# Chapter 7 Simple linear regression and correlation

Department of Statistics and Operations Research



November 27, 2019

Correlation

2 Simple linear regression

Correlation

2 Simple linear regression

#### **Definition**

The measure of linear association  $\rho$  between two variables X and Y is estimated by the sample correlation coefficient r, where

$$r = \frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}}$$

with 
$$S_{xy} = \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})$$
,  $S_{xx} = \sum_{i=1}^{n} (x_i - \overline{x})^2$  and

$$S_{yy} = \sum_{i=1}^{n} (y_i - \overline{y})^2.$$

## Example

Let consider the following grades of 6 students selected at random

We have

$$n = 6$$
,  $S_{xy} = 115.33$ ,  $S_{xx} = 471.33$ , and  $S_{yy} = 491.33$ .

Hence

$$r = \frac{115.33}{\sqrt{(471.33)(491.33)}} = 0.24.$$





## Properties of r

- r = 1 iff all  $(x_i, y_i)$  pairs lie on straight line with positive slope,
- 2 r = -1 iff all  $(x_i, y_i)$  pairs lie on a straight line with negative slope.

Correlation

2 Simple linear regression

The form of a relationship between the response Y (the dependent or the response variable) and the regressor X (the independent variable) is in mathematically the linear relationship

$$Y = \beta_0 + \beta_1 X + \varepsilon_i$$

where,  $\beta_0$  is the intercept,  $\beta_1$  the slope and  $\varepsilon_i$ , the error term in the model, is a random variable with mean 0 and constant variance. An important aspect of regression analysis is to estimate the parameters  $\beta_0$  and  $\beta_1$  (i.e., estimate the so-called regression coefficients). The method of estimation will be discussed in the next section. Suppose we denote the estimates  $b_0$  for  $\beta_0$  and  $b_1$  for  $\beta_1$ . Then the estimated or fitted regression line is given by

$$\hat{Y} = b_0 + b_1 x$$

where  $\hat{Y}$  is the predicted or fitted value.

# Least Squares and the Fitted Model

#### Definition

Given a set of regression data  $\{(x_i, y_i); i = 1, 2, ..., n\}$  and a fitted model,  $\hat{y}_i = b_0 + b_1 x_i$ , the  $i^{th}$  residual  $e_i$  is given by

$$e_i = y_i - \hat{y}_i, i = 1, 2, ..., n.$$



We shall find  $b_0$  and  $b_1$ , the estimates of  $\beta_0$  and  $\beta_1$ , so that the sum of the squares of the residuals is a minimum. This minimization procedure for estimating the parameters is called the method of least squares. Hence, we shall find  $b_0$  and  $b_1$  so as to minimize

$$SSE = \sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} (y_i - b_0 - b_1 x_i)^2$$

SSE is called the error sum of squares.

#### **Theorem**

Given the sample  $\{(x_i,y_i); i=1,2,...,n\}$ , the least squares estimates  $b_0$  and  $b_1$  of the regression coefficients  $\beta_0$  and  $\beta_1$  are computed from the formulas

$$b_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})(y_{i} - \overline{y})}{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}} = \frac{\sum_{i=1}^{n} x_{i}y_{i} - n\overline{x} \overline{y}}{\sum_{i=1}^{n} x_{i}^{2} - n\overline{x}^{2}}$$

$$b_{0} = \overline{y} - b_{1}\overline{x}$$

## Example

Consider the experimental data in Table, which were obtained from 33 samples of chemically treated waste in a study conducted at Virginia Tech. Readings on x, the percent reduction in total solids, and y, the percent reduction in chemical oxygen demand, were recorded. We denote by

x: Solids Reduction

y: Oxygen Demand

| $\times$ (%), | y(%) | $\times$ (%), | y (%) |
|---------------|------|---------------|-------|
| 3             | 5    | 36            | 34    |
| 7             | 11   | 37            | 36    |
| 11            | 21   | 38            | 38    |
| 15            | 16   | 39            | 37    |
| 18            | 16   | 39            | 36    |
| 27            | 28   | 39            | 45    |
| 29            | 27   | 40            | 39    |
| 30            | 25   | 41            | 41    |
| 30            | 35   | 42            | 40    |
| 31            | 30   | 42            | 44    |
| 31            | 40   | 43            | 37    |
| 32            | 32   | 44            | 44    |
| 33            | 34   | 45            | 46    |
| 33            | 32   | 46            | 46    |
| 34            | 34   | 47            | 49    |
| 36            | 37   | 50            | 51    |
| 36            | 38   |               |       |
|               |      |               |       |

The estimated regression line is given by

$$\hat{y} = 3.8296 + 0.9036x.$$

Using the regression line, we would predict a 31% reduction in the chemical oxygen demand when the reduction in the total solids is 30%. The 31% reduction in the chemical oxygen demand may be interpreted as an estimate of the population mean  $\mu_{Y|30}$  or as an estimate of a new observation when the reduction in total solids is 30%.

# Properties of the Least Squares Estimators

#### **Theorem**

We have

$$\bullet$$
  $E(b_0) = \beta_0, E(b_1) = \beta_1,$ 

$$V(b_1) = \frac{\sigma^2}{\sum_{i=1}^n (x_i - \overline{x})^2} = \frac{\sigma^2}{S_{xx}}.$$

#### Theorem

An unbiased estimate of  $\sigma^2$ , named the mean squared error, is

$$\widehat{\sigma}^2 = \frac{SSE}{n-2} = \frac{\sum_{i=1}^{n} (y_i - \widehat{y}_i)^2}{n-2}$$

# Inferences Concerning the Regression Coefficients

#### Theorem

Assume now that the errors  $\varepsilon_i$  are normally distributed. A  $100(1-\alpha)\%$  confidence interval for the parameter  $\beta_1$  in the regression line

$$b_1 - t_{lpha/2} \frac{\widehat{\sigma}}{\sqrt{\mathcal{S}_{xx}}} < eta_1 < b_1 + t_{lpha/2} \frac{\widehat{\sigma}}{\sqrt{\mathcal{S}_{xx}}}$$

where  $t_{\alpha/2}$  is a value of the t-distribution with n-2 degrees of freedom.

## Example

Find a 95% confidence interval for  $\beta_1$  in the regression line, based on the pollution data of Example 10.

#### Solution

We show that

$$\widehat{\sigma}^2 = \frac{SSE}{n-2} = \frac{\sum_{i=1}^{n} (y_i - \widehat{y}_i)^2}{n-2} = 0.4299.$$

Therefore, taking the square root, we obtain  $\hat{\sigma} = 3.2295$ . Also,

$$S_{xx} = \sum_{i=1}^{n} (x_i - \overline{x})^2 = 4152.18.$$

Using Table of the t-distribution, we find that  $t_{0.025} \approx 2.045$  for 31 degrees of freedom. Therefore, a 95% confidence interval for  $\beta_1$  is

$$0.903643 - (2.045) \frac{3.2295}{\sqrt{4152.18}} < \beta_1 < 0.903643 + (2.045) \frac{3.2295}{\sqrt{4152.18}}$$

which simplifies to

$$0.8012 < \beta_1 < 1.0061$$
.

# Hypothesis Testing on the Slope

To test the null hypothesis  $H_0$  that  $\beta_1=\beta_{10}$ , we again use the t-distribution with n-2 degrees of freedom to establish a critical region and then base our decision on the value of

$$t = \frac{b_1 - \beta_{10}}{\widehat{\sigma} / \sqrt{S_{xx}}}$$

which is t-distribution with n-2 degrees of freedom.

## Example

Using the estimated value  $b_1=0.903643$  of Example 10, test the hypothesis that  $\beta_1=1$  against the alternative that  $\beta_1<1$ .

#### Solution

The hypotheses are  $H_0$ :  $\beta_1 = 1$  and  $H_1$ :  $\beta_1 < 1$ . So

$$t = \frac{0.903643 - 1}{3.2295/\sqrt{4152.18}} = -1.92,$$

with n-2=31 degrees of freedom ( $P\approx 0.03$ ).

Decision: P-value < 0.05, suggesting strong evidence that  $eta_1 < 1$ 

One important t-test on the slope is the test of the hypothesis  $H_0$ :  $\beta_1=0$  versus  $H_1:\beta_1\neq 0$ . When the null hypothesis is not rejected, the conclusion is that there is no significant linear relationship between E(y) and the independent variable x. Rejection of  $H_0$  above implies that a significant linear regression exists.

# Measuring Goodness-of-Fit: the Coefficient of Determination

A goodness-of-fit statistic is a quantity that measures how well a model explains a given set of data. A linear model fits well if there is a strong linear relationship between x and y.

## Definition

The coefficient of determination,  $R^2$ , is given by

$$R^2 = 1 - \frac{SSE}{SST}$$

where 
$$SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$
 and  $SST = \sum_{i=1}^{n} (y_i - \overline{y})^2$ .

Note that if the fit is perfect, all residuals  $y_i - \hat{y}_i$  are zero, and thus  $R^2 = 1$ . But if SSE is only slightly smaller than SST,  $R^2 \approx 0$ . In the example of table 10, the coefficient of determination  $R^2 = 0.913$ , suggests that the model fit to the data explains 91.3% of the variability observed in the response, the reduction in chemical oxygen demand.