at most countable subset $\left\{p_{k}\right\}_{k=1}^{\infty}$ of \mathbb{C}. By definition, the function $\tilde{f}(z)=f\left(\frac{1}{z}\right)$ has either a removable singularity or a pole at $z=0$. In either case, there exists $r>0$ such that \tilde{f} is holomorphic on $D^{\prime}(0 ; r)$. Hence, $\left\{p_{k}\right\}_{k=1}^{\infty} \subset \bar{D}(0 ; r)$. Since this set is bounded, $\left\{p_{k}\right\}_{k=1}^{\infty}$ has a limit point p. By continuity, $f(p)=\infty$ and therefore p is a pole. Since p is an isolated point, there must exist $N \in \mathbb{N}$ such that $\forall k \geq N, p_{k}=p$.
Our reasoning in the preceding Exercise 2 shows that for any pole $p_{k} \neq \infty$ of order m_{k}, we can write in a neighborhood of p_{k}

$$
f(z)=\underbrace{\left[\frac{c_{m_{k}}}{\left(z-p_{k}\right)^{m_{k}}}+\frac{c_{m_{k}-1}}{\left(z-p_{k}\right)^{m_{k}-1}}+\cdots+\frac{c_{1}}{z-p_{k}}+c_{0}\right]}_{f_{k}(z)}+g_{k}(z)
$$

where g_{k} is holomorphic in a neighborhood of p_{k}. If $p=\infty$ is a pole, then analogously,

$$
\tilde{f}(z)=\underbrace{\left[\frac{c_{m_{\infty}}}{z^{m_{\infty}}}+\frac{c_{m_{\infty}-1}}{z^{m_{\infty}-1}}+\cdots+\frac{c_{1}}{z}+c_{0}\right]}_{\tilde{f}_{\infty}(z)}+\tilde{g}_{\infty}(z)
$$

where \tilde{g}_{∞} is holomorphic in a neighborhood of 0 . For clarification, the coefficients c_{n} depend on the pole, but we omit the dependence for convenience. Set $f_{\infty}(z)=\tilde{f}_{\infty}\left(\frac{1}{z}\right)$ and

$$
h(z)=f(z)-f_{\infty}(z)-\sum_{k=1}^{n} f_{k}(z)
$$

I claim that h is (or rather, extends to) an entire, bounded function. Indeed, in a neighborhood of each z_{k}, h can be written as $h(z)=g_{k}(z)-\sum_{i \neq k} f_{k}(z)$ and in a neighborhood of z_{∞} as $h(z)=g_{\infty}(z)-\sum_{k=1}^{n} f_{k}(z)$, which are sums of holomorphic functions. $\tilde{h}(z)=h\left(\frac{1}{z}\right)$ is evidently bounded in a neighborhood of 0 since the $f_{k}\left(\frac{1}{z}\right)$ are polynomials and $f\left(\frac{1}{z}\right)-f_{\infty}\left(\frac{1}{z}\right)=\tilde{g}_{\infty}(z)$, which is holomorphic in a neighborhood of 0 . By Liouville's theorem, h is a constant. It is immediate from the definition of h that f is a rational function.

Calculus of Residues

4.5.2 Exercise 1

Set $f(z)=6 z^{3}$ and $g(z)=z^{7}-2 z^{5}-z+1$. Clearly, f, g are entire, $|f(z)|>|g(z)| \forall|z|=1$, and $f(z)+g(z)=z^{7}-2 z^{5}+6 z^{3}-z+1$. By Rouché's theorem, f and $f+g$ have the same number of zeros, which is 3 (counted with order), in the disk $\{|z|<1\}$.

Section 4.5.2 Exercise 2

Set $f(z)=z^{4}$ and $g(z)=-6 z+3$. Clearly, f, g are entire, $|f(z)|>|g(z)| \forall|z|=2$. By Rouché's theorem, $z^{4}-6 z+3$ has 4 roots (counted with order) in the open disk $\{|z|<2\}$. Now set $f(z)=-6 z$ and $g(z)=z^{4}+3$. Clearly, $|f(z)|>|g(z)| \forall|z|=1$. By Rouché's theorem, $z^{4}-6 z+3=0$ has 1 root in the in the open disk $\{|z|<1\}$. Observe that if $z \in\{1 \leq|z|<2\}$ is root, then by the reverse triangle inequality,

$$
3=|z|\left|z^{3}-6\right| \geq\left.|z|| | z\right|^{3}-6 \mid
$$

So $|z| \in(1,2)$. Hence, the equation $z^{4}-6 z+3=0$ has 3 roots (counted with order) with modulus strictly between 1 and 2 .

4.5.3 Exercise 1

1. Set $f(z)=\frac{1}{z^{2}+5 z+6}=\frac{1}{(z+3)(z+2)}$. Then f has poles $z_{1}=-2, z_{2}=-3$ and by Cauchy integral formula,

$$
\begin{aligned}
& \operatorname{res}\left(f ; z_{1}\right)=\frac{1}{2 \pi i} \oint_{|z+2|=\frac{1}{2}} \frac{(z+3)^{-1}}{(z+2)} d z=\left.\frac{1}{z+3}\right|_{z=-2}=1 \\
& \operatorname{res}\left(f ; z_{2}\right)=\frac{1}{2 \pi i} \oint_{|z+3|=\frac{1}{2}} \frac{(z+2)^{-1}}{(z+3)} d z=\left.\frac{1}{z+2}\right|_{z=-3}-1
\end{aligned}
$$

2. Set $f(z)=\frac{1}{\left(z^{2}-1\right)^{2}}=\frac{1}{(z-1)^{2}(z+1)^{2}}$. Then f has poles $z_{1}=-1, z_{2}=-1$. Applying Cauchy's differentiation formula, we obtain

$$
\begin{aligned}
& \operatorname{res}\left(f ; z_{1}\right)=\frac{1}{2 \pi i} \oint_{|z+1|=1} \frac{(z-1)^{-2}}{(z+1)^{2}} d z=-\left.2(z-1)^{-3}\right|_{z=-1}=\frac{1}{4} \\
& \operatorname{res}\left(f ; z_{2}\right)=\frac{1}{2 \pi i} \oint_{|z-1|=1} \frac{(z+1)^{-2}}{(z-1)^{2}} d z=-\left.2(z+1)^{-3}\right|_{z=1}=-\frac{1}{4}
\end{aligned}
$$

3. $\sin (z)$ has zeros at $k \pi, k \in \mathbb{Z}$, hence $\sin (z)^{-1}$ has poles at $z_{k}=k \pi$. We can write $\sin (z)=(z-$ $\left.z_{k}\right)\left[\cos \left(z_{k}\right)+g_{k}(z)\right]$, where g_{k} is holomorphic and $g_{k}\left(z_{k}\right)=0$. By the Cauchy integral formula,

$$
\operatorname{res}\left(f ; z_{k}\right)=\frac{1}{2 \pi i} \oint_{\left|z-z_{k}\right|=1} \frac{\left[f^{\prime}\left(z_{k}\right)+g_{k}(z)\right]^{-1}}{\left(z-z_{k}\right)} d z=\frac{1}{f^{\prime}\left(z_{k}\right)+g\left(z_{k}\right)}=(-1)^{k}
$$

4. Set $f(z)=\cot (z)$. Since $\sin (z)$ has zeros at $z_{k}=k \pi, k \in \mathbb{Z}$ and $\cos \left(z_{k}\right) \neq 0, \cot (z)$ has poles at $z_{k}, k \in \mathbb{Z}$. We can write $\sin (z)=\left(z-z_{k}\right)\left[\cos \left(z_{k}\right)+g_{k}(z)\right]$, where g_{k} is holomorphic and $g_{k}\left(z_{k}\right)=0$. By Cauchy's integral formula,

$$
\operatorname{res}\left(f ; z_{k}\right)=\frac{1}{2 \pi i} \oint_{\left|z-z_{k}\right|=1} \frac{\cos (z)\left[\cos \left(z_{k}\right)+g_{k}(z)\right]^{-1}}{\left(z-z_{k}\right)} d z=\frac{\cos \left(z_{k}\right)}{\cos \left(z_{k}\right)+g_{k}\left(z_{k}\right)}=1
$$

5. It follows from (3) that $f(z)=\sin (z)^{-2}$ has poles at $z_{k}=k \pi, k \in \mathbb{Z}$. We remark further that $g_{k}(z)=-\cos \left(z_{k}\right)\left(z-z_{k}\right)^{2}+h_{k}(z)$, where $h_{k}(z)$ is holomorphic. By the Cauchy differentiation formula,

$$
\operatorname{res}\left(f ; z_{k}\right)=\frac{1}{2 \pi i} \oint_{\left|z-z_{k}\right|=1} \frac{\left[\cos \left(z_{k}\right)+g_{k}(z)\right]^{-2}}{\left(z-z_{k}\right)^{2}} d z=-2 \frac{g_{k}^{\prime}\left(z_{k}\right)}{\left(\cos \left(z_{k}\right)+g_{k}\left(z_{k}\right)\right)^{3}}=0
$$

6. Evidently, the poles of $f(z)=\frac{1}{z^{m}(1-z)^{n}}$ are $z_{1}=0, z_{2}=1$. By Cauchy's differentiation formula,

$$
\begin{gathered}
\operatorname{res}\left(f ; z_{1}\right)=\frac{1}{2 \pi i} \oint_{|z|=\frac{1}{2}} \frac{(1-z)^{-n}}{z^{m}} d z=\frac{(n+m-2)!}{(n-1)!(m-1)!}=\binom{n+m-2}{m-1} \\
\operatorname{res}\left(f ; z_{2}\right)=\frac{(-1)^{n}}{2 \pi i} \oint_{|z-1|=\frac{1}{2}} \frac{z^{-m}}{(z-1)^{n}} d z=\frac{(-1)^{n}(-1)^{n-1}(m+n-2)!}{(m-1)!}=-\binom{n+m-2}{n-1}
\end{gathered}
$$

4.5.3 Exercise 3

(a) Since $a+\sin ^{2}(\theta)=a+\frac{1-\cos (2 \theta)}{2}=2[(2 a+1)-\cos (2 \theta)]$, we have

$$
\begin{gathered}
\int_{0}^{\frac{\pi}{2}} \frac{d \theta}{a+\sin ^{2}(\theta)}=2 \int_{0}^{\frac{\pi}{2}} \frac{d \theta}{(2 a+1)-\cos (2 \theta)}=\int_{0}^{\pi} \frac{d t}{(2 a+1)-\cos (t)}=\int_{-\pi}^{0} \frac{d \tau}{(2 a+1)+\cos (\tau)} \\
=\int_{0}^{\pi} \frac{d \tau}{(2 a+1)+\cos (\tau)}
\end{gathered}
$$

where we make the change of variable $\tau=\theta-\pi$, and the last equality follows from the symmetry of the integrand. Ahlfors p. 155 computes $\int_{0}^{\pi} \frac{d x}{\alpha+\cos (x)}=\frac{\pi}{\sqrt{\alpha^{2}-1}}$ for $\alpha>1$. Hence,

$$
\int_{0}^{\frac{\pi}{2}} \frac{d \theta}{a+\sin ^{2}(\theta)}=\frac{\pi}{\sqrt{(2 a+1)^{2}-1}}
$$

(b) Set

$$
f(z)=\frac{z^{2}}{z^{4}+5 z^{2}+6}=\frac{z^{2}}{\left(z^{2}+3\right)\left(z^{2}+2\right)}=\frac{z^{2}}{(z-\sqrt{3} i)(z+\sqrt{3} i)(z-\sqrt{2} i)(z+\sqrt{2} i)}
$$

For $R \gg 0$,

$$
\gamma_{1}:[-R, R] \rightarrow \mathbb{C}, \gamma_{1}(t)=t ; \gamma_{2}:[0, \pi] \rightarrow \mathbb{C}, \gamma_{2}(t)=R e^{i t}
$$

and let γ be the positively oriented closed curve formed by γ_{1}, γ_{2}. By the residue formula and applying the Cauchy integral formula to $\frac{e^{i z}}{z+a i}$ to compute $\operatorname{res}(f ; a i)$,

$$
\int_{\gamma} f(z) d z=2 \pi i \operatorname{res}(f ; \sqrt{3} i)+2 \pi i \operatorname{res}(f ; \sqrt{2} i)
$$

It is immediate from Cauchy's integral formula that

$$
\begin{gathered}
2 \pi i \operatorname{res}(f ; \sqrt{3} i)=\int_{|z-i \sqrt{3}|=\epsilon} \frac{z^{2}(z+i \sqrt{3})^{-1}\left(z^{2}+2\right)^{-1}}{(z-i \sqrt{3})} d z=2 \pi i \cdot \frac{(i \sqrt{3})^{2}}{\left((i \sqrt{3})^{2}+2\right)(2 i \sqrt{3})}=\sqrt{3} \pi \\
2 \pi i \operatorname{res}(f ; \sqrt{2} i)=\int_{|z-i \sqrt{2}|=\epsilon} \frac{z^{2}(z+i \sqrt{2})^{-1}\left(z^{2}+3\right)^{-1}}{(z-i \sqrt{2})} d z=2 \pi i \cdot \frac{(i \sqrt{2})^{2}}{\left((i \sqrt{2})^{2}+3\right)(2 i \sqrt{2})}=-\sqrt{2} \pi
\end{gathered}
$$

Using the reverse triangle inequality, we obtain the estimate

$$
\left|\int_{\gamma_{2}} f(z) d z\right| \leq \frac{\pi R^{3}}{\left|R^{2}-3\right|\left|R^{2}-2\right|} \rightarrow 0, R \rightarrow \infty
$$

Hence,

$$
2 \int_{0}^{\infty} \frac{x^{2}}{x^{4}+5 x^{2}+6}=\int_{-\infty}^{\infty} \frac{x^{2}}{x^{4}+5 x^{2}+6} d x=(\sqrt{3}-\sqrt{2}) \pi \Rightarrow \int_{0}^{\infty} \frac{x^{2} d x}{x^{4}+5 x^{2}+6}=\frac{(\sqrt{3}-\sqrt{2}) \pi}{2}
$$

(e) We may write

$$
\frac{\cos (x)}{x^{2}+a^{2}}=\operatorname{Re} \frac{e^{i x}}{\left(x^{2}+a^{2}\right)}
$$

So set $f(z)=\frac{e^{i z}}{z^{2}+a^{2}}$, which has simple poles at $\pm a i$. First, suppose that $a \neq 0$. For $R \gg 0$, define

$$
\gamma_{1}:[-R, R] \rightarrow \mathbb{C}, \gamma_{1}(t)=t ; \gamma_{2}:[0, \pi] \rightarrow \mathbb{C}, \gamma_{2}(t)=R e^{i t}
$$

and let γ be the positively oriented closed curve formed by γ_{1}, γ_{2}. By the residue formula,

$$
\begin{aligned}
& \int_{\gamma} f(z) d z=2 \pi i \operatorname{res}(f ; a i)=2 \pi i \cdot \frac{e^{i(a i)}}{(2 a i)}=\frac{\pi e^{-a}}{a} \\
\left|\int_{\gamma_{2}} f(z) d z\right|= & \left|\int_{0}^{\pi} \frac{e^{i R[\cos (t)+i \sin (t)]}}{R^{2} e^{2 i t}+a^{2}} R e^{i t} d t\right|=\left|\int_{0}^{\pi} \frac{e^{i R \cos (t)} e^{-R \sin (t)}}{R^{2} e^{2 i t}+a^{2}} R e^{i t} d t\right| \\
& \leq \int_{0}^{\pi} \frac{R e^{-R \sin (t)}}{R^{2}-a^{2}} d t \leq \frac{\pi R}{R^{2}-a^{2}} \rightarrow 0, R \rightarrow \infty
\end{aligned}
$$

since $e^{-R \sin (t)} \leq 1$ on $[0, \pi]$. Hence,

$$
\int_{0}^{\infty} \frac{\cos (x)}{x^{2}+a^{2}}=\operatorname{Re} \frac{1}{2} \int_{-\infty}^{\infty} \frac{e^{i x}}{x^{2}+a^{2}} d x=\frac{\pi e^{-a}}{2 a}
$$

If $a=0$, then the integral does not converge.
(h) Define $f(z)=\frac{\log (z)}{\left(1+z^{2}\right)}$, where we take the branch of the $\operatorname{logarithm}$ with $\arg (z) \in\left[-\frac{\pi}{2}, \frac{3 \pi}{2}\right)$. For $R \gg 0$, define
$\gamma_{1}:\left[-R, \frac{-1}{R}\right] \rightarrow \mathbb{C}, \gamma_{1}(t)=t ; \gamma_{2}:[, \pi] \rightarrow \mathbb{C}, \gamma_{2}(t)=\frac{-1}{R} e^{-i t} ; \gamma_{3}:\left[\frac{1}{R}, R\right] \rightarrow \mathbb{C}, \gamma_{3}(t)=t ; \gamma_{4}:[0, \pi] \rightarrow \mathbb{C}, \gamma_{4}(t)=R e^{i t}$ and let γ be the positively oriented closed curve formed by the γ_{i}.

$$
\begin{aligned}
& \left|\int_{\gamma_{2}} f(z) d z\right| \leq \int_{0}^{\pi} \frac{\left.|\log | R\right|^{-1} \left\lvert\,+\frac{3 \pi}{2}\right.}{\left|\frac{1}{R^{2}}-1\right|} \frac{1}{R} d t \leq \pi \frac{R\left(\log |R|+\frac{3 \pi}{2}\right)}{\left|R^{2}-1\right|} \rightarrow 0, R \rightarrow \infty \\
& \left|\int_{\gamma_{4}} f(z) d z\right| \leq \int_{0}^{\pi} \frac{|\log | R|+i t|}{R^{2}-1} R d t \leq \pi \frac{R(\log |R|+\pi)}{R^{2}-1} \rightarrow 0, R \rightarrow \infty
\end{aligned}
$$

By the residue formula and applying the Cauchy integral formula to $f(z) /(z+i)$ to compute res $(f ; i)$,

$$
\int_{\gamma} f(z) d z=2 \pi i \operatorname{res}(f ; i)=\left.2 \pi i \cdot \frac{\log (z)}{(z+i)}\right|_{z=i}=2 \pi i \cdot \frac{\frac{\pi}{2}}{2 i}=\frac{\pi^{2}}{2}
$$

Hence,

$$
\begin{gathered}
\frac{\pi^{2}}{2}=\int_{\gamma_{1}} f(z) d z+\int_{\gamma_{3}} f(z) d z=\int_{-R}^{-\frac{1}{R}} \frac{\log \left(t e^{i \pi}\right)}{1+t^{2}} d t+\int_{\frac{1}{R}}^{R} \frac{\log (t)}{1+t^{2}} d t=\int_{-R}^{-\frac{1}{R}} \frac{\log (|t|)}{1+t^{2}} d t+\int_{\frac{1}{R}}^{R} \frac{\log (t)}{1+t^{2}} d t+\pi \int_{-R}^{-\frac{1}{R}} \frac{1}{1+t^{2}} d t \\
=2 \int_{\frac{1}{R}}^{R} \frac{\log (t)}{1+t^{2}}+\pi \int_{\frac{1}{R}}^{R} \frac{1}{1+t^{2}} d t=2 \int_{\frac{1}{R}}^{R} \frac{\log (t)}{1+t^{2}}+\frac{\pi^{2}}{2}
\end{gathered}
$$

where we've used $\int_{0}^{\infty} \frac{1}{1+t^{2}} d t=\lim _{R \rightarrow \infty} \arctan (R)-\arctan (0)=\frac{\pi}{2}$. Hence,

$$
\int_{\frac{1}{R}}^{R} \frac{\log (t)}{1+t^{2}} d t=0 \Rightarrow \int_{0}^{\infty} \frac{\log (t)}{1+t^{2}} d t=0
$$

Lemma 1. Let $U, V \subset \mathbb{C}$ be open sets, $F: U \rightarrow V$ a holomorphic function, and $u: V \rightarrow \mathbb{C}$ a harmonic function. Then $u \circ F: U \rightarrow \mathbb{C}$ is harmonic.
Proof. Since $u \circ F$ is harmonic on U if and only if it is harmonic on any open disk contained in U about every point, we may assume without loss of generality that V is an open disk. Then there exists a holomorphic function $G: V \rightarrow \mathbb{C}$ such that $u=\operatorname{Re}(G)$. Hence, $G \circ F: U \rightarrow \mathbb{C}$ is holomorphic and $\operatorname{Re}(G \circ F)=u \circ F$, which shows that $u \circ F$ is harmonic.

In what follows, a conformal map $f: \Omega \rightarrow \mathbb{C}$ is a bijective holomorphic map.

Harmonic Functions

4.6.2 Exercise 1

Let $u: D^{\prime}(0 ; \rho) \rightarrow \mathbb{R}$ be harmonic and bounded. I am going to cheat a bit and assume Schwarz's theorem for the Poisson integral formula, even though Ahlfors discusses it in a subsequent section. Let

$$
P_{u}(z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \operatorname{Re} \frac{r e^{i \theta}-z}{r e^{i \theta}+z} u\left(r e^{i \theta}\right) d \theta
$$

denote the Poisson integral for u on some circle of fixed radius $r<\rho$. Since u is continuous, $P_{u}(z)$ is a harmonic function in the open disk $D(0 ; r)$ and is continuous on the boundary $\{|z|=r\}$. We want to show that u and P_{u} agree on the annulus, so that we can define a harmonic extension of u by setting $u(0)=P_{u}(0)$. Define

$$
g(z)=u(z)-P_{u}(z)
$$

and for $\epsilon>0$ define

$$
g_{\epsilon}(z)=g(z)+\epsilon \log \left(\frac{|z|}{r}\right) \forall 0<|z| \leq r
$$

Then g is harmonic in $D^{\prime}(0 ; r)$ and continuous on the boundary. Furthermore, since u is bounded by hypothesis and P_{u} is bounded by construction on $\bar{D}(0 ; r)$, we have that g is bounded on $\bar{D}(0 ; r) . g_{\epsilon}(z)$ is harmonic in $D^{\prime}(0 ; r)$ and continuous on the boundary since both its terms are. Since $\log \left(r^{-1}|z|\right) \rightarrow-\infty, z \rightarrow$ 0 , we have that

$$
\limsup _{z \rightarrow 0} g_{\epsilon}(z)<0
$$

Hence, there exists $\delta>0$ such that $0<|z| \leq \delta \Rightarrow g_{\epsilon}(z) \leq 0$. Since g_{ϵ} is harmonic on the closed annulus $\{\delta \leq|z| \leq r\}$, we can apply the maximum principle. Hence, g_{ϵ} assumes its maximum in $\{|z|=\delta\} \cup\{|z|=r\}$. But, $g_{\epsilon}(z) \leq 0 \forall|z|=\delta$, by our choice of δ, and since u, P_{u} agree on $\{|z|=r\}$, we have that $g_{\epsilon}(z)=0 \forall|z|=r$. Hence,

$$
g_{\epsilon}(z) \leq 0 \forall 0<|z| \leq r
$$

Letting $\epsilon \rightarrow 0$, we conclude that $g(z) \leq 0 \forall 0<|z| \leq r$, which shows that $u \leq P_{u}$ on the annulus. Applying the same argument to $h=P_{u}-u$, we conclude that $u=P_{u}$ on $0<|z| \leq r$. Setting $u(0)=P_{u}(0)$ defines a harmonic extension of u on the closed disk.

4.6.2 Exercise 2

If $f: \Omega=\left\{r_{1}<|z|<r_{2}\right\} \rightarrow \mathbb{C}$ is identically zero, then there is nothing to prove. Assume otherwise. Since the annulus is bounded, f has finitely many zeroes in the region. Hence, for $\lambda \in \mathbb{R}$, the function

$$
g(z)=\lambda \log |z|+\log |f(z)|
$$

is harmonic in $\Omega \backslash\left\{a_{1}, \cdots, a_{n}\right\}$, where a_{1}, \cdots, a_{n} are the zeroes of f. Applying the maximum principle to $g(z)$, we see that $|g(z)|$ takes its maximum in $\partial \Omega$. Hence,

$$
\lambda \log |z|+\log |f(z)|=g(z) \leq \max \left\{\lambda \log \left(r_{1}\right)+\log \left(M\left(r_{1}\right)\right), \lambda \log \left(r_{2}\right)+\log \left(M\left(r_{2}\right)\right)\right\} \forall z \in \Omega \backslash\left\{a_{1}, \cdots, a_{n}\right\}
$$

Thus, if $|z|=r$, then we have the inequality

$$
\lambda \log (r)+\log (M(r)) \leq \max \left\{\lambda \log \left(r_{1}\right)+\log \left(M\left(r_{1}\right)\right), \lambda \log \left(r_{2}\right)+\log \left(M\left(r_{2}\right)\right)\right\}
$$

We now find $\lambda \in \mathbb{R}$ such that the two inputs in the maximum function are equal.

$$
\lambda \log \left(r_{1}\right)+\log \left(M\left(r_{1}\right)\right)=\lambda \log \left(r_{2}\right)+\log \left(M\left(r_{2}\right)\right) \Rightarrow \lambda \log \left(\frac{r_{1}}{r_{2}}\right)=\log \left(\frac{M\left(r_{2}\right)}{M\left(r_{1}\right)}\right)
$$

Hence, $\lambda=\log \left(\frac{M\left(r_{2}\right)}{M\left(r_{1}\right)}\right)\left(\log \left(\frac{r_{1}}{r_{2}}\right)\right)^{-1}$. Exponentiating both sides of the obtained inequality,

$$
M(r) \leq \exp \left[\log \left(M\left(r_{2}\right)\right)+\log \left(\frac{M\left(r_{2}\right)}{M\left(r_{1}\right)}\right) \frac{\log \left(\frac{r_{2}}{r}\right)}{\log \left(\frac{r_{1}}{r_{2}}\right)}\right]=\exp \left[\log \left(M\left(r_{2}\right)+\log \left(\frac{M\left(r_{1}\right)}{M\left(r_{2}\right)}\right) \alpha\right]\right.
$$

$$
=M\left(r_{1}\right)^{\alpha} M\left(r_{2}\right)^{1-\alpha}
$$

where $\alpha=\log \left(\frac{r_{2}}{r}\right)\left(\log \left(\frac{r_{2}}{r_{1}}\right)\right)^{-1}$. I claim that equality holds if and only if $f(z)=a z^{\lambda}$, where $a \in \mathbb{C}, \lambda \in \mathbb{R}$. It is obvious that equality holds if $f(z)$ is of this form. Suppose quality holds. Then by Weierstrass's extreme value theorem, for some $\left|z_{0}\right|=r$, we have

$$
\left|f\left(z_{0}\right)\right|=M(r)=\left(\frac{r_{1}}{r}\right)^{\lambda} M\left(r_{1}\right) \Rightarrow\left|z_{0}^{\lambda} f\left(z_{0}\right)\right|=r_{1}^{\lambda} M\left(r_{1}\right)
$$

But since the bound on the RHS holds for all $r_{1}<|z|<r_{2}$, the Maximum Modulus Principle tells us that $z^{\lambda} f(z)=a \in \mathbb{C} \forall r_{1}<|z|<r_{2}$. Hence, $f(z)=a z^{-\lambda}$. But λ is an arbitrary real parameter, from which the claim follows.

4.6.4 Exercise 1

We seek a conformal mapping of the upper-half plane \mathbb{H}^{+}onto the unit disk \mathbb{D}. lemma The map ϕ given by

$$
\phi(z)=i \frac{1+z}{1-z}
$$

is a conformal map of \mathbb{D} onto \mathbb{H}^{+}and is a bijective continuous map of $\partial \mathbb{D}$ onto $\mathbb{R} \cup\{\infty\}$, where $1 \mapsto \infty$. Its inverse is given by

$$
\phi^{-1}(w)=\frac{w-i}{w+i}
$$

Proof. The statements about conformality and continuity follow from a general theorem about the group of linear fractional transformations of the Riemann sphere (Ahlfors p. 76), so we just need to verify the images. For $z \in \mathbb{D}$,

$$
\operatorname{Im}(\phi(z))=\operatorname{Im}\left(i \frac{1+z}{1-z} \cdot \frac{1-\bar{z}}{1-\bar{z}}\right)=\frac{1-|z|^{2}}{|1-z|^{2}}>0
$$

since $|z|<1$. Furthermore, observe that $\operatorname{Im}(\phi(z))=0 \Longleftrightarrow z \in \partial \mathbb{D}$. In particular, $\phi(1)=\infty$. For $w \in \mathbb{H}^{+}$,

$$
\left|\phi^{-1}(w)\right|^{2}=\frac{w-i}{w+i} \cdot \frac{\bar{w}+i}{\bar{w}-i}=\frac{|w|^{2}-2 \operatorname{Im}(w)+1}{|w|^{2}+2 \operatorname{Im}(w)+1}<1
$$

by hypothesis that $\operatorname{Im}(z)>0$. Furthermore, observe that $\left|\phi^{-1}(w)\right|=1 \Longleftrightarrow \operatorname{Im}(w)=0$.
$\tilde{U}=U \circ \phi: \partial \mathbb{D} \rightarrow \mathbb{C}$ is a piecewise continuous function since U is bounded and we therefore can ignore the fact that $\phi(1)=\infty$. By Poisson's formula, the function

$$
P_{\tilde{U}}(z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \operatorname{Re} \frac{e^{i \theta}+z}{e^{i \theta}-z} \tilde{U}\left(e^{i \theta}\right) d \theta
$$

is a harmonic function in the open disk \mathbb{D}. By Lemma 1 , the function

$$
P_{U}(z)=P_{\tilde{U}} \circ \phi^{-1}(z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \operatorname{Re} \frac{e^{i \theta}+\phi^{-1}(z)}{e^{i \theta}-\phi^{-1}(z)} \tilde{U}\left(e^{i \theta}\right) d \theta
$$

is harmonic in \mathbb{H}^{+}. Fix $w_{0} \in \mathbb{D}$ and let $x_{0}+i y_{0}=z_{0}=\phi^{-1}\left(w_{0}\right)$. Let $P_{w_{0}}(\theta)$ denote the Poisson kernel. We apply the change of variable $t=\varphi^{-1}\left(e^{i \theta}\right)$ to obtain

$$
\begin{gathered}
\frac{1}{2 \pi} P_{w_{0}}(\theta) \frac{d \theta}{d t}=\frac{1}{2 \pi} \frac{1-\left|\frac{z_{0}-i}{z_{0}+i}\right|^{2}}{\left|\frac{z_{0}-i}{z_{0}+i}-\frac{t-i}{t+i}\right|^{2}} \cdot \frac{\left(1-\frac{t-i}{t+i}\right)^{2}}{-2 \frac{t-i}{t+i}}=\frac{1}{2 \pi} \frac{\left|z_{0}+i\right|^{2}-\left|z_{0}-i\right|^{2}}{\left|\left(z_{0}-i\right)-\frac{t-i}{t+i}\left(z_{0}+i\right)\right|^{2}} \cdot \frac{((t+i)-(t-i))^{2}}{-2|t+i|^{2}} \\
=\frac{2}{\pi} \frac{y_{0}}{\left|\left(z_{0}-i\right)(t+i)-(t-i)\left(z_{0}+i\right)\right|^{2}}=\frac{2}{\pi} \cdot \frac{y_{0}}{2\left|z_{0}-t\right|^{2}}=\frac{1}{\pi} \cdot \frac{y_{0}}{\left(x_{0}-t\right)^{2}+y_{0}^{2}}
\end{gathered}
$$

Hence,

$$
P_{U}(x, y)=\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{y}{(x-t)^{2}+y^{2}} U(t) d t
$$

is a harmonic function in \mathbb{H}^{+}. Furthermore, since the value of $P_{\tilde{U}}(z)$ for $|z|=1$ is given by $\tilde{U}(z)$ at the points of continuity and since $\phi^{-1}(\partial \mathbb{D})=\mathbb{R} \cup\{\infty\}$, we conclude that

$$
P_{U}(x, 0)=P_{\tilde{U}} \circ \phi^{-1}(x, 0)=\tilde{U} \circ \phi^{-1}(x, 0)=U(x, 0)
$$

at the points of continuity $x \in \mathbb{R}$.

4.6.4 Exercise 5

I couldn't figure out how to show that $\log |f(z)|$ satisfies the mean-value property for $z_{0}=0, r=1$ without first computing the value of $\int_{0}^{\pi} \log \sin (\theta) d \theta$.

Since $\sin (\theta) \leq \theta \forall \theta \in\left[0, \frac{\pi}{2}\right], 1 \geq \frac{\theta}{\sin (\theta)}$ is continuous on $\left[0, \frac{\pi}{2}\right]$, where we've removed the singularity at the origin. Hence, for $\delta>0$,

$$
\int_{0}^{\frac{\pi}{2}} \log \left|\frac{\theta}{\sin (\theta)}\right| d \theta=\lim _{\delta \rightarrow 0} \int_{\delta}^{\frac{\pi}{2}} \log \left|\frac{\theta}{\sin (\theta)}\right| d \theta=\int_{0}^{\frac{\pi}{2}} \log |\theta| d \theta-\lim _{\delta \rightarrow 0} \int_{\delta}^{\frac{\pi}{2}} \log |\sin (\theta)| d \theta
$$

By symmetry, it follows that the improper integral $\int_{\frac{\pi}{2}}^{\pi} \log |\sin (\theta)| d \theta$ exists and therefore $\int_{0}^{\pi} \log |\sin (\theta)| d \theta$ exists. Again by symmetry, $\int_{0}^{\frac{\pi}{2}} \log (\sin (\theta)) d \theta=\int_{0}^{\frac{\pi}{2}} \log \cos (\theta) d \theta$, hence

$$
\begin{gathered}
\int_{0}^{\frac{\pi}{2}} \log \sin (\theta) d \theta=\frac{1}{2} \int_{0}^{\frac{\pi}{2}} \log \sin (\theta) \cos (\theta) d \theta=\frac{1}{2} \int_{0}^{\frac{\pi}{2}} \log \left(\frac{1}{2} \sin (2 \theta)\right) d \theta=\frac{1}{2} \int_{0}^{\frac{\pi}{2}} \sin (2 \theta) d \theta-\frac{\pi}{4} \log (2) \\
=\frac{1}{4} \int_{0}^{\pi} \sin (\vartheta) d \vartheta-\frac{\pi}{4} \log (2)
\end{gathered}
$$

where we make the change of variable $\vartheta=2 \theta$ to obtain the last equality. Since $\int_{0}^{\pi} \log \sin (\theta) d \theta=2 \int_{0}^{\frac{\pi}{2}} \log \sin (\theta) d \theta$, we conclude that

$$
\int_{0}^{\pi} \log \sin (\theta) d \theta=-\pi \log (2)
$$

We now show that for $f(z)=1+z, \log |f(z)|$ satisfies the mean-value property for $z_{0}=0, r=1$. Observe that

$$
\begin{gathered}
\log \left|1+e^{i \theta}\right|=\frac{1}{2} \log \left|(1+\cos (\theta))^{2}+\sin ^{2}(\theta)\right|=\frac{1}{2} \log \left|1+2 \cos (\theta)+\cos ^{2}(\theta)+\sin ^{2}(\theta)\right|=\frac{1}{2} \log |2+2 \cos (\theta)| \\
=\log |2|+\frac{1}{2} \log \left|\frac{1+\cos (\theta)}{2}\right|
\end{gathered}
$$

Substituting and making the change of variable $2 \vartheta=\theta$,

$$
\int_{0}^{2 \pi} \log \left|1+e^{i \theta}\right| d \theta=\int_{0}^{2 \pi}\left[\log 2+\frac{1}{2} \log \left|\cos ^{2}(\theta)\right|\right] d \theta=2 \pi \log 2+\int_{0}^{\pi} \log \left|\frac{1+\cos (2 \vartheta)}{2}\right| d \vartheta=2 \pi \log 2+\int_{0}^{\pi} \log \cos ^{2}(\vartheta) d \vartheta
$$

By symmetry, integrating $\log \cos ^{2}(\theta)$ over $[0, \pi]$ is the same as integrating $\log \left|\sin ^{2}(\theta)\right|$ over $[0, \pi]$. Hence,

$$
\int_{0}^{2 \pi} \log \left|1+e^{i \theta}\right| d \theta=2 \pi \log 2+\int_{0}^{\pi} \log \left|\sin ^{2}(\vartheta)\right| d \vartheta=2 \pi \log 2+2 \int_{0}^{\pi} \log |\sin (\vartheta)| d \vartheta=0
$$

4.6.4 Exercise 6

Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be an entire holomorphic function, and suppose that $z^{-1} \operatorname{Re}(f(z)) \rightarrow 0, z \rightarrow \infty$. By Schwarz's formula (Ahlfors (66) p. 168), we may write

$$
f(z)=\frac{1}{2 \pi i} \int_{|\zeta|=R} \frac{\zeta+z}{\zeta-z} \operatorname{Re}(f(\zeta)) \frac{d \zeta}{\zeta} \forall|z|<R
$$

Let $\epsilon>0$ be given and $R_{0}>0$ such that $\forall R \geq R_{0},\left|\frac{\operatorname{Re}(f(z))}{z}\right|<\epsilon$. Let R be sufficiently large that $R>\frac{R}{2}>R_{0}$. By Schwarz's formula, $\forall \frac{R}{2} \leq|z|<R$,

$$
|f(z)| \leq \frac{R \epsilon}{2 \pi} \int_{0}^{2 \pi}\left|\frac{R e^{i \theta}+z}{R e^{i \theta}-z}\right| d \theta \leq \frac{R \epsilon}{2 \pi} \int_{0}^{2 \pi} \frac{R+|z|}{R-|z|} d \theta=R \epsilon \cdot \frac{R+R}{R-\frac{R}{2}}=4 R \epsilon
$$

Fix $z \in \mathbb{C}$ and let $\frac{R}{2}>\max \left\{R_{0},|z|\right\}$. By Cauchy's differentiation formula,

$$
\begin{aligned}
\left|f^{\prime}(z)\right| & =\frac{1}{2 \pi}\left|\int_{|w|=\frac{R}{2}} \frac{f(w)}{(w-z)^{2}} d w\right| \leq \frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{\frac{R}{2}\left|f\left(\frac{R}{2} e^{i \theta}\right)\right|}{\left|\frac{R}{2} e^{i \theta}-z\right|^{2}} d \theta \\
& \leq \frac{1}{2 \pi} \frac{R}{2} \cdot 4 R \epsilon \int_{0}^{2 \pi} \frac{1}{\left|\frac{R}{2}-|z|\right|^{2}} d \theta=8 \epsilon \frac{R^{2}}{(R-2|z|)^{2}}
\end{aligned}
$$

Letting $R \rightarrow \infty$, we conclude that $\left|f^{\prime}(z)\right| \leq 8 \epsilon$. Since $z \in \mathbb{C}$ was arbitrary, we conclude that $\left|f^{\prime}(z)\right| 8 \epsilon \forall z \in \mathbb{C}$. Since $\epsilon>0$ was arbitrary, we conclude that $f^{\prime}(z)=0$, which shows that f is constant.

4.6.5 Exercise 1

Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be an entire holomorphic function satisfying $f(\mathbb{R}) \subset \mathbb{R}$ and $f(i \cdot \mathbb{R}) \subset i \cdot \mathbb{R}$. Since $f(\mathbb{R}) \subset \mathbb{R}$, $f(z)-f(\bar{z})$ vanishes on the real axis. By the limit-point uniqueness theorem that

$$
f(z)=\overline{f(\bar{z})} \forall z \in \mathbb{C}
$$

Since $f(i \mathbb{R}) \subset i \mathbb{R}, f(z)+\overline{f(-\bar{z})}$ vanishes on the imaginary axis. By the limit-point uniqueness theorem that

$$
f(z)=-\overline{f(-\bar{z})} \forall z \in \mathbb{C}
$$

Combining these two results, we have

$$
f(z)=-\overline{f(-\bar{z})}=-\overline{f(\overline{-z})}=-f(-z) \forall z \in \mathbb{C}
$$

4.6.5 Exercise 3

Let $f: \overline{\mathbb{D}} \rightarrow \mathbb{C}$ be holomorphic and satisfy $|f(z)|=1 \forall|z|=1$. Let $\phi: \mathbb{C} \cup\{\infty\} \rightarrow \mathbb{C} \cup\{\infty\}$ be the linear fractional transformation

$$
\phi(z)=\frac{z-i}{z+i}
$$

Consider the function $g=\phi^{-1} \circ f \circ \phi: \overline{\mathbb{H}}^{+} \rightarrow \mathbb{C}$. By the maximum modulus principle, $|f(z)| \leq 1 \forall|z| \leq 1$. Hence, $g: \overline{\mathbb{H}}^{+} \rightarrow \overline{\mathbb{H}}^{+}$. Since $|f(z)|=1 \forall|z|=1, \phi^{-1}(f(z)) \in \mathbb{R} \forall|z|=1$. Hence, $\tilde{f}(\mathbb{R}) \subset \mathbb{R}$. By the Schwarz Reflection Principle, g extends to an entire function $g: \mathbb{C} \rightarrow \mathbb{C}$ satisfying $g(z)=\overline{g(\bar{z})}$. Define

$$
\tilde{f}=\phi \circ g \circ \phi^{-1}: \mathbb{C} \rightarrow \mathbb{C}
$$

Then \tilde{f} is meromorphic in \mathbb{C} since ϕ has a pole at $z=-i$ and ϕ^{-1} has a pole at $z=1$. In particular, \tilde{f} has finitely many poles. We proved in Problem Set 1 (Ahlfors Section 4.3.2 Exercise 4) that a function meromorphic in the extended complex plane is a rational function, so we need to verify that \tilde{f} doesn't have an essential singularity at ∞. But in a neighborhood of 0 ,

$$
\tilde{f}\left(\frac{1}{z}\right)=\phi \circ g\left(i \frac{1+\frac{1}{z}}{1-\frac{1}{z}}\right)=\phi \circ g\left(i \frac{z+1}{z-1}\right)
$$

which is evidently a meromorphic function. Alternatively, we note that $\forall|z| \geq 1,|\tilde{f}(z)| \geq 1$ since g maps $\overline{\mathbb{H}}^{-}$onto $\overline{\mathbb{H}}^{-}$. So the image of \tilde{f} in a suitable neighborhood of ∞ is not dense in \mathbb{C}. The Casorati-Weierstrass theorem then tells us that \tilde{f} cannot have an essential singularity at ∞.

Chapter 5 - Series and Product Developments

Power Series Expansions

5.1.1 Exercise 2

We know that in the region $\Omega=\{z: \operatorname{Re}(z)>1\}, \zeta(z)$ exists since

$$
\left|\frac{1}{n^{z}}\right|=\frac{1}{n^{\operatorname{Re}(z)}\left|n^{\operatorname{Im}(z) i}\right|}=\frac{1}{n^{\operatorname{Re}(z)}\left|e^{\log (n) \operatorname{Im}(z) i}\right|}=\frac{1}{n^{\operatorname{Re}(z)}}
$$

and therefore $\sum_{n=1}^{\infty}\left|\frac{1}{n^{z}}\right|$ is a convergent harmonic series; absolute convergence implies convergence by completeness. Define $\zeta_{N}(z)=\sum_{n=1}^{N} \frac{1}{n^{z}}$. Clearly, ζ_{N} is the sum of holomorphic functions on the region Ω. I claim that $\left(\zeta_{N}\right)_{N \in \mathbb{N}}$ converge uniformly to ζ on any compact subset $K \subset \Omega$. Since K is compact and $z \mapsto \operatorname{Re}(z)$ is continuous, by Weierstrass's Extreme Value Theorem $\exists z_{0} \in K$ such that $\operatorname{Re}\left(z_{0}\right)=\inf _{z \in K} \operatorname{Re}(z)$. In particular, $\operatorname{Re}\left(z_{0}\right)>1$ since $z_{0} \in \Omega$. Hence, $\left|\frac{1}{n^{z}}\right| \leq \frac{1}{n^{\operatorname{Re}(z)}} \leq \frac{1}{n^{\operatorname{Re}\left(z_{0}\right)}}$. So by the Triangle Inequality,

$$
\forall z \in \Omega,\left|\sum_{n=1}^{N} \frac{1}{n^{z}}\right| \leq \sum_{n=1}^{N}\left|\frac{1}{n^{z}}\right| \leq \sum_{n=1}^{N} \frac{1}{n^{\operatorname{Re}\left(z_{0}\right)}}<\sum_{n=1}^{\infty} \frac{1}{n^{\operatorname{Re}\left(z_{0}\right)}}<\infty
$$

By Weierstrass's M-test, we attain that $\zeta_{n} \rightarrow \zeta$ uniformly on K. Therefore by Weierstrass's theorem, ζ is holomorphic in Ω and

$$
\zeta^{\prime}(z)=\lim _{N \rightarrow \infty} \zeta_{N}^{\prime}(z)=\lim _{N \rightarrow \infty} \sum_{n=1}^{N}-\log (n) e^{-\log (n) z}=\lim _{N \rightarrow \infty} \sum_{n=1}^{N} \frac{-\log (n)}{n^{z}}=\sum_{n=1}^{\infty} \frac{-\log (n)}{n^{z}}
$$

Section 5.1.1 Exercise 3

Lemma 2. Set $a_{n}=(-1)^{n+1}$. If $\sum_{n=1}^{\infty} \frac{a_{n}}{n^{z}}$ converges for some z_{0}. Then $\sum_{n=1}^{\infty} \frac{a_{n}}{n^{z}}$ converges uniformly on $\forall z \in \mathbb{C}$ with $\operatorname{Re}(z) \geq \operatorname{Re}\left(z_{0}\right)$.
Proof. If $\sum_{n=1}^{\infty} \frac{a_{n}}{n^{z_{0}}}$ conveges, there exists an $M>0$ which bounds the partial sums. Let $m \leq N \in \mathbb{N}$. Using summation by parts, we may write

$$
\sum_{n=m}^{N} \frac{a_{n}}{n^{z}}=\sum_{n=m}^{N} \frac{a_{n}}{n^{z_{0}}} \frac{1}{n^{z-z_{0}}}=\frac{1}{N^{z-z_{0}}} \sum_{n=1}^{m-1} \frac{a_{n}}{n^{z_{0}}}-\sum_{n=m}^{N-1}\left(\sum_{k=1}^{n} \frac{a_{k}}{k^{z_{0}}}\right)\left(\frac{1}{(n+1)^{z-z_{0}}}-\frac{1}{n^{z-z_{0}}}\right)
$$

Hence,

$$
\left|\sum_{n=m}^{N} \frac{a_{n}}{n^{z}}\right| \leq M \frac{1}{\left|N^{z-z_{0}}\right|}+M \frac{1}{\left|n^{z-z_{0}}\right|}+M \sum_{n=m}^{N-1}\left|\frac{1}{(n+1)^{z-z_{0}}}-\frac{1}{n^{z-z_{0}}}\right|
$$

Observe that

$$
\left|\frac{1}{(n+1)^{z-z_{0}}}-\frac{1}{n^{z-z_{0}}}\right|=\left|e^{-\log (n+1)\left(z-z_{0}\right)}-e^{-\log (n)\left(z-z_{0}\right)}\right|=\left|\frac{-1}{z-z_{0}} \int_{\log (n)}^{\log (n+1)} e^{-t\left(z-z_{0}\right)} d t\right|
$$

$$
\begin{gathered}
\leq \frac{1}{\left|z-z_{0}\right|} \int_{\log (n)}^{\log (n+1)} e^{-t\left(\operatorname{Re}(z)-\operatorname{Re}\left(z_{0}\right)\right)} d t=\frac{\left|\operatorname{Re}(z)-\operatorname{Re}\left(z_{0}\right)\right|}{\left|z-z_{0}\right|}\left|e^{-\log (n+1)\left(\operatorname{Re}(z)-\operatorname{Re}\left(z_{0}\right)\right)}-e^{-\log (n)\left(\operatorname{Re}(z)-\operatorname{Re}\left(z_{0}\right)\right)}\right| \\
\leq e^{-\log (n)\left(\operatorname{Re}(z)-\operatorname{Re}\left(z_{0}\right)\right)}-e^{-\log (n+1)\left(\operatorname{Re}(z)-\operatorname{Re}\left(z_{0}\right)\right)}=\frac{1}{n^{\operatorname{Re}(z)-\operatorname{Re}\left(z_{0}\right)}}-\frac{1}{(n+1)^{\operatorname{Re}(z)-\operatorname{Re}\left(z_{0}\right)}}
\end{gathered}
$$

Since this last expression is telescoping as the summation ranges over n, we have that

$$
\begin{aligned}
& \left|\sum_{n=m}^{N} \frac{a_{n}}{n^{z}}\right| \leq \frac{M}{N^{\operatorname{Re}(z)-\operatorname{Re}\left(z_{0}\right)}}+\frac{M}{m^{\operatorname{Re}(z)-\operatorname{Re}\left(z_{0}\right)}}+M\left|\frac{1}{N^{\operatorname{Re}(z)-\operatorname{Re}\left(z_{0}\right)}}-\frac{1}{m^{\operatorname{Re}(z)-\operatorname{Re}\left(z_{0}\right)}}\right| \\
\leq & \frac{2 M}{m^{\operatorname{Re}(z)-\operatorname{Re}\left(z_{0}\right)}}+\frac{M}{m^{\operatorname{Re}(z)-\operatorname{Re}\left(z_{0}\right)}}\left|\left(\frac{m}{N}\right)^{\operatorname{Re}(z)-\operatorname{Re}\left(z_{0}\right)}-1\right| \leq \frac{4 M}{m^{\operatorname{Re}(z)-\operatorname{Re}\left(z_{0}\right)}} \rightarrow 0, m \rightarrow \infty
\end{aligned}
$$

Hence, the partial sums of $\sum_{n=1}^{N} \frac{a_{n}}{n^{z-z_{0}}}$ are Cauchy and therefore converge by completeness.
Corollary 3. If $\sum_{n=1}^{\infty} \frac{a_{n}}{n^{z}}$ converges for some $z=z_{0}$, then $\sum_{n=1}^{\infty} \frac{a_{n}}{n^{z}}$ conveges uniformly on compact subsets of $\left\{\operatorname{Re}(z) \geq \operatorname{Re}\left(z_{0}\right)\right\}$.
Proof. Let $K \subset\left\{\operatorname{Re}(z) \geq \operatorname{Re}\left(z_{0}\right)\right\}$ be compact. Since $z \mapsto \operatorname{Re}(z)$ is continuous, there exists $z_{1} \in K$ such that $\operatorname{Re}(z) \geq \operatorname{Re}\left(z_{1}\right) \forall z \in K$. Since $\operatorname{Re}\left(z_{1}\right) \geq \operatorname{Re}\left(z_{0}\right), \sum_{n=1}^{\infty} \frac{a_{n}}{n^{z_{1}}}$ converges. The proof of the preceding lemma shows that we have a uniform bound

$$
\left|\sum_{n=m}^{N} \frac{a_{n}}{n^{z}}\right| \leq \frac{4 M}{m^{\operatorname{Re}(z)-\operatorname{Re}\left(z_{0}\right)}} \leq \frac{4 M}{m^{\operatorname{Re}\left(z_{1}\right)-\operatorname{Re}\left(z_{0}\right)}}
$$

where M depends only on z_{0}. The claim follows immediately from the M-test and completeness.
Since the series $f(z)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{z}}$ converges if we take $z \in \mathbb{R}^{>0}$ (the well-known alternating series), we have by the lemma that $\sum_{n=1}^{\infty} \frac{a_{n}}{n^{z}}$ converges $\forall \operatorname{Re}(z)>0$. We now show that this series is holomorphic on the region $\{\operatorname{Re}(z)>0\}$.
Define a sequence of functions $\left(f_{N}\right)_{N \in \mathbb{N}}$ by

$$
f_{N}=\sum_{n=1}^{N} \frac{(-1)^{n+1}}{n^{z}}
$$

It is clear that f_{N} is holomorphic, being the finite sum of holomorphic functions. Set $\Omega=\{z \in \mathbb{C}: \operatorname{Re}(z)>0\}$ and let $K \subset \Omega$ be compact. Since the f_{N} are just the partial sums of the series, we have by the corollary to the lemma that $f_{N} \rightarrow f$ uniformly on K. By Weierstrass's theorem, f is holomorphic in Ω.
To see that $\left(1-2^{1-z}\right) \zeta(z)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{z}}$ on $\{\operatorname{Re}(z)>1\}$, observe that

$$
\left(1-2^{1-z}\right) \sum_{n=1}^{N} \frac{1}{n^{z}}-\sum_{n=1}^{N} \frac{(-1)^{n+1}}{n^{z}}=\sum_{n=1}^{N} \frac{1}{n^{z}}-2 \sum_{n=1}^{N} \frac{1}{(2 n)^{z}}-\sum_{n=1}^{N} \frac{(-1)^{n+1}}{n^{z}}=2 \sum_{\substack{N<n \leq 2 N \\ n \text { is even }}} \frac{1}{n^{z}}
$$

Since $\sum_{n=1}^{\infty} \frac{1}{n^{z}}$ is absolutely convergent, we see that by taking N sufficiently large, the RHS can be made less than ϵ for $\epsilon>0$ given.

5.1.2 Exercise 2

Differentiating $\left(1-2 \alpha z+z^{2}\right)^{-\frac{1}{2}}$ with respect to z, we obtain

$$
p_{1}(\alpha)=\left.\frac{2 \alpha-2 z}{2\left(1-2 \alpha z+z^{2}\right)^{\frac{3}{2}}}\right|_{z=0}=\alpha
$$

To compute higher order Legendre polynomials, we differentiate $\left(1-2 \alpha z+z^{2}\right)^{-\frac{1}{2}}$ and its Taylor series to obtain the equality

$$
\frac{\alpha-z}{\left(1-2 \alpha z+z^{2}\right)^{\frac{3}{2}}}=\sum_{n=1}^{\infty} n P_{n}(\alpha) z^{n-1} \Rightarrow \frac{\alpha-z}{\sqrt{1-2 \alpha z+z^{2}}}=\left(1-2 \alpha z+z^{2}\right) \sum_{n=1}^{\infty} n P_{n}(\alpha) z^{n-1}
$$

Hence,

$$
\sum_{n=0}^{\infty} \alpha P_{n}(\alpha) z^{n}-\sum_{n=0}^{\infty} P_{n}(\alpha) z^{n+1}=\sum_{n=0}^{\infty} n P_{n}(\alpha) z^{n-1}-\sum_{n=0}^{\infty} 2 \alpha n P_{n}(\alpha) z^{n}+\sum_{n=0}^{\infty} n P_{n}(\alpha) z^{n+1}
$$

Invoking elementary limit properties and using the fact that a function is zero if and only if all its Taylor coefficients are zero, we may equate terms to obtain the recurrence

$$
\begin{gathered}
\alpha P_{n+1}(\alpha)-P_{n}(\alpha)=(n+2) P_{n+2}(\alpha)-2 \alpha(n+1) P_{n+1}(\alpha)+n P_{n}(\alpha) \\
\Rightarrow P_{n+2}(\alpha)=\frac{1}{n+2}\left[(2 n+3) \alpha P_{n+1}(\alpha)-(n+1) P_{n}(\alpha)\right]
\end{gathered}
$$

So,

$$
\begin{gathered}
P_{2}(\alpha)=\frac{1}{2}\left(3 \alpha^{2}-1\right) \\
P_{3}(\alpha)=\frac{1}{3}\left(5 \alpha \frac{1}{2}\left(3 \alpha^{2}-1\right)-2 \alpha\right)=\frac{1}{2}\left(5 \alpha^{3}-3 \alpha\right) \\
P_{4}(\alpha)=\frac{1}{4}\left(7 \alpha \frac{1}{2}\left(5 \alpha^{3}-3 \alpha\right)-3 \frac{1}{2}\left(3 \alpha^{2}-1\right)\right)=\frac{1}{8}\left(35 \alpha^{4}-30 \alpha^{2}+3\right)
\end{gathered}
$$

5.1.2 Exercise 3

Observe that

$$
\frac{\sin (z)}{z}=\frac{1}{z} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} z^{2 n+1}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} z^{2 n}
$$

So, $\frac{\sin (z)}{z} \neq 0$ in some open disk about $z=0$. Hence, the function $z \mapsto \log \left(\frac{\sin (z)}{z}\right)$ is holomorphic in an open disk about $z=0$, where we take the principal branch of the logarithm. Substituting,

$$
\begin{gathered}
\log \left(\frac{\sin (z)}{z}\right)=\log \left(1-\left(1-\frac{\sin (z)}{z}\right)\right)=-\sum_{m=1}^{\infty} \frac{\left(1-\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} z^{2 n}\right)^{m}}{m} \\
=-\sum_{m=1}^{\infty} \frac{\left(\frac{1}{3!} z^{2}-\frac{1}{5!} z^{4}+\frac{1}{7!} z^{6}-\left[z^{8}\right]\right)^{m}}{m}
\end{gathered}
$$

Set $P(z)=\frac{1}{3!} z^{2}-\frac{1}{5!} z^{4}$. Then

$$
\begin{gathered}
\log \left(\frac{\sin (z)}{z}\right)=-\left[\frac{z^{6}}{7!}+\frac{P(z)+\left[z^{8}\right]}{1}+\frac{P(z)^{2}+\left[z^{8}\right]}{2}+\frac{P(z)^{3}+\left[z^{8}\right]}{3}\right] \\
=-\left[\frac{z^{2}}{3!}-\frac{z^{4}}{5!}+\frac{z^{6}}{7!}+\frac{1}{2}\left(\frac{z^{4}}{(3!)^{2}}-\frac{2 z^{6}}{(3!)(5!)}\right)+\frac{z^{6}}{3(3!)^{3}}+\left[z^{8}\right]\right] \\
=-\frac{1}{6} z^{2}-\frac{1}{180} z^{4}-\frac{1}{2835} z^{6}+\left[z^{8}\right]
\end{gathered}
$$

Partial Fractions and Factorization

5.2.1 Exercise 1

From Ahlfors p. 189, we obtain for $|z|<1$,

$$
z \pi \cot (\pi z)=z\left(\frac{1}{z}+2 \sum_{n=1}^{\infty} \frac{z}{z^{2}-n^{2}}\right)=1-2 z^{2} \sum_{n=1}^{\infty} \frac{1}{n^{2}} \cdot \frac{1}{1-\frac{z^{2}}{n^{2}}}=1-2 z^{2} \sum_{n=1}^{\infty} \frac{1}{n^{2}}\left(\sum_{k=0}^{\infty}\left(\frac{z^{2}}{n^{2}}\right)^{k}\right)
$$

where we expand $\frac{z^{2}}{n^{2}}$ using the geometric series. Since both series are absolutely convergent, we may interchange the order of summation to obtain

$$
z \pi \cot (\pi z)=1-2 z^{2} \sum_{k=0}^{\infty}\left(\sum_{n=1}^{\infty} \frac{1}{n^{2(k+1)}}\right) z^{2 k}=1-2 \sum_{k=0}^{\infty} \zeta(2 k) z^{2 k}
$$

We now compute the Taylor series for $\pi z \cot (\pi z)$.

$$
\pi z \cot (\pi z)=\pi z \frac{\cos (\pi z)}{\sin (\pi z)}=\pi i z \frac{e^{i \pi z}+e^{-i \pi z}}{e^{i \pi z}-e^{-i \pi z}}=\pi i z \frac{e^{i 2 \pi z}+1}{e^{i 2 \pi z}-1}=\frac{2 \pi i z}{e^{2 \pi i z}-1}+\frac{\pi i z\left(e^{2 \pi i z}-1\right)}{e^{2 \pi i z}-1}=\pi i z+\frac{2 \pi i z}{e^{2 \pi i z}-1}
$$

Let $|z|<\frac{1}{2 \pi}$. Then

$$
\begin{aligned}
z \pi \cot (\pi z)=\pi i z+\frac{2 \pi i z}{\sum_{k=1}^{\infty} \frac{(2 \pi i z)^{k}}{k!}}= & \pi i z+\frac{1}{1-\left(-\sum_{k=1}^{\infty} \frac{(2 \pi i z)^{k}}{(k+1)!}\right)}=\pi i z+\sum_{n=0}^{\infty}\left(-\sum_{k=1}^{\infty} \frac{(2 \pi i z)^{k}}{(k+1)!}\right)^{n} \\
& =\pi i z+\sum_{k=0}^{\infty} \frac{B_{k}}{k!}(2 \pi i z)^{k}
\end{aligned}
$$

where we may use the geometric expansion since $\left|\sum_{k=1}^{\infty} \frac{(2 \pi i z)^{k}}{(k+1)!}\right| \leq \sum_{k=1}^{\infty}|2 \pi z|^{k}<1\left(|z|<\frac{1}{2 \pi}\right)$, and the change in the order of summation is permitted since the series are absolutely convergent. According to Ahlfors, the numbers B_{k} are called Bernoulli numbers, the values of which one can look up. Since the two series representations for $\pi z \cot (\pi z)$ are equal, the coefficients must agree. Hence,

$$
\begin{gathered}
\zeta(2)=\frac{-1}{2} \frac{(2 \pi i)^{2} B_{2}}{2!}=\frac{\pi^{2}}{6} \\
\zeta(4)=\frac{-1}{2} \frac{(2 \pi i)^{4} B_{4}}{4!}=\frac{16 \pi^{4}}{6} \cdot 60=\frac{\pi^{4}}{90} \\
\zeta(6)=\frac{-1}{2} \frac{(2 \pi i)^{6} B_{6}}{6!}=\frac{32 \pi^{6}}{42 \cdot 6!}=\frac{\pi^{6}}{21 \cdot 45}=\frac{\pi^{6}}{945}
\end{gathered}
$$

5.2.1 Exercise 2

We first observe that

$$
\sum_{n=-\infty}^{\infty} \frac{1}{z^{3}-n^{3}}
$$

converges absolutely, being comparable to $\sum_{n=1}^{\infty} \frac{1}{n^{3}}$. For $z \neq 0$, we may write (after some laborious computation, which can be found at the end of the solutions)

$$
\frac{1}{z^{3}-n^{3}}=\frac{1}{(z-n)\left(z-n e^{i \frac{2 \pi}{3}}\right)\left(z-n e^{i \frac{4 \pi}{3}}\right)}=\frac{1}{(z-n)\left(e^{i \frac{2 \pi}{3}} z-n\right)\left(e^{i \frac{4 \pi}{3}} z-n\right)}=\frac{A}{z-n}+\frac{B}{z e^{i \frac{4 \pi}{3}}-n}+\frac{C}{z e^{i \frac{2 \pi}{3}}-n}
$$

where

$$
C=\frac{e^{\frac{2 \pi}{3} i}}{3 z^{2}} B=\frac{e^{\frac{4 \pi}{3} i}}{3 z^{2}} A=\frac{1}{3 z^{2}}
$$

Ahlfors p. 189 shows that $\lim _{m \rightarrow \infty} \sum_{-m}^{m} \frac{1}{z-n}=\pi \cot (\pi z), 0<|z|<1$. Hence, for $0<|z|<1$,

$$
\begin{gathered}
\lim _{m \rightarrow \infty} \sum_{-m}^{m} \frac{1}{z^{3}-n^{3}}=\frac{1}{3 z^{2}} \lim _{m \rightarrow \infty} \sum_{-m}^{m} \frac{1}{z-n}+\frac{e^{\frac{2 \pi}{3} i}}{3 z^{2}} \lim _{m \rightarrow \infty} \sum_{-m}^{m} \frac{1}{z e^{i \frac{2 \pi}{3}}-n}+\frac{e^{\frac{4 \pi}{3} i}}{3 z^{2}} \lim _{m \rightarrow \infty} \sum_{-m}^{m} \frac{1}{z e^{i \frac{4 \pi}{3}}-n} \\
=\frac{\pi \cot (\pi z)}{3 z^{2}}+\frac{\pi e^{\frac{2 \pi}{3} i} \cot \left(\pi e^{\frac{2 \pi}{3} i} z\right)}{3 z^{2}}+\frac{\pi e^{\frac{4 \pi}{3} i} \cot \left(\pi e^{\frac{4 \pi}{3} i}\right)}{3 z^{2}}
\end{gathered}
$$

5.2.2 Exercise 2

In what follows, we will restrict ourselves to $z \in D(0 ; 1)$. For $n \in \mathbb{Z} \geq 0$, define

$$
P_{n}(z)=(1+z)\left(1+z^{2}\right) \cdots\left(1+z^{2^{n}}\right)=\prod_{i=1}^{n}\left(1+z^{2^{i}}\right)
$$

First, I claim that $(1-z) P_{n}(z)=\left(1-z^{2^{n+1}}\right)$. Suppose the claim is true for some n, then

$$
(1-z) P_{n+1}(z)=\left[(1-z) P_{n}(z)\right]\left(1+z^{2^{n+1}}\right)=\left(1-z^{2^{n+1}}\right)\left(1+z^{2^{n+1}}\right)=\left(1-z^{2^{n+2}}\right)=\left(1-z^{2^{(n+1)+1}}\right)
$$

The base case is trivial, so the result follows by induction. Therefore,

$$
\left|P_{n}(z)-\frac{1}{1-z}\right| \leq \frac{1}{1-|z|}\left|(1-z) P_{n}(z)-1\right|=|z|^{2^{n+1}} \rightarrow 0, n \rightarrow \infty
$$

since $|z|<1$. Since $\frac{1}{1-|z|},|z|$ are bounded on any compact subset of $D(0 ; 1)$, we remark that the convergence is uniform on compact subsets of $D(0 ; 1)$.

5.2.3 Exercise 3

First, note that even though the function $z \mapsto \sqrt{z}$ is not entire for any branch choice, the function $f(z)=$ $\cos (\sqrt{z})$ is. Indeed, substituting into the definition of $\cos (z)$,

$$
f(z)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!}(\sqrt{z})^{2 n}
$$

Since changing the choice of branch only results in a sign change, we see that $(\sqrt{z})^{2 n}=z^{n}$, and therefore

$$
f(z)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} z^{n}
$$

which is evidently an entire function, being a power series with infinite radius of convergence. Observe that $f(z)$ has zero set $\left\{\left(\frac{(2 n+1) \pi}{2}\right)^{2}: n \in \mathbb{Z}\right\}$. Since $\sin \left(z+\frac{\pi}{2}\right)=\cos (z), \cos (\pi z)$ can be written as

$$
\begin{aligned}
& \cos (\pi z)=\pi\left(z+\frac{1}{2}\right) \prod_{n \neq 0}\left(1-\frac{z+\frac{1}{2}}{n}\right) e^{\frac{z+\frac{1}{2}}{n}}=\pi\left(z+\frac{1}{2}\right) \prod_{n \neq 0}\left(\frac{2 n-1}{2 n}-\frac{2 z}{2 n}\right) e^{\frac{1}{2 n}+\frac{z}{n}} \\
& =\frac{\pi}{2}\left(1-\frac{z}{\frac{-1}{2}}\right) \prod_{n \neq 0} \frac{2 n-1}{2 n}\left(1-\frac{z}{\frac{2 n-1}{2}}\right) e^{\frac{1}{2 n}+\frac{z}{n}}=\frac{\pi}{2} \prod_{n=1}^{\infty}\left(1-\frac{1}{4 n^{2}}\right)\left(1-\frac{z^{2}}{\frac{(2 n-1)^{2}}{4}}\right)
\end{aligned}
$$

Using the infinite product representation of $\sin (z)$, we have

$$
\frac{2}{\pi}=\frac{\sin \left(\frac{\pi}{2}\right)}{\frac{\pi}{2}}=\prod_{n=1}^{\infty}\left(1-\frac{\left(\frac{\pi}{2}\right)^{2}}{n^{2} \pi^{2}}\right)=\prod_{n=1}^{\infty}\left(1-\frac{4}{n^{2}}\right)
$$

Hence,

$$
\cos (\pi z)=\prod_{n=1}^{\infty}\left(1-\frac{z^{2}}{\frac{(2 n-1)^{2}}{4}}\right) \Rightarrow \cos (z)=\prod_{n=1}^{\infty}\left(1-\frac{z^{2}}{\left(\frac{(2 n-1) \pi}{2}\right)^{2}}\right)
$$

Hence, $f(z)$ has the canonical product representation

$$
f(z)=\prod_{n=1}^{\infty}\left(1-\frac{z}{\left(\frac{(2 n-1) \pi}{2}\right)^{2}}\right)
$$

Since

$$
\sum_{n=1}^{\infty}\left(\frac{(2 n-1) \pi}{2}\right)^{-2}=\frac{\pi^{2}}{4} \sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}}<\infty
$$

being comparable to $\sum \frac{1}{n^{2}}$, we see that $f(z)$ is an entire function of genus zero.

5.2.3 Exercise 4

Let $f(z)$ be an entire function of genus h. Let $\left\{a_{n} \neq 0\right\}_{n \in \mathbb{N}}$ denotes the (at most countable) set of nonzero zeroes of f and h_{c} denote the genus of the canonical product. We may write

$$
f(z)=z^{m} e^{g(z)} \prod_{n=1}^{\infty}\left(1-\frac{z}{a_{n}}\right) e^{\frac{z}{a_{n}}+\frac{1}{2}\left(\frac{z}{a_{n}}\right)^{2}+\cdots+\frac{1}{h_{c}}\left(\frac{z}{a_{n}}\right)^{h_{c}}}
$$

where $g(z)$ is a polynomial and $h=\max \left(\operatorname{deg}(g(z)), h_{c}\right)$. Hence,

$$
\begin{gathered}
f\left(z^{2}\right)=z^{2 m} e^{g\left(z^{2}\right)} \prod_{n=1}^{\infty}\left(1-\frac{z^{2}}{a_{n}}\right) e^{\frac{z^{2}}{a_{n}}+\frac{1}{2}\left(\frac{z^{2}}{a_{n}}\right)^{2}+\cdots+\frac{1}{h_{c}}\left(\frac{z^{2}}{a_{n}}\right)^{h_{c}}} \\
=z^{2 m} e^{g\left(z^{2}\right)} \prod_{n=1}^{\infty}\left(1-\frac{z}{\sqrt{a_{n}}}\right)\left(1+\frac{z}{\sqrt{a_{n}}}\right) e^{\frac{z}{\sqrt{a_{n}}}+\frac{1}{2}\left(\frac{z}{\sqrt{a_{n}}}\right)^{2}+\cdots+\frac{1}{2 h_{c}+1}\left(\frac{z}{\sqrt{a_{n}}}\right)^{2 h_{c}+1} e^{\frac{z}{-\sqrt{a_{n}}}+\frac{1}{2}\left(\frac{z}{-\sqrt{a_{n}}}\right)^{2}+\cdots+\frac{1}{2 h_{c}+1}\left(\frac{z}{-\sqrt{a_{n}}}\right)^{2 h_{c}+1}}}=.
\end{gathered}
$$

where we've chosen some branch of the square root. If we define $b_{1}=\sqrt{a_{1}}, b_{2}=-\sqrt{a_{1}}, \cdots$. Then

$$
\tilde{f}(z)=f\left(z^{2}\right)=z^{2 m} e^{g\left(z^{2}\right)} \prod_{n=1}^{\infty}\left(1-\frac{z}{b_{n}}\right) e^{\frac{z}{b_{n}}+\frac{1}{2}\left(\frac{z}{b_{n}}\right)^{2}+\cdots+\frac{1}{2 h_{c}+1}\left(\frac{z}{b_{n}}\right)^{2 h_{c}+1}}
$$

the breaking up of the product being justified since the individual products converge absolutely by virtue of

$$
\sum \frac{1}{\left|b_{n}\right|^{2 h_{c}+1+1}}=\sum \frac{1}{\left|a_{n}\right|^{h_{c}+1}}<\infty
$$

I claim that the genus of \tilde{f} is bounded from below by h. If $h=0$, then there is nothing to prove; assume otherwise. If $h=\operatorname{deg}(g(z))>0$, then $\tilde{h} \geq \operatorname{deg}\left(g\left(z^{2}\right)\right)>h$; so assume that $h=h_{c}$. We will show that the genus \tilde{h}_{c} of the canonical product associated to $\left(b_{n}\right)$ is bounded from below by $2 h_{c}$. Suppose $\tilde{h}_{c}<2 h_{c}$. Since $a_{n} \rightarrow \infty$ and therefore $b_{n} \rightarrow \infty$ by continuity, we have that for all n sufficiently large $\left|b_{n}\right|>1$. So it suffices to consider the case $\tilde{h}_{c}=2 h_{c}-1$. Then

$$
\infty>\sum_{n=1}^{\infty} \frac{1}{\left|b_{n}\right|^{\tilde{h}_{c}+1}}=\sum_{n=1}^{\infty} \frac{1}{\left|b_{n}\right|^{2 h_{c}-1+1}}=\sum_{n=1}^{\infty} \frac{1}{\left|a_{n}\right|^{h_{c}}}
$$

But this shows that the genus of the canonical product associated to $\left(a_{n}\right)$ is at most $h_{c}-1$, which is obviously a contradiction. Taking f to be a polynomial shows that this bound is sharp.
I claim that the genus of \tilde{f} is bounded from above by $2 h+1$. Indeed, $2 h+1 \geq 2 \operatorname{deg}(g(z))=\operatorname{deg}\left(g\left(z^{2}\right)\right)$, and we showed above that $\tilde{h}_{c} \leq 2 h_{c}+1 \leq 2 h+1$. This bound is also sharp since we can take

$$
f(z)=\prod_{n=1}^{\infty}\left(1-\frac{z}{n^{2}}\right) \Rightarrow f\left(z^{2}\right)=\prod_{n \neq 0}\left(1-\frac{z}{n}\right) e^{\frac{z}{n}}
$$

$f(z)$ is clearly an entire function of genus 0 , and the genus of the canonical product associated to $(n)_{n \in \mathbb{Z}}$ is 1 , from which we conclude the genus of $f\left(z^{2}\right)$ is 1 .

5.2.4 Exercise 2

Using Legendre's duplication formula for the gamma function (Ahlfors p. 200),

$$
\Gamma\left(\frac{1}{6}\right)=\sqrt{\pi} \Gamma\left(2 \cdot \frac{1}{6}\right) 2^{1-2 \cdot \frac{1}{6}} \Gamma\left(\frac{1}{6}+\frac{1}{2}\right)^{-1}=\sqrt{\pi} 2^{\frac{2}{3}} \Gamma\left(\frac{1}{3}\right) \Gamma\left(\frac{2}{3}\right)
$$

Applying the formula $\Gamma(z) \Gamma(1-z)=\frac{\pi}{\sin (\pi z)}$ (Ahlfors p. 199), we obtain

$$
\Gamma\left(\frac{1}{6}\right)=\sqrt{\pi} 2^{\frac{2}{3}} \Gamma\left(\frac{1}{3}\right) \Gamma\left(\frac{1}{3}\right) \frac{\sin \left(\pi \cdot \frac{1}{3}\right)}{\pi}=2^{-\frac{1}{3}}\left(\frac{3}{\pi}\right)^{\frac{1}{2}}\left(\Gamma\left(\frac{1}{3}\right)\right)^{2}
$$

5.2.4 Exercise 3

It is clear from the definition of the Gamma function that for each $k \in \mathbb{Z}^{\leq 0}$,

$$
f(z)= \begin{cases}\left(1+\frac{z}{k}\right) \Gamma(z) & k \neq 0 \\ z \Gamma(z) & k=0\end{cases}
$$

extends to a holomorphic function in an open neighborhood of k. We abuse notation and denote the extension also by $\left(1+\frac{z}{k}\right) \Gamma(z)$ and $z \Gamma(z)$. lemma For any $k \in \mathbb{Z}^{>0}$,

$$
\Gamma(z)=\frac{\Gamma(z+k)}{\prod_{j=1}^{k}(z+j-1)} \forall z \notin \mathbb{Z}
$$

Proof. Recall that $\Gamma(z)$ has the property that the $\Gamma(z+1)=z \Gamma(z)$. We proceed by induction. The base case is trivial, so assume that $\Gamma(z)=\frac{\Gamma(z+k)}{\prod_{j=1}^{\hbar}(z+j-1)}$ for some $k \in \mathbb{N}$. Then

$$
\frac{\Gamma(z+(k+1))}{\prod_{j=1}^{k+1}(z+j-1)}=\frac{\Gamma((z+k)+1)}{\prod_{j=1}^{k+1}(z+j-1)}=\frac{(z+k) \Gamma(z+k)}{\prod_{j=1}^{k+1}(z+j-1)}=\frac{\Gamma(z+k)}{\prod_{j=1}^{k}(z+j-1)!}=\Gamma(z)
$$

Corollary 4. For any $k \in \mathbb{Z}^{\leq 0}$,

$$
\lim _{z \rightarrow k}(z-k) \Gamma(z)=\frac{(-1)^{k}}{|k|!}
$$

Proof. Fix $k \in \mathbb{Z}^{\leq 0}$. Immediate from the preceding lemma is that

$$
\lim _{z \rightarrow-|k|}(z+|k|) \Gamma(z)=\lim _{z \rightarrow-|k|}(z+|k|) \frac{\Gamma(z+|k|+1)}{\prod_{j=1}^{k+1}(z+|j|-1)}=\frac{\Gamma(1)}{(-1)(-2) \cdots(-|k|)}=\frac{(-1)^{k}}{|k|!}
$$

Let $k \in \mathbb{Z}^{\leq 0}$. Then

$$
\operatorname{res}(\Gamma ; k)=\frac{1}{2 \pi i} \int_{|z-k|=\frac{1}{2}} \Gamma(z) d z=\frac{1}{2 \pi i} \int_{|z-k|=\frac{1}{2}} \frac{\left(1-\frac{z}{k}\right) \Gamma(z)}{1-\frac{z}{k}} d z=\frac{1}{2 \pi i} \int_{|z-k|=\frac{1}{2}} \frac{(z-k) \Gamma(z)}{z-k} d z
$$

Since the function $\left(1+\frac{z}{k}\right) \Gamma(z)$ extends to a holomorphic function in a neighborhood of k, by Cauchy's integral formula,

$$
\frac{1}{2 \pi i} \int_{|z-k|=\frac{1}{2}} \frac{(z-k) \Gamma(z)}{z-k} d z=\left.(z-k) \Gamma(z)\right|_{z=k}=\frac{(-1)^{k}}{|k|!}
$$

where use the preceding lemma to obtain the last equality. Thus,

$$
\operatorname{res}(\Gamma ; k)=\frac{(-1)^{k}}{|k|!} \forall k \in \mathbb{Z}^{\leq 0}
$$

5.2.5 Exercise 2

Lemma 5.

$$
\int_{0}^{\infty} \log \left(\frac{1}{1-e^{-2 \pi x}}\right) d x=\frac{\pi}{12}
$$

Proof. Let $1 \gg \delta>0$. Consider the function $\frac{\log (1-z)}{z}$, which has the power series representation

$$
\frac{\log (1-z)}{z}=-\frac{1}{z} \sum_{n=1}^{\infty} \frac{1}{n} z^{n}=\sum_{n=1}^{\infty} \frac{1}{n} z^{n-1} \forall|z|<1
$$

with the understanding that the singularity at $z=0$ is removable. Since the convergence is uniform on compact subsets, we may integrate over the contour $\gamma_{\delta}:[0,1-\delta] \rightarrow \mathbb{C}, \gamma_{\delta}(t)=t$ term by term, Thus,

$$
\left.\int_{\gamma_{\delta}} \frac{\log (1-z)}{z} d z=\int_{0}^{1-\delta} \frac{\log (1-t)}{t} d t=\sum_{n=1}^{\infty} \frac{1}{n^{2}}(1-\delta)^{n} \rightarrow \sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}\right]
$$

since the function $f(x)=\sum_{n=1}^{\infty} \frac{x^{n}}{n^{2}}$ is left-continuous at $x=1$. Hence,

$$
\int_{0}^{1} \frac{\log (1-t)}{t} d t=\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}
$$

We now make the change of variable $t=e^{-2 \pi x}$ to obtain

$$
\frac{\pi^{2}}{6}=\int_{0}^{\infty} \frac{\log \left(1-e^{-2 \pi x}\right)}{e^{-2 \pi x}}-2 \pi e^{-2 \pi x} d x=-2 \pi \int_{0}^{\infty} \log \left(1-e^{-2 \pi x}\right) d x
$$

which gives

$$
\int_{0}^{\infty} \log \left(\frac{1}{1-e^{-2 \pi x}}\right) d x=\int_{0}^{\infty}-\log \left(1-e^{-2 \pi x}\right) d x=\frac{\pi}{12}
$$

For $x \in \mathbb{R}^{>0}$, Stirling's formula (Ahlfors p. 203-4) for $\Gamma(z)$ tells us that

$$
\Gamma(x)=\sqrt{2 \pi} x^{x-\frac{1}{2}} e^{-x} e^{J(x)}
$$

where

$$
J(x)=\frac{1}{\pi} \int_{0}^{\infty} \frac{x}{\eta^{2}+x^{2}} \log \left(\frac{1}{1-e^{-2 \pi \eta}}\right) d \eta
$$

The preceding lemma tells us that

$$
J(x)=\frac{1}{x} \cdot \frac{1}{\pi} \int_{0}^{\infty} \frac{x^{2}}{x^{2}+\eta^{2}} \log \left(\frac{1}{1-e^{-2 \pi \eta}}\right) d \eta \leq \frac{1}{x} \cdot \frac{1}{\pi} \int_{0}^{\infty} \log \left(\frac{1}{1-e^{-2 \pi \eta}}\right) d \eta=\frac{1}{x} \cdot \frac{1}{\pi} \cdot \frac{\pi}{12}=\frac{1}{12 x}
$$

where we've used $0<\frac{x^{2}}{x^{2}+\eta^{2}} \leq 1 \forall \eta$. Set

$$
\theta(x)=12 x J(x)
$$

It is obvious that $\theta(x)>0$ and $\theta(x)<1$ since $\frac{x^{2}}{x^{2}+\eta^{2}}<1$ almost everywhere, and therefore the preceding inequality is strict. We thus conclude that

$$
\Gamma(x)=\sqrt{2 \pi} x^{x-\frac{1}{2}} e^{-x} e^{\frac{\theta(x)}{12 x}} 0<\theta(x)<1
$$

5.2.5 Exercise 3

Take $f(z)=e^{-z^{2}}$, and for $R \gg 0$, define

$$
\gamma_{1}:[0, R] \rightarrow \mathbb{C}, \gamma_{1}(t)=t ; \gamma_{2}:\left[0, \frac{\pi}{4}\right] \rightarrow \mathbb{C}, \gamma_{2}(t)=R e^{i t} ; \gamma_{3}:[0, R] \rightarrow \mathbb{C}, \gamma_{3}(t)=(R-t) e^{i \frac{\pi}{4}}
$$

and let γ be the positively oriented closed curve defined by the γ_{i}.

$$
\left|\int_{\gamma_{2}} f(z) d z\right|=\left|\int_{0}^{\frac{\pi}{4}} e^{-R \cos (2 t)-i R \sin (2 t)} R i e^{i t} d t\right| \leq \int_{0}^{\frac{\pi}{4}} e^{-R \cos (2 t)} R d t
$$

Since $\cos (2 t)$ is nonnegative and $\cos (2 t) \geq 2 t$ (this is immediate from $\frac{d}{d t} \cos (2 t)=-2 \sin (2 t) \geq-2$ on $\left.\left[0, \frac{\pi}{4}\right]\right)$ for $t \in\left[0, \frac{\pi}{4}\right]$, we have

$$
\int_{0}^{\frac{\pi}{4}} e^{-R \cos (2 t)} R d t \leq \int_{0}^{\frac{\pi}{4}} e^{-2 R t} R d t=-\frac{1}{2}\left[e^{-R \frac{\pi}{2}}-1\right] \rightarrow 0, R \rightarrow \infty
$$

Since f is an entire function, by Cauchy's theorem,

$$
0=\int_{\gamma} f(z) d z=\int_{\gamma_{1}} f(z) d z+\int_{\gamma_{2}} f(z) d z+\int_{\gamma_{3}} f(z) d z
$$

and letting $R \rightarrow \infty$,

$$
\int_{0}^{\infty} e^{-x^{2}} d x=\lim _{R \rightarrow \infty} e^{i \frac{\pi}{4}} \int_{0}^{R} e^{-(R-t)^{2} e^{i \frac{\pi}{2}}} d t=\lim _{R \rightarrow \infty} e^{i \frac{\pi}{4}} \int_{0}^{R} e^{-i(R-t)^{2}} d t=e^{i \frac{\pi}{4}} \int_{0}^{\infty} e^{-i y^{2}} d y
$$

where we make the substitution $y=R-t$. Substituting $\int_{0}^{\infty} e^{-x^{2}} d x=2^{-1} \sqrt{\pi}$,

$$
\int_{0}^{\infty} \cos \left(x^{2}\right) d x-i \int_{0}^{\infty} \sin \left(x^{2}\right) d x=\int_{0}^{\infty} e^{-i x^{2}} d x=e^{-i \frac{\pi}{4}} \frac{\sqrt{\pi}}{2}=\frac{\sqrt{\pi}}{2 \sqrt{2}}-i \frac{\sqrt{\pi}}{2 \sqrt{2}}
$$

Equating real and imaginary parts, we obtain the Fresnel integrals

$$
\begin{aligned}
\int_{0}^{\infty} \cos \left(x^{2}\right) d x & =\frac{\sqrt{\pi}}{2 \sqrt{2}} \\
\int_{0}^{\infty} \sin \left(x^{2}\right) d x & =\frac{\sqrt{\pi}}{2 \sqrt{2}}
\end{aligned}
$$

Entire Functions

5.3.2 Exercise 1

We will show that the following two definitions of the genus of an entire function f are equivalent:

1. If

$$
f(z)=z^{m} e^{g(z)} \prod_{n=1}^{\infty}\left(1-\frac{z}{a_{n}}\right) e^{\sum_{j=1}^{h} \frac{1}{j}\left(\frac{z}{a_{n}}\right)^{j}}
$$

where h is the genus of the canonical product associated to $\left(a_{n}\right)$, then the genus of f is max $(\operatorname{deg}(g(z)), h)$. If no such representation exists, then f is said to be of infinite genus.
2. The genus of f is the minimal $h \in \mathbb{Z} \geq 0$ such that

$$
f(z)=z^{m} e^{g(z)} \prod_{n=1}^{\infty}\left(1-\frac{z}{a_{n}}\right) e^{\sum_{j=1}^{h} \frac{1}{j}\left(\frac{z}{a_{n}}\right)^{j}}
$$

where $\operatorname{deg}(g(z)) \leq h$. If no such h exists, then f is said to be of infinite genus.
Proof. Suppose f has finite genus h_{1} with respect to definition (1). If $h_{1}=h$, then $\operatorname{deg}(g(z)) \leq h_{1}$. Hence, f is of a finite genus h_{2} with respect to definition (2), and $h_{2} \leq h_{1}$. Assume otherwise. By definition of the genus of the canonical product, the expression

$$
\sum_{n=1}^{\infty} \sum_{j=h+1}^{h_{1}} \frac{1}{j}\left(\frac{z}{a_{n}}\right)^{j}=\sum_{j=h+1}^{h_{1}} \frac{1}{j}\left(\sum_{n=1}^{\infty} \frac{1}{a_{n}^{j}}\right) z^{j}
$$

defines a polynomial of degree h_{1}. Hence, we may write

$$
f(z)=z^{m} e^{g(z)-\sum_{n=1}^{\infty} \sum_{j=h+1}^{h_{1}} \frac{1}{j}\left(\frac{z}{a_{n}}\right)^{j}} \prod_{n=1}^{\infty}\left(1-\frac{z}{a_{n}}\right) e^{\sum_{j=1}^{h_{1}} \frac{1}{j}\left(\frac{z}{a_{n}}\right)^{j}}=z^{m} e^{\tilde{g}(z)} \prod_{n=1}^{\infty}\left(1-\frac{z}{a_{n}}\right) e^{\sum_{j=1}^{h_{1}} \frac{1}{j}\left(\frac{z}{a_{n}}\right)^{j}}
$$

where we $\tilde{g}(z)$ is a polynomial of degree h_{1}. Hence, f is of finite genus h_{2} with respect to definition (2) and $h_{2} \leq h_{1}$.
Now suppose that f has finite genus h_{2} with respect to definition (2). Reversing the steps of the previous argument, we attain that f has finite genus h_{1} with respect to definition (1), and $h_{1} \leq h_{2}$. It follows immediately that definitions (1) and (2) are equivalent if f has finite genus with respect to either (1) and (2), and by proving the contrapositives, we see that (1) and (2) are equivalent for all entire functions f.

5.3.2 Exercise 2

lemma Let $a \in \mathbb{C}$ and $r>0$. Then

$$
\inf _{|z|=r}|z-|a||=|r-|a|| \text { and } \sup _{|z|=r}|z-|a||=r+|a|
$$

Proof. By the triangle inequality and reverse inequality, we have the double inequality

$$
|r-|a||=\| z|-|a|| \leq|z-|a|| \leq|z|+|a|=r+|a|
$$

Hence, $\inf |z-|a|| \geq|r-|a||$ and $\sup |z-|a|| \leq r+|a|$. But these values are attained at $z=r$ and $z=-r$, respectively.

By Weierstrass's extreme value theorem, $|f|$ and $|g|$ attain both their maximum and minimum on the circle $\{|z|=r\}$ at $z_{M, f}, z_{M, g}$ and $z_{m, f}, z_{m, g}$, respectively. The preceding lemma shows that $z_{M, g}=-r$ and $z_{m, g}=r$. Consider the expression

$$
\left|\frac{f(z)}{g(z)}\right|=\left|\frac{z^{m} \prod_{n=1}^{\infty}\left(1-\frac{z}{a_{n}}\right)}{z^{m} \prod_{n=1}^{\infty}\left(1-\frac{z}{\left|a_{n}\right|}\right)}\right|=\prod_{n=1}^{\infty} \frac{\left|z-a_{n}\right|}{\left|z-\left|a_{n}\right|\right|}
$$

We have

$$
\begin{gathered}
\left|\frac{f\left(z_{M, f}\right)}{g\left(z_{M, g}\right)}\right|=\left|\frac{f\left(z_{M, f}\right)}{g(-r)}\right|=\prod_{n=1}^{\infty} \frac{\left|r e^{i \theta_{M, f}}-a_{n}\right|}{r+\left|a_{n}\right|}=\prod_{n=1}^{\infty} \frac{\left|r e^{i\left(\theta_{M, f}-\arg \left(a_{n}\right)\right)}-\left|a_{n}\right|\right|}{r+\left|a_{n}\right|} \\
\leq \prod_{n=1}^{\infty} \frac{\sup _{|z|=r}\left|z-\left|a_{n}\right|\right|}{r+\left|a_{n}\right|}=\prod_{n=1}^{\infty} \frac{r+\left|a_{n}\right|}{r+\left|a_{n}\right|}=1
\end{gathered}
$$

Hence, $\left|f\left(z_{M, f}\right)\right| \leq\left|g\left(z_{M, g}\right)\right|$. Since

$$
\left|z_{m, f}-a_{n}\right|=\left|r e^{i\left(\theta_{m, f}-\arg \left(a_{n}\right)\right)}-\left|a_{n}\right|\right| \geq\left|r-\left|a_{n}\right|\right| \forall n \in \mathbb{N}
$$

we have that

$$
\left|\frac{f\left(z_{m, f}\right)}{g\left(z_{m, g}\right)}\right|=\left|\frac{f\left(z_{m, f}\right)}{g(r)}\right|=\prod_{n=1}^{\infty} \frac{\left|z_{m, f}-a_{n}\right|}{\left|r-\left|a_{n}\right|\right|} \geq \prod_{n=1}^{\infty} \frac{\left|z_{m, f}-a_{n}\right|}{\left|z_{m, f}-a_{n}\right|}=1
$$

Hence, $\left|f\left(z_{m, f}\right)\right| \geq\left|g\left(z_{m, g}\right)\right|$.

5.5.5 Exercise 1

Let Ω be a fixed region and \mathcal{F} be the family of holomorphic functions $f: \Omega \rightarrow \mathbb{C}$ with $\operatorname{Re}(f(z))>0 \forall z \in \Omega$. I claim that \mathcal{F} is normal. Consider the family of functions

$$
\mathcal{G}=\left\{g: \Omega \rightarrow \mathbb{C}: g=e^{-f} \text { for some } f \in \mathcal{F}\right\}
$$

Since $\operatorname{Re}(f(z))>0 \forall f \in \mathcal{F}$, we have

$$
\left|e^{-f(z)}\right|=\left|e^{-\operatorname{Re}(f(z))-i \operatorname{Im}(f(z))}\right|=\left|e^{-\operatorname{Re}(f(z))}\right| \leq 1
$$

Hence, \mathcal{G} is uniformly bounded on compact subsets of Ω and is therefore a normal family. Fix a sequence $\left(f_{n}\right)_{n \in \mathbb{N}} \subset \mathcal{F}$, and consider the sequence $g_{n}=e^{-f_{n}} .\left(g_{n}\right)$ has a convergent subsequence $\left(g_{n_{k}}\right)$ which converges to a holomorphic function g on compact sets (Weierstrass's theorem). Since $g_{n_{k}}$ is nonvanishing for each k, g is either identically zero or nowhere zero by Hurwitz theorem. If g is identically zero, then it is immediate that $f_{n_{k}}$ tends to ∞ uniformly on compact sets. Now, suppose that g is nowhere zero. $g(K) \subset \mathbb{D} \backslash\{0\}$ is compact by continuity. By the Open Mapping Theorem, for each $z \in K$, there exists $r>0$ such that $D(g(z) ; r) \subset g(\Omega) \subset \mathbb{D} \backslash\{0\}$. The disks $D\left(g(z) ; 4^{-1} r\right)$ form an open cover of $g(K)$, so by compactness,

$$
g(K) \subset \bigcup_{i=1}^{n} D\left(g\left(z_{i}\right) ; 4^{-1} r_{i}\right) \subset \bigcup_{i=1}^{n} \bar{D}\left(g\left(z_{i}\right) ; 2^{-1} r_{i}\right) \subset \bigcup_{i=1}^{n} D\left(g\left(z_{i}\right) ; r_{i}\right) \subset \mathbb{D} \backslash\{0\}
$$

On each $D\left(g\left(z_{i}\right) ; r_{i}\right)$, we can choose a branch of the logarithm such that $\log (z)$ is holomorphic on $D\left(g\left(z_{i}\right) ; r_{i}\right)$, and in particular uniformly continuous on $\bar{D}\left(g\left(z_{i}\right) ; 2^{-1} r_{i}\right)$. For each i, choose $\delta_{i}>0$ such that

$$
w, w^{\prime} \in \bar{D}\left(g\left(z_{i}\right) ; r_{i}\right)\left|w-w^{\prime}\right|<\delta_{i} \Rightarrow\left|\log (w)-\log \left(w^{\prime}\right)\right|<\epsilon
$$

Set $\delta=\min _{1 \leq i \leq n} \delta_{i}$, choose $k_{0} \in \mathbb{N}$ such that $k \geq k_{0} \Rightarrow\left|g_{n_{k}}(z)-g(z)\right|<\delta \forall z \in K$. Then for $1 \leq i \leq n$,

$$
\forall k \geq k_{0} \quad\left|\log \left(e^{-f_{n_{k}}(z)}\right)-\log (g(z))\right|<\epsilon \forall z \in g^{-1}\left(\bar{D}\left(g\left(z_{i}\right) ; 2^{-1} r_{i}\right)\right)
$$

It is not a priori true that $\log \left(e^{-f_{n_{k}}(z)}\right)=-f_{n_{k}}(z)$; the imaginary parts differ by an integer multiple of $2 \pi i$. But the function given by $\frac{1}{2 \pi i}\left[\log \left(e^{-f_{n_{k}}(z)}\right)+f_{n_{k}}(z)\right]$ is continuous and integer-valued on any open disk about each z_{i} in Ω, and therefore must be a constant $m \in \mathbb{Z}$ in that disk as a consequence of connectedness. Taking a new covering of $g(K)$, if necessary, such that $D\left(g\left(z_{i}\right) ; r_{i}\right)$ is contained in the image under g of such a disk (which we can do by the Open Mapping Theorem), we may assume that for each $z \in g^{-1}\left(D\left(g\left(z_{i}\right) ; r_{i}\right)\right)$,

$$
2 \pi m_{i}=\lim _{k \rightarrow \infty}\left[\log \left(e^{-f_{n_{k}}(z)}\right)+f_{n_{k}}(z)\right]=\log (g(z))+\lim _{k \rightarrow \infty} f_{n_{k}}(z)
$$

Taking $k_{0} \in \mathbb{N}$ larger if necessary, we conclude that

$$
\forall k \geq k_{0}\left|\log \left(e^{-f_{n_{k}}(z)}\right)-\log (g(z))\right|=\left|f_{n_{k}}(z)-\left[-\log (g(z))+2 \pi m_{i}\right]\right|<\epsilon \forall z \in g^{-1}\left(\bar{D}\left(g\left(z_{i}\right) ; 2^{-1} r_{i}\right)\right)
$$

Since $K \subset \bigcup_{i=1}^{n} g^{-1}\left(\bar{D}\left(g\left(z_{i}\right) ; 2^{-1} r_{i}\right)\right)$, we conclude from the uniqueness of limits that $f_{n_{k}}(z)$ converges to $\lim _{k \rightarrow \infty} f_{n_{k}}(z)$ uniformly on K.

Suppose in addition that $\{\operatorname{Re}(f): f \in \mathcal{F}\}$ is uniformly bounded on compact sets. I claim that \mathcal{F} is then locally bounded. Let $K \subset \Omega$ be compact, and let $L>0$ be such that $\operatorname{Re}(f)(z) \leq L \forall z \in K \forall f \in \mathcal{F}$. Then

$$
\left|e^{f(z)}\right|=e^{\operatorname{Re}(f(z))} \leq e^{L} \forall z \in K \forall f \in \mathcal{F}
$$

Hence, $\left\{g=e^{f}: f \in \mathcal{F}\right\}$ is a locally bounded family, and therefore its derivatives are locally bounded. Since $\operatorname{Re}(f)>0 \forall f \in \mathcal{F}$, we have that

$$
\left|f^{\prime}(z)\right| \leq\left|f^{\prime}(z) e^{f(z)}\right|=\left|g^{\prime}(z)\right|
$$

which shows that $\left\{f^{\prime}: f \in \mathcal{F}\right\}$ is a locally bounded family. Since K is compact, there exist $z_{1}, \cdots, z_{n} \in K$ and $r_{1}, \cdots, r_{n}>0$ such that $K \subset \bigcup_{i=1}^{n} D\left(z_{i} ; \frac{r_{i}}{2}\right)$ and $D\left(z_{i} ; r_{i}\right) \subset \Omega$. By Cauchy's theorem,

$$
f(z)=\int_{\left[z_{i}, z\right]} f^{\prime}(z) d z \forall z \in D\left(z_{i} ; \frac{r_{i}}{2}\right) \Rightarrow|f(z)| \leq M_{i} r_{i} \forall z \in D\left(z_{i} ; \frac{r_{i}}{2}\right)
$$

where $\left[z, z_{i}\right]$ denotes the straight line segment, and M_{i} is a uniform bound for $\left\{f^{\prime}: f \in \mathcal{F}\right\}$ on $D\left(z_{i} ; 2^{-1} r_{i}\right)$. Setting $M=\max _{1 \leq i \leq n} M_{i}$ and $r=\max _{1 \leq i \leq n} r_{i}$, we conclude that

$$
|f(z)| \leq M r \forall z \in K \forall f \in \mathcal{F}
$$

Normal Families

5.5.5 Exercise 3

Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be an entire holomorphic function. Define a family of entire functions \mathcal{F} by

$$
\mathcal{F}=\{g: \mathbb{C} \rightarrow \mathbb{C}: g(z)=f(k z), k \in \mathbb{C}\}
$$

Fix $0 \leq r_{1}<r_{2} \leq \infty$. I claim that \mathcal{F} is normal (in the sense of Definition 3 p. 225) in the annulus $r_{1}<|z|<r_{2}$ if and only if f is a polynomial.

Suppose $f=a_{0}+a_{1} z+\cdots+a_{n} z^{n}$ is a polynomial, where $a_{n} \neq 0$. By Ahlfors Theorem 17 (p. 226), it suffices to show that the expression

$$
\rho(g)=\frac{2\left|g^{\prime}(z)\right|}{1+|g(z)|^{2}} g \in \mathcal{F}
$$

is locally bounded. Since $g(z)=f(k z)$ for some $k \in \mathbb{C}$, it suffices to show that $\frac{2\left|f^{\prime}(z)\right|}{1+|f(z)|^{2}}$ is bounded on \mathbb{C}. The function $F(z)$ given by

$$
F(z)=\frac{2\left|f^{\prime}\left(z^{-1}\right)\right|}{1+\left|f\left(z^{-1}\right)\right|^{2}}=\frac{2\left|a_{1} z^{2 n}+2 a_{2} z^{2 n-1}+\cdots+n a_{n} z^{n+1}\right|}{|z|^{2 n}+\left|a_{0} z^{n}+a_{1} z^{n-1}+\cdots+a_{n}\right|^{2}}
$$

is continuous in a neighborhood of 0 with $F(0) \neq+\infty$ since $a_{n} \neq 0$. Hence, $|F(z)| \leq M_{1} \forall|z| \leq \delta$, which shows that

$$
\frac{2\left|f^{\prime}(z)\right|}{1+|f(z)|^{2}} \leq M_{1} \forall|z| \geq \frac{1}{\delta}
$$

$\frac{2\left|f^{\prime}(z)\right|}{1+|f(z)|^{2}}$ is continuous on the compact set $\bar{D}\left(0 ; \frac{1}{\delta}\right)$ and therefore bounded by some M_{2}. Taking $M=$ $\max \left\{M_{1}, M_{2}\right\}$, we obtain the desired result.

Now suppose that \mathcal{F} is normal in $r_{1}<|z|<r_{2}$. If f is bounded, then we're done by Liouville's theorem. Assume otherwise. Let $\left(f_{n}\right)_{n \in \mathbb{N}} \subset \mathcal{F}$ be a sequence given by

$$
f_{n}(z)=f\left(\kappa_{n} z\right) \text { for some } \kappa_{n} \in \mathbb{C}
$$

where $\kappa_{n} \rightarrow \infty, n \rightarrow \infty$. Since \mathcal{F} is normal, $\left(f_{n}\right)$ has a subsequence $\left(f_{n_{k}}\right)_{k \in \mathbb{N}}$ which either tends to ∞, uniformly on compact subsets of $\left\{r_{1}<|z|<r_{2}\right\}$, or converges to some limit function g in likewise fashion. Fix $\delta>0$ small and consider the compact subset $\left\{r_{1}+\delta \leq|z| \leq r_{2}-\delta\right\}$. If $f_{n_{k}} \rightarrow g$, then I claim that f is bounded on \mathbb{C}, which gives us a contradiction. Indeed, fix $z_{0} \in \mathbb{C}$. Since $\left(f_{n_{k}}\right)$ converges uniformly on $\left\{r_{1}+\delta \leq|z| \leq r_{2}-\delta\right\},\left(f_{n_{k}}\right)$ is uniformly bounded by some $M>0$ on this set. Let $\left|\kappa_{n_{k}}\left(r_{1}+\delta\right)\right| \geq\left|z_{0}\right|$. By the Maximum Modulus Principle, $|f(z)|$ is bounded on the disk $D\left(0 ;\left|\kappa_{n_{k}}\left(r_{1}+\delta\right)\right|\right)$ by some $|f(w)|$ for some w on the boundary. Hence,

$$
\left|f\left(z_{0}\right)\right| \leq|f(w)|=\left|f_{n_{k}}(z)\right| \leq M \text { for some } z \in\left\{|z|=r_{1}+\delta\right\}
$$

Since z_{0} was arbitrary, we conclude that f is bounded.
I now claim that f has finitely many zeroes. Suppose not. Let $\left(a_{n}\right)_{n \in \mathbb{N}}$ be the sequence of zeroes of f ordered by increasing modulus, and consider the sequence of functions $f_{n}(z)=f_{n}\left(r^{-1} a_{n} z\right)$, where $r_{1}<r<r_{2}$ is fixed. Our preceding work shows that $\left(f_{n}\right)$ has a subsequence $\left(f_{n_{k}}\right)$ which tends to ∞ on the compact set $\{|z|=r\}$. But this is a contradiction since $f_{n_{k}}(r)=0 \forall k \in \mathbb{N}$.
If we can show that f has a pole at ∞, then we're done by Ahlfors Section 4.3.2 Exercise 2 (Problem Set 1). Let $f_{n}(z)=f(n z)$, and let $\left(f_{n_{k}}\right)_{k \in \mathbb{N}}$ be a subsequence which tends to ∞ on compact sets. Let $M>0$ be given. Fix $r_{1}<r<r_{2}$. Then $f_{n_{k}} \rightarrow \infty$ uniformly on $\{|z|=r\}$, so there exists $k_{0} \in \mathbb{N}$ such that for $k \geq k_{0},\left|f_{n_{k}}(z)\right|>M \forall|z|=r$. Taking k_{0} larger if necessary, we may assume that $|f(z)|>0 \forall|z| \geq r n_{k_{0}}$. Let $z \in \mathbb{C},|z| \geq r n_{k_{0}}$, and choose k so that $n_{k} r>|z|$. By the Minimum Modulus Principle, $|f|$ assumes its minimum on the boundary of the annulus $\left\{n_{k_{0}} r \leq|w| \leq r n_{k}\right\}$. But

$$
\min \left\{\inf _{|w|=n_{k_{0}} r}|f(w)|, \inf _{|w|=n_{k} r}|f(w)|\right\}>M
$$

and therefore,

$$
|f(z)| \geq \inf _{n_{k_{0}} r \leq|w| \leq n_{k} r}|f(w)|>M
$$

Since z was arbitrary, we conclude that $|f(z)|>M \forall|z| \geq r n_{k_{0}}$. Since $M>0$ was arbitrary, we conclude that f has a pole at ∞.

5.5.5 Exercise 4

Let \mathcal{F} be a family of meromorphic functions in a given region Ω, which is not normal in Ω. By Ahlfors Theorem 17 (p. 226), there must exist a compact set $K \subset \Omega$ such that the expression

$$
\rho(f)(z)=\frac{2\left|f^{\prime}(z)\right|}{1+|f(z)|^{2}} f \in \mathcal{F}
$$

is not locally bounded on K. Hence, we can choose a sequence of functions $\left(f_{n}\right) \subset \mathcal{F}$ and of points $\left(z_{n}\right) \subset K$ such that

$$
\frac{2\left|f_{n}^{\prime}\left(z_{n}\right)\right|}{1+\left|f_{n}\left(z_{n}\right)\right|^{2}} \nearrow \infty, n \rightarrow \infty
$$

Suppose for every $z \in \Omega$, there exists an open disk $D\left(z ; r_{z}\right) \subset \Omega$ on which \mathcal{F} is normal, equivalently $\rho(f)$ is locally bounded. Let $M_{z}>0$ bound $\rho(f)$ on the closed disk $\bar{D}\left(z ; 2^{-1} r_{z}\right)$. The collection $\left\{D\left(z ; 2^{-1} r_{z}\right): z \in K\right\}$ forms an open cover of K. By compactness, there exist finitely many disks $D\left(z_{1} ; 2^{-1} r_{1}\right), \cdots, D\left(z_{n} ; 2^{-1} r_{n}\right)$ such that

$$
K \subset \bigcup_{i=1}^{n} D\left(z_{i} ; 2^{-1} r_{i}\right) \text { and } \forall i=1, \cdots, n|\rho(f)(z)| \leq M_{i} \forall z \in \bar{D}\left(z_{i} ; 2^{-1} r\right) \forall f \in \mathcal{F}
$$

Setting $M=\max _{1 \leq i \leq n} M_{i}$, we conclude that

$$
|\rho(f)(z)| \leq M \forall z \in K \forall f \in \mathcal{F}
$$

This is obviously a contradiction since $\lim _{n \rightarrow \infty} \rho\left(f_{n}\right)\left(z_{n}\right)=+\infty$. We conclude that there must exist $z_{0} \in \Omega$ such that \mathcal{F} is not normal in any neighborhood of z_{0}.

Conformal Mapping, Dirichlet's Problem

The Riemann Mapping Theorem

6.1.1 Exercise 1

Lemma 6. Let $f: \Omega \rightarrow \mathbb{C}$ be a holomorphic function on a symmetric region Ω (i.e. $\Omega=\bar{\Omega}$). Then the function $g: \Omega \rightarrow \mathbb{C}, g(z)=\overline{f(\bar{z})}$ is holomorphic.

Proof. Writing $z=x+i y$, if $f(z)=u(x, y)+i v(x, y)$, where u, v are real, then $g(z)=u(x,-y)-i v(x,-y)=$ $\bar{u}(x, y)+i \bar{v}(x, y)$. It is then evident that g is continuous and u, v have C^{1} partials. We verify the CauchyRiemann equations.

$$
\begin{aligned}
& \frac{\partial \bar{u}}{\partial x}(x, y)=\frac{\partial u}{\partial x}(x,-y) ; \frac{\partial \bar{u}}{\partial y}(x, y)=-\frac{\partial u}{\partial y}(x,-y) \\
& \frac{\partial \bar{v}}{\partial x}(x, y)=-\frac{\partial v}{\partial x}(x,-y) ; \frac{\partial \bar{v}}{\partial y}(x, y)=\frac{\partial v}{\partial y}(x,-y)
\end{aligned}
$$

The claim follows immediately from the fact that u, v satisfy the Cauchy-Riemann equations.
Let $\Omega \subset \mathbb{C}$ be simply connected symmetric region, $z_{0} \in \Omega$ be real, and $f: \Omega \rightarrow \mathbb{D}$ be the unique conformal map satisfying $f\left(z_{0}\right)=0, f^{\prime}\left(z_{0}\right)>0$ (as guaranteed by the Riemann Mapping Theorem). Define $g(z)=\overline{f(\bar{z})}$. Then $g: \Omega \rightarrow \mathbb{D}$ is holomorphic by the lemma and bijective, being the composition of bijections; hence, g is conformal. Furthermore, $g\left(z_{0}\right)=0$ since $z_{0}, f\left(z_{0}\right) \in \mathbb{R}$. Since

$$
0<f^{\prime}\left(z_{0}\right)=\frac{\partial u}{\partial x}\left(z_{0}\right)=\frac{\partial u}{\partial x}\left(\overline{z_{0}}\right)=g^{\prime}\left(z_{0}\right)
$$

we conclude by uniqueness that $f=g$. Equivalently, $\overline{f(z)}=f(\bar{z}) \forall z \in \Omega$.

6.1.1 Exercise 2

Suppose now that Ω is symmetric with respect to z_{0} (i.e. $z \in \Omega \Longleftrightarrow 2 z_{0}-z \in \Omega$). I claim that f satisfies

$$
f(z)=2 f\left(z_{0}\right)-f\left(2 z_{0}-z\right)=-f\left(2 z_{0}-z\right)
$$

Define $g: \Omega \rightarrow \mathbb{D}$ by $g(z)=-f\left(2 z_{0}-z\right)$. Clearly, g is conformal, being the composition of conformal maps, and $g\left(z_{0}\right)=0$. Furthermore, by the chain rule, $g^{\prime}\left(z_{0}\right)=f^{\prime}\left(z_{0}\right)>0$. We conclude from the uniqueness statement of the Riemann Mapping Theorem that $g(z)=f(z) \forall z \in \Omega$.

Elliptic Functions

Weierstrass Theory

7.3.2 Exercise 1

Let f be an even elliptic function periods ω_{1}, ω_{2}. If f is constant then there is nothing to prove, so assume otherwise. First, suppose that 0 is neither a zero nor a pole of f. Observe that since f is even, its zeroes and poles occur in pairs. Since f is elliptic, f has the same number of poles as zeroes. So, let a_{1}, \cdots, a_{n}, and b_{1}, \cdots, b_{n} denote the incongruent zeroes and poles of f in some fundamental parallelogram P_{a}, where $a_{i} \not \equiv-a_{j} \bmod M, b_{i} \not \equiv-b_{j} \bmod M \forall i, j$ and where we repeat for multiplicity. Define a function g by

$$
g(z)=f(z)\left(\prod_{k=1}^{n} \frac{\wp(z)-\wp\left(a_{k}\right)}{\wp(z)-\wp\left(b_{k}\right)}\right)^{-1}
$$

and where \wp is the Weierstrass p-function with respect to the lattice generated by ω_{1}, ω_{2}. I claim that g is a holomorphic elliptic function. Since $\wp(z)-\wp\left(a_{k}\right)$ and $\wp(z)-\wp\left(b_{k}\right)$ have double poles at each $z \in M$ for all k, g has a removable singularity at each $z \in M$. For each $k, \wp(z)-\wp\left(b_{k}\right)$ has the same poles as \wp and is therefore an elliptic function of order 2. Since $b_{k} \neq 0$ and \wp is even, it follows that $\wp(z)-\wp\left(b_{k}\right)$ has zeroes of order 1 at $z= \pm b_{k}$. From our convention for repeating zeroes and poles, we conclude that g has a removable singularity at $\pm b_{k}$. The argument that g has removable singularity at each a_{k} is completely analogous. Clearly,

$$
g\left(z+\omega_{1}\right)=g\left(z+\omega_{2}\right)=g(z) \text { for } z \notin a_{i}+M \cup b_{i}+M \cup M
$$

so by continuity, we conclude that g is a holomorphic elliptic function with periods ω_{1}, ω_{2} and is therefore equal to a constant C. Hence,

$$
f(z)=C \prod_{k=1}^{n} \frac{\wp(z)-\wp\left(a_{k}\right)}{\wp(z)-\wp\left(b_{k}\right)}
$$

Since f is even, its Laurent series about the origin only has nonzero terms with even powers. So if f vanishes or has a pole at the origin, the order is $2 m, m \in \mathbb{N}$. Suppose that f vanishes with order $2 m$. The function given by

$$
\tilde{f}(z)=f(z) \cdot \wp(z)^{m}
$$

is elliptic with periods ω_{1}, ω_{2}. \tilde{f} has a removable singularity at $z=0$, since $\wp(z)^{k}$ has a pole of order $2 k$ at $z=0$. Hence, we are reduced to the previous case of elliptic function, so applying the preceding argument, we conclude that

$$
\tilde{f}(z)=C \prod_{k=1}^{n} \frac{\wp(z)-\wp\left(a_{k}\right)}{\wp(z)-\wp\left(b_{k}\right)} \Rightarrow f(z)=\frac{C}{\wp(z)^{m}} \prod_{k=1}^{n} \frac{\wp(z)-\wp\left(a_{k}\right)}{\wp(z)-\wp\left(b_{k}\right)}
$$

If f has a pole of order $2 m$ at the origin, then the function given by

$$
\tilde{f}(z)=\frac{f(z)}{\wp(z)^{m}}
$$

is elliptic with periods ω_{1}, ω_{2} and has a removable singularity at the origin. From the same argument, we conclude that

$$
f(z)=C \wp(z)^{m} \prod_{k=1}^{n} \frac{\wp(z)-\wp\left(a_{k}\right)}{\wp(z)-\wp\left(b_{k}\right)}
$$

7.3.2 Exercise 2

Let f be an elliptic function with periods ω_{1}, ω_{2}. By Ahlfors Theorem 5 (p. 271), f has the same number of zeroes and poles counted with multiplicity. Let $a_{1}, \cdots, a_{n}, b_{1}, \cdots, b_{n}$ denote the incongruent zeroes and poles of f, respectively, where we repeat for multiplicity. By Ahlfors Theorem p. 271, $\sum_{k=1}^{n} b_{k}-a_{k} \in M$, so replacing a_{1} by $a_{1}^{\prime}=a_{1}+\sum_{k=1}^{n} b_{k}-a_{k}$, we may assume without loss of generality that $\sum_{k=1}^{n} b_{k}-a_{k}=0$. Define a function g by

$$
g(z)=f(z)\left(\prod_{k=1}^{n} \frac{\sigma\left(z-a_{k}\right)}{\sigma\left(z-b_{k}\right)}\right)^{-1}
$$

where σ is the entire function (Ahlfors p. 274) given by

$$
\sigma(z)=z \prod_{\omega \neq 0}\left(1-\frac{z}{\omega}\right) e^{\frac{z}{w}+\frac{1}{2}\left(\frac{z}{w}\right)^{2}}
$$

g has removable singularities at $a_{i}+M, b_{i}+M$ for $1 \leq i \leq n$. I claim that g is elliptic with periods ω_{1}, ω_{2}. Recall (Ahlfors p. 274) that σ satisfies

$$
\sigma\left(z+\omega_{1}\right)=-\sigma(z) e^{-\eta_{1}\left(z+\frac{\omega_{1}}{2}\right)} \text { and } \sigma\left(z+\omega_{2}\right)=-\sigma(z) e^{-\eta_{2}\left(z+\frac{\omega_{2}}{2}\right)} \forall z \in \mathbb{C}
$$

where $\eta_{2} \omega_{1}-\eta_{1} \omega_{2}=2 \pi i$ (Legendre's relation). Hence, for $z \not \equiv b_{i}+M, a_{i}+M$,

$$
\begin{gathered}
g\left(z+\omega_{1}\right)=f\left(z+\omega_{1}\right)\left(\prod_{k=1}^{n} \frac{\sigma\left(z-a_{k}+\omega_{1}\right)}{\sigma\left(z-b_{k}+\omega_{1}\right)}\right)^{-1}=f(z)\left(\prod_{k=1}^{n} \frac{-\sigma\left(z-a_{k}\right) e^{\eta_{1}\left(z-a_{k}+\frac{\omega_{1}}{2}\right)}}{-\sigma\left(z-b_{k}\right) e^{\eta_{1}\left(z-b_{k}+\frac{\omega_{1}}{2}\right)}}\right)^{-1} \\
=e^{\eta_{1} \sum_{k=1}^{n} a_{k}-b_{k}} f(z)\left(\prod_{k=1}^{n} \frac{\sigma\left(z-a_{k}\right)}{\sigma\left(z-b_{k}\right)}\right)^{-1}=g(z)
\end{gathered}
$$

By continuity, we conclude that $g\left(z+\omega_{1}\right)=g(z) \forall z \in \mathbb{C}$. Analogously, for $z \not \equiv b_{i}+M, a_{i}+M$,

$$
\begin{gathered}
g\left(z+\omega_{2}\right)=f\left(z+\omega_{2}\right)\left(\prod_{k=1}^{n} \frac{\sigma\left(z-a_{k}+\omega_{2}\right)}{\sigma\left(z-b_{k}+\omega_{2}\right)}\right)^{-1}=f(z)\left(\prod_{k=1}^{n} \frac{-\sigma\left(z-a_{k}\right) e^{\eta_{2}\left(z-a_{k}+\frac{\omega_{2}}{2}\right)}}{-\sigma\left(z-b_{k}\right) e^{\eta_{2}\left(z-b_{k}+\frac{\omega_{2}}{2}\right)}}\right)^{-1} \\
=e^{\eta_{2} \sum_{k=1}^{n} a_{k}-b_{k}} f(z)\left(\prod_{k=1}^{n} \frac{\sigma\left(z-a_{k}\right)}{\sigma\left(z-b_{k}\right)}\right)^{-1}=g(z)
\end{gathered}
$$

By continuity, we conclude that $g\left(z+\omega_{2}\right)=g(z) \forall z \in \mathbb{C}$. Since g is an entire elliptic function, it is constant by Ahlfors Theorem 3 (p. 270). We conclude that for some $C \in \mathbb{C}$,

$$
f(z)=C \prod_{k=1}^{n} \frac{\sigma\left(z-a_{k}\right)}{\sigma\left(z-b_{k}\right)}
$$

7.3.3 Exercise 1

Fix a rank-2 lattice $M \subset \mathbb{C}$ and $u \notin M$. Then

$$
\wp(z)-\wp(u)=-\frac{\sigma(z-u) \sigma(z+u)}{\sigma(z)^{2} \sigma(u)^{2}}
$$

Proof. I first claim that the RHS is periodic with respect to M. Let ω_{1}, ω_{2} be generators of M and let $\eta_{1} \omega_{2}-\eta_{2} \omega_{1}=2 \pi i$. For $z \notin M$,

$$
\begin{gathered}
-\frac{\sigma\left(z+\omega_{1}-u\right) \sigma\left(z+\omega_{1}+u\right)}{\sigma\left(z+\omega_{1}\right)^{2} \sigma(u)^{2}}=-\frac{\sigma(z-u) e^{\eta_{1}\left(z-u+\frac{\omega_{1}}{2}\right)} \sigma(z+u) e^{\eta_{1}\left(z+u+\frac{\omega_{1}}{2}\right)}}{\sigma(z)^{2} e^{2 \eta_{1}\left(z+\frac{\omega_{1}}{2}\right)} \sigma(u)^{2}}=-\frac{\sigma(z-u) \sigma(z+u) e^{2 \eta_{1}\left(z+\frac{\omega_{1}}{2}\right)}}{\sigma(z)^{2} \sigma(u)^{2} e^{2 \eta_{1}\left(z+\frac{\omega_{1}}{2}\right)}} \\
=-\frac{\sigma(z-u) \sigma(z+u)}{\sigma(z)^{2} \sigma(u)^{2}}=f(z)
\end{gathered}
$$

The argument for ω_{2} is completely analogous. The RHS has zeroes at $\pm u$ and a double pole at 0 . Hence, by the same reasoning used above, we see that

$$
\wp(z)-\wp(u)=-C \frac{\sigma(z-u) \sigma(z+u)}{\sigma(z)^{2} \sigma(u)^{2}} \text { for some } C \in \mathbb{C}
$$

To find conclude that $C=1$, we first note that $\wp(z)-\wp(u)$ has a coefficient of 1 for the z^{-2} term in its Laurent expansion. If we show that the Laurent expansion of the $f(z)$ also has a coefficient of 1 for the z^{-2}, then it follow from the uniquenuess of Laurent expansions that $C=1$.

$$
\begin{gathered}
-\frac{\sigma(z-u) \sigma(z+u)}{\sigma(z)^{2} \sigma(u)^{2}}=-\frac{\left(z^{2}-u^{2}\right) \prod_{\omega \neq 0}\left(1-\frac{z-u}{\omega}\right) e^{\frac{z-u}{\omega}+\frac{1}{2}\left(\frac{z-u}{\omega}\right)^{2}} \prod_{\omega \neq 0}\left(1-\frac{z+u}{\omega}\right) e^{\frac{z+u}{\omega}+\frac{1}{2}\left(\frac{z+u}{\omega}\right)^{2}}}{z^{2} \sigma(u)^{2}\left(\prod_{\omega \neq 0}\left(1-\frac{z}{\omega}\right) e^{\left.\frac{z}{\omega}+\frac{1}{2}\left(\frac{z}{\omega}\right)^{2}\right)^{2}}\right.} \\
=-\underbrace{\sigma(u)^{2}\left(\prod_{\omega \neq 0}\left(1-\frac{z}{\omega}\right) e^{\left.\frac{z}{\omega}+\frac{1}{2}\left(\frac{z}{\omega}\right)^{2}\right)^{2}}\right.}_{g_{1}(z)} \\
+\frac{\prod_{\omega \neq 0}\left(1-\frac{z-u}{\omega}\right) e^{\frac{z-u}{\omega}+\frac{1}{2}\left(\frac{z-u}{\omega}\right)^{2}} \prod_{\omega \neq 0}\left(1-\frac{z+u}{z^{2}}\right) e^{\frac{z+u}{\omega}+\frac{1}{2}\left(\frac{z+u}{\omega}\right)^{2}}}{\frac{u^{2} \prod_{\omega \neq 0}\left(1-\frac{z-u}{\omega}\right) e^{\frac{z-u}{\omega}+\frac{1}{2}\left(\frac{z-u}{\omega}\right)^{2}} \prod_{\omega \neq 0}\left(1-\frac{z+u}{\omega}\right) e^{\frac{z+u}{\omega}+\frac{1}{2}\left(\frac{z+u}{\omega}\right)^{2}}}{\sigma(u)^{2}\left(\prod_{\omega \neq 0}\left(1-\frac{z}{\omega}\right) e^{\left.\frac{z}{\omega}+\frac{1}{2}\left(\frac{z}{\omega}\right)^{2}\right)^{2}}\right.}}
\end{gathered}
$$

Observe that both $g_{1}(z)$ and $g_{2}(z)$ are holomorphic in a neighborhood of 0 since we have eliminated the double pole at 0 . Hence, the coefficient of the z^{-2} in the Laurent expansion of $f(z)$ is given by $g_{2}(0)$. But since σ is an odd function, it is immediate that $g_{2}(0)=1$.

7.3.3 Exercise 2

With the hypotheses of the preceding problem,

$$
\frac{\wp^{\prime}(z)}{\wp(z)-\wp(u)}=\zeta(z-u)+\zeta(z+u)-2 \zeta(z)
$$

Proof. For $z \neq u+M$, we can choose a branch of the logarithm holomorphic in a neighborhood of $\wp(z)-\wp(u)$. Taking the derivative of the \log of both sides and using the chain rule,

$$
\begin{aligned}
& \frac{\wp^{\prime}(z)}{\wp(z)-\wp(u)}=\frac{\partial}{\partial z}\left[\log (-\sigma(z-u))+\log (\sigma(z-u))-\log \left(\sigma(u)^{2} \sigma(z)^{2}\right)\right] \\
& \quad=\frac{\sigma^{\prime}(z-u)}{\sigma(z-u)}+\frac{\sigma^{\prime}(z+u)}{\sigma(z+u)}-\frac{2 \sigma^{\prime}(z)}{\sigma(z)}=\zeta(z-u)+\zeta(z+u)-2 \zeta(z)
\end{aligned}
$$

where we've used $\frac{\sigma^{\prime}(w)}{\sigma(w)}=\zeta(w) \forall w \in \mathbb{C}$ (Ahlfors p. 274).

7.3.3 Exercise 3

With the same hypotheses as above, for $z \neq-u+M$,

$$
\zeta(z+u)=\zeta(z)+\zeta(u)+\frac{1}{2} \frac{\wp^{\prime}(z)-\wp^{\prime}(u)}{\wp(z)-\wp(u)}
$$

Proof. Since the last term has a removable singularity at $z=u+M$, by continuity, we may also assume that $z \neq u+M$. First, observe that by replacing switching u and z in the argument for the last identity, we have that

$$
\frac{\wp^{\prime}(u)}{\wp(z)-\wp(u)}=-[\zeta(u-z)+\zeta(z+u)-2 \zeta(u)]=\zeta(z-u)-\zeta(z+u)+2 \zeta(u)
$$

where we've used the fact that $\sigma(z)$ is odd and therefore $\zeta(z)=\frac{\sigma^{\prime}(z)}{\sigma(z)}$ is also odd. Hence,

$$
\frac{\wp^{\prime}(z)-\wp^{\prime} u}{\wp(z)-\wp(u)}=(\zeta(z-u)+\zeta(z+u)-2 \zeta(z))-(\zeta(z-u)-\zeta(z+u)+2 \zeta(u))=2 \zeta(z+u)-2 \zeta(z)-2 \zeta(u)
$$

The stated identity follows immediately.

7.3.3 Exercise 4

By Ahlfors Section 7.3.3 Exercise 3,

$$
\zeta(z+u)=\zeta(z)+\zeta(u)+\frac{1}{2}\left(\frac{\wp^{\prime}(z)-\wp^{\prime}(u)}{\wp(z)-\wp(u)}\right)
$$

Differentiating both sides with respect to z and using $-\zeta^{\prime}(w)=\wp(w) \forall w \in \mathbb{C} \backslash M$, we obtain

$$
-\wp(z+u)=-\wp(z)+\frac{1}{2}\left(\frac{\wp^{\prime \prime}(z)}{\wp(z)-\wp(u)}-\frac{\left(\wp^{\prime}(z)-\wp^{\prime}(u)\right) \wp^{\prime}(z)}{(\wp(z)-\wp(u))^{2}}\right)
$$

We seek an expression for $\wp^{\prime \prime}(z)$ in terms of $\wp(z)$. For $z \neq \frac{\omega_{1}}{2}, \frac{\omega_{2}}{2}, \frac{\omega_{1}+\omega_{2}}{2}+M$,

$$
\wp^{\prime}(z)^{2}=4 \wp(z)^{3}-g_{2} \wp(z)-g_{2} \Rightarrow 2 \wp^{\prime}(z) \wp^{\prime \prime}(z)=12 \wp(z)^{2} \wp^{\prime}(z)-g_{2} \wp^{\prime}(z) \Rightarrow \wp^{\prime \prime}(z)=6 \wp(z)^{2}-\frac{g_{2}}{2}
$$

We conclude from continuity that $\wp^{\prime \prime}(z)=6 \wp(z)^{2}-\frac{g_{2}}{2}$. Substituting this identity in,

$$
-\wp(z+u)=-\wp(z)+\frac{1}{2}\left(\frac{\wp \wp(z)^{2}-\frac{g_{2}}{2}}{\wp(z)-\wp(u)}-\frac{\left(\wp^{\prime}(z)-\wp^{\prime}(u)\right) \wp^{\prime}(z)}{(\wp(z)-\wp(u))^{2}}\right)
$$

Applying the same arguments as above except taking u to be variable, we obtain that

$$
-\wp(z+u)=-\wp(u)+\frac{1}{2}\left(-\frac{6 p(u)^{2}-\frac{g_{2}}{2}}{p(z)-p(u)}+\frac{\left(\wp^{\prime}(z)-\wp^{\prime}(u)\right) \wp^{\prime}(u)}{(\wp(z)-\wp(u))^{2}}\right)
$$

Hence,

$$
\begin{aligned}
-2 \wp(z+u)=-\wp(z)+-\wp(u) & +\frac{1}{2}\left(\frac{6\left(\wp(z)^{2}-\wp(u)^{2}\right)}{\wp(z)-\wp(u)}-\frac{\left(\wp^{\prime}(z)-\wp^{\prime}(u)\right)^{2}}{(\wp(z)-\wp(u))^{2}}\right)^{2}=2 \wp(z)+2 \wp(u)-\frac{1}{2}\left(\frac{\wp^{\prime}(z)-\wp^{\prime}(u)}{\wp(z)-\wp(u)}\right)^{2} \\
& \Rightarrow \wp(z+u)=-\wp(z)-\wp(u)+\frac{1}{4}\left(\frac{\wp^{\prime}(z)-\wp^{\prime}(u)}{\wp(z)-\wp(u)}\right)^{2}
\end{aligned}
$$

7.3.3 Exercise 5

Using the identity obtained in the previous exercise, we have by the continuity of \wp that

$$
\begin{aligned}
& \wp(2 z)=\lim _{u \rightarrow z} \wp(z+u)=\lim _{u \rightarrow z}\left[-\wp(z)-\wp(u)+\frac{1}{4}\left(\frac{\wp^{\prime}(z)-\wp^{\prime}(u)}{\wp(z)-\wp(u)}\right)^{2}\right] \\
& =\lim _{u \rightarrow z}\left[-\wp(u)-\wp(z)+\frac{1}{4}\left(\frac{\frac{\wp^{\prime}(z)-\wp^{\prime}(u)}{z-u}}{\frac{\wp(z)-\wp(u)}{z-u}}\right)^{2}\right]=-2 \wp(z)+\frac{1}{4}\left(\frac{\wp^{\prime \prime}(z)}{\wp^{\prime}(z)}\right)^{2}
\end{aligned}
$$

where we use the continuity of $w \mapsto w^{2}$ to obtain the last expression.

7.3.3 Exercise 7

Fix $u, v \notin M$ such that $|u| \neq|v|$, and define a function $f: \mathbb{C} \backslash M \rightarrow \mathbb{C}$ by

$$
\begin{array}{r}
f(z)=\operatorname{det}\left(\begin{array}{ccc}
\wp(z) & \wp^{\prime}(z) & 1 \\
\wp(u) & \wp^{\prime}(u) & 1 \\
\wp(v) & -\wp^{\prime}(v) & 1
\end{array}\right)=-\wp^{\prime}(z)(\wp(u)-\wp(v))+\wp^{\prime}(u)(\wp(z)-\wp(v))+\wp^{\prime}(v)(\wp(z)-\wp(u)) \\
\quad=\underbrace{\left(\wp^{\prime}(u)+\wp^{\prime}(v)\right)}_{A} \wp(z)+\underbrace{(\wp(v)-\wp(u))}_{B} \wp^{\prime}(z)+\underbrace{-\left(\wp^{\prime}(u) \wp(v)+\wp^{\prime}(v) \wp(u)\right)}_{C}
\end{array}
$$

where we use Laplace expansion for determinants. By our choice of u, v and the fact that the Weierstrass function is elliptic of order $2, B \neq 0$. Hence, $f(z)$ is an elliptic function of order 3 with poles at the lattice points of M. Since the determinant of any matrix with linearly dependent rows is zero, f has zeroes at $u,-v$. Since f has order 3, it has a third zero z, and by Abel's Theorem (Ahlfors p. 271 Theorem 6),

$$
u-v+z \equiv 0 \quad \bmod M \Rightarrow z=v-u
$$

We conclude that

$$
\operatorname{det}\left(\begin{array}{ccc}
\wp(z) & \wp^{\prime}(z) & 1 \\
\wp(u) & \wp^{\prime}(u) & 1 \\
\wp(u+z) & -\wp^{\prime}(u+z) & 1
\end{array}\right)=0
$$

7.3.5 Exercise 1

Since λ is invariant under $\Gamma(2)$ and $\Gamma \backslash \Gamma(2)$ is generated by the linear fractional transformations $\tau \mapsto \tau+1$ and $\tau \mapsto-\tau^{-1}$, it suffices to show that $J(\tau+1)=J(\tau)$ and $J\left(-\tau^{-1}\right)=J(\tau)$. Recall that λ satisfies the functional equations

$$
\lambda(\tau+1)=\frac{\lambda(\tau)}{\lambda(\tau)-1} \text { and } \lambda\left(-\frac{1}{\tau}\right)=1-\lambda(\tau)
$$

So,

$$
\begin{gathered}
J(\tau+1)=\frac{4}{27} \frac{\left(1-\lambda(\tau+1)+\lambda(\tau+1)^{2}\right)^{3}}{\lambda(\tau+1)^{2}(1-\lambda(\tau+1))^{2}}=\frac{4}{27} \frac{\left(1-\lambda(\tau)(\lambda(\tau)-1)^{-1}+\lambda(\tau)^{2}(\lambda(\tau)-1)^{-2}\right)^{3}}{\lambda(\tau)^{2}(\lambda(\tau)-1)^{-2}\left(1-\lambda(\tau)(\lambda(\tau)-1)^{-1}\right)^{2}} \cdot \frac{(\lambda(\tau)-1)^{6}}{(\lambda(\tau)-1)^{6}} \\
=\frac{4}{27} \frac{\left((\lambda(\tau)-1)^{2}-\lambda(\tau)(\lambda(\tau)-1)+\lambda(\tau)^{2}\right)^{3}}{\lambda(\tau)^{2}(\lambda(\tau)-1)^{2}}=\frac{4}{27} \frac{\left(1-\lambda(\tau)+\lambda(\tau)^{2}\right)^{3}}{\lambda(\tau)^{2}(\lambda(\tau)-1)^{2}}=J(\tau)
\end{gathered}
$$

and

$$
J\left(-\frac{1}{\tau}\right)=\frac{4}{27} \frac{\left(1-(1-\lambda(\tau))+(1-\lambda(\tau))^{2}\right)^{3}}{(1-\lambda(\tau))^{2}(1-(1-\lambda(\tau)))^{2}}=\frac{4}{27} \frac{\left(1-\lambda(\tau)+\lambda(\tau)^{2}\right)^{3}}{\lambda(\tau)^{2}(1-\lambda(\tau))^{2}}=J(\tau)
$$

Observe that

$$
J(\tau)=\frac{4}{27} \frac{\left(1-\lambda(\tau)+\lambda(\tau)^{2}\right)^{3}}{\lambda(\tau)^{2}(1-\lambda(\tau))^{2}}=\frac{4}{27} \frac{\left(\lambda(\tau)-e^{i \frac{\pi}{3}}\right)^{3}\left(\lambda(\tau)-e^{-i \frac{\pi}{3}}\right)^{3}}{\lambda(\tau)^{2}(1-\lambda(\tau))^{2}}
$$

So, $J(\tau)$ assumes the value 0 on $\lambda^{-1}\left(\left\{e^{ \pm i \frac{\pi}{3}}\right\}\right)$. Since λ is a bijection on $\bar{\Omega} \cup \Omega^{\prime}, J(\tau)$ has two zeroes, each of order 3. We proved in Problem Set 8 that

$$
g_{2}=-4\left(e_{1} e_{2}+e_{1} e_{3}+e_{2} e_{3}\right)=0
$$

for $\tau=e^{i \frac{2 \pi}{3}}$. So using the identity for $J(\tau)$ proved below, $J\left(e^{i \frac{2 \pi}{3}}\right)=0$. Using the invariance of $J(\tau)$ under Γ, we see that $J\left(e^{i \frac{\pi}{3}}\right)=0$.
$J(\tau)$ assumes the value 1 on $\lambda^{-1}\left(\left\{\lambda_{1}, \cdots, \lambda_{6}\right\}\right)$, where the λ_{i} are the roots of degree 6 the polynomial

$$
p(z)=4\left(1-z+z^{2}\right)^{3}-27 z^{2}(1-z)^{2}
$$

It is easy to check that

$$
e_{3}=\wp\left(\frac{1+i}{2} ; i\right)=-\wp\left(\frac{i+1}{2} ; i\right)=-e_{3} \Rightarrow e_{3}=0
$$

Since $e_{1}+e_{2}+e_{3}=0$ (see below for argument), we have $e_{1}=-e_{2}$ and therefore

$$
\lambda(i)=\frac{e_{3}-e_{2}}{e_{1}-e_{2}}=\frac{1}{2}
$$

Since each point in \mathbb{H}^{+}is congruent modulo 2 to a point in $\bar{\Omega} \cup \Omega^{\prime}, \lambda$ maps this fundamental conformally onto $\mathbb{C} \backslash\{0,1\}$, and $J(\tau)$ is invariant under Γ, we conclude $J(\tau)$ assumes the value 1 at $\tau=i, 1+i, \frac{i+1}{2}$. I claim that these are these are the only possible points up to modulo 2 congruence. Suppose $J(\tau)=1$ for $\tau \notin\left\{i, 1+i, \frac{i+1}{2}\right\}$. If we let S_{1}, \cdots, S_{6} denote the complete set of mutually incongruent transformations, then since $\tau \notin\left\{e^{i \frac{\pi}{3}}, e^{i \frac{2 \pi}{3}}\right\}$ (otherwise $J(\tau)=0$), $S_{1} \tau, \cdots, S_{6} \tau \in \bar{\Omega} \cup \Omega^{\prime}$ are distinct, hence the $\lambda\left(S_{i} \tau\right)$ are distinct roots of $p(z)$, and we obtain that $p(z)$ has more than 6 roots, a contradiction. Moreover, this argument shows that the polynomial $p(z)$ has three roots, which by inspection, we see are given by $\left\{-1, \frac{1}{2}, 2\right\}$.
I claim that $J(\tau)$ assumes the value 1 with order 2 at $\tau=i, 1+i, \frac{i+1}{2}$. We need to show that the zeroes of $p(z)$ are each of order 2 . Indeed, one can verify that

$$
p(z)=4\left(1-z+z^{2}\right)^{3}-27 z^{2}(1-z)^{2}=(z-2)^{2}(2 z-1)^{2}(z+1)^{2}
$$

Substituting $\lambda=\frac{e_{3}-e_{2}}{e_{1}-e_{2}}$, we have

$$
\begin{aligned}
J(\tau) & =\frac{4}{27} \frac{\left(1-\left(e_{3}-e_{2}\right)\left(e_{1}-e_{2}\right)^{-1}+\left(e_{3}-e_{2}\right)^{2}\left(e_{1}-e_{2}\right)^{-2}\right)^{3}}{\left(e_{3}-e_{2}\right)^{2}\left(e_{1}-e_{2}\right)^{-2}\left(e_{1}-e_{3}\right)^{2}\left(e_{1}-e_{2}\right)^{-2}} \\
& =\frac{4}{27} \frac{\left(\left(e_{1}-e_{2}\right)^{2}-\left(e_{3}-e_{2}\right)\left(e_{1}-e_{2}\right)+\left(e_{3}-e_{2}\right)^{2}\right)^{3}}{\left(e_{3}-e_{2}\right)^{2}\left(e_{1}-e_{3}\right)^{2}\left(e_{1}-e_{2}\right)^{2}} \\
= & \frac{4}{27} \frac{\left(e_{1}^{2}-2 e_{1} e_{2}+e_{2}^{2}-e_{3} e_{1}+e_{3} e_{2}+e_{2} e_{1}-e_{2}^{2}+e_{3}^{2}-2 e_{3} e_{2}+e_{2}^{2}\right)^{3}}{\left(e_{3}-e_{2}\right)^{2}\left(e_{1}-e_{3}\right)^{2}\left(e_{1}-e_{2}\right)^{2}}
\end{aligned}
$$

Since

$$
4 z^{3}-g_{2} z-g_{3}=4\left(z-e_{1}\right)\left(z-e_{2}\right)\left(z-e_{3}\right)=4\left(z^{2}-\left(e_{1}+e_{2}\right) z+e_{1} e_{2}\right)\left(z-e_{3}\right)=4\left(e_{1}+e_{2}+e_{3}\right) z^{2}+\cdots
$$

we have that $e_{1}+e_{2}+e_{3}=0$ and so,

$$
0=\left(e_{1}+e_{2}+e_{3}\right)^{2}=e_{1}^{2}+e_{2}^{2}+e_{3}^{2}+2 e_{1} e_{2}+2 e_{1} e_{3}+2 e_{2} e_{3} \Rightarrow e_{1}^{2}+e_{2}^{2}+e_{3}^{3}=-2\left(e_{1} e_{2}+e_{1} e_{3}+e_{2} e_{3}\right)
$$

Substituting this identity in,

$$
J(\tau)=\frac{4}{27} \frac{\left(-2\left(e_{1} e_{2}+e_{2} e_{3}+e_{1} e_{3}\right)-\left(e_{1} e_{2}+e_{2} e_{3}+e_{1} e_{3}\right)\right)^{3}}{\left(e_{3}-e_{2}\right)^{2}\left(e_{1}-e_{3}\right)^{2}\left(e_{1}-e_{2}\right)^{2}}=-4 \frac{\left(e_{1} e_{2}+e_{2} e_{3}+e_{1} e_{3}\right)^{3}}{\left(e_{3}-e_{2}\right)^{2}\left(e_{1}-e_{3}\right)^{2}\left(e_{1}-e_{2}\right)^{2}}
$$

