(Q1) Convert 562 mmHg to atm.
$1 \mathrm{~atm}=760 \mathrm{mmHg}$.
0.739 atm .
(Q2) Convert 606 mmHg to atm and kPa ?
$1 \mathrm{~atm}=760 \mathrm{mmHg}=1.01325 \times 10^{5} \mathrm{~Pa}($ SI unit $)=101.325 \mathrm{kPa}$.
$0.797 \mathrm{~atm} ; 80.8 \mathrm{kPa}$.
(Q3) A gas occupying a volume of 725 mL at a pressure of 0.970 atm is allowed to expand at constant temperature until its pressure reaches 0.541 atm. What is its final volume?
1300 mL .
(Q4) At $46^{\circ} \mathrm{C}$ a sample of ammonia gas exerts a pressure of 5.3 atm . What is the pressure when the volume of the gas is reduced to one-tenth (0.10) of the original value at the same temperature?
Suppose $\mathrm{V}_{1}=10 \mathrm{~mL}$ then $\mathrm{V}_{2}=1 \mathrm{~mL}$.
53 atm .
(Q5) A sample of air occupies 3.8 L when the pressure is 1.2 atm . (The temperature is kept constant).
(a) What volume does it occupy at $6.6 \mathrm{~atm} ? 0.691 \mathrm{~L}$.
(b) What pressure is required in order to compress it to $0.075 \mathrm{~L} ? 60.8 \mathrm{~atm}$.
(Q6) Under constant-pressure conditions a sample of hydrogen gas initially at $88^{\circ} \mathrm{C}$ and 9.6 L is cooled until its final volume is 3.4 L . What is its final temperature?
127.85 K ($\left.-145.15^{\circ} \mathrm{C}\right)$.
(Q7) Given that 6.9 moles of carbon monoxide gas are present in a container of volume 30.4 L , what is the pressure of the gas (in atm) if the temperature is $62^{\circ} \mathrm{C}$?
6.23 atm .
(Q8) A certain amount of gas at $25^{\circ} \mathrm{C}$ and at a pressure of 0.800 atm is contained in a glass vessel. Suppose that the vessel can withstand a pressure of 2.00 atm . How high can you raise the temperature of the gas without bursting the vessel?
745 K.
(Q9) The temperature of 2.5 L of a gas initially at STP is raised to $250^{\circ} \mathrm{C}$ at constant volume. Calculate the final pressure of the gas in atm.
STP ($\mathrm{P}=1 \mathrm{~atm} ; \mathrm{T}=273 \mathrm{~K}$)
1.92 atm .
(Q10) A gas evolved during the fermentation of glucose has a volume of 0.78 L at $20.1^{\circ} \mathrm{C}$ and 1.00 atm . What was the volume of this gas at the fermentation temperature of $36.5^{\circ} \mathrm{C}$ and 1.00 atm pressure?
0.824 L .

$\mathrm{n}=88.4$ / $44=2.01 \mathrm{~mol}$
45 L .
(Q12) Dry ice is solid carbon dioxide. A $0.050-\mathrm{g}$ sample of dry ice is placed in an evacuated $4.6-\mathrm{L}$ vessel at $30^{\circ} \mathrm{C}$. Calculate the pressure inside the vessel after all the dry ice has been converted to CO_{2} gas.
$6.14 \times 10^{-3} \mathrm{~atm}$.
(Q13) At 741 torr and $44^{\circ} \mathrm{C}, 7.10 \mathrm{~g}$ of a gas occupy a volume of 5.40 L . What is the molar mass of the gas?
$35 \mathrm{~g} / \mathrm{mol}$.
(Q14) Assuming that air contains 78 percent $\mathrm{N}_{2}, 21$ percent O_{2}, and 1 percent Ar, all by volume, how many molecules of each type of gas are present in 1.0 L of air at STP?
$\mathrm{N}=6.022 \times 10^{23} \mathrm{xn}$
$\mathrm{N}_{2}: 2.1 \times 10^{22}$
$\mathrm{O}_{2}: 5.7 \times 10^{21}$
Ar: 3×10^{20}
(Q15) Calculate the density of hydrogen bromide (HBr) gas in grams per liter at 733 mmHg and $46^{\circ} \mathrm{C}$.
$2.97 \mathrm{~g} / \mathrm{L}$.
(Q16) A compound has the empirical formula SF_{4}. At $20^{\circ} \mathrm{C}, 0.100 \mathrm{~g}$ of the gaseous compound occupies a volume of 22.1 mL and exerts a pressure of 1.02 atm . What is the molecular formula of the gas?
SF_{4}.
(Q17) Methane, the principal component of natural gas, is used for heating and cooking. The combustion process is
$\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
If 15.0 moles of CH_{4} are reacted, what is the volume of CO_{2} (in liters) produced at $23.0^{\circ} \mathrm{C}$ and 0.985 atm ?
370 L .
(Q18) A 2.5 -L flask at $15^{\circ} \mathrm{C}$ contains a mixture of $\mathrm{N}_{2}, \mathrm{He}$, and Ne at partial pressures of 0.32 atm for $\mathrm{N}_{2}, 0.15 \mathrm{~atm}$ for He , and 0.42 atm for Ne .
(a) Calculate the total pressure of the mixture. 0.89 atm .
(b) Calculate the volume in liters at STP occupied by He and Ne if the N_{2} is removed selectively. 1.35 L .
(Q19) A mixture of helium and neon gases is collected over water at $28.0^{\circ} \mathrm{C}$ and 745 mmHg . If the partial pressure of helium is 368 mmHg , what is the partial pressure of neon? (Vapor pressure of water at $28^{\circ} \mathrm{C} 528.3 \mathrm{mmHg}$). 349 mmHg (0.459 atm).
(Q20) A sample of ammonia $\left(\mathrm{NH}_{3}\right)$ gas is completely decomposed to nitrogen and hydrogen gases over heated iron wool. If the total pressure is 866 mmHg , calculate the partial pressures of N_{2} and H_{2}.
$\mathrm{H}_{2}: 650 \mathrm{mmHg}$.
$\mathrm{N}_{2}: 217 \mathrm{mmHg}$.
(Q21) A sample of zinc metal reacts completely with an excess of hydrochloric acid:
$\mathrm{Zn}(\mathrm{s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{ZnCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
The hydrogen gas produced is collected over water at $25.0^{\circ} \mathrm{C}$. The volume of the gas is 7.80 L , and the pressure is 0.980 atm . Calculate the amount of zinc metal in grams consumed in the reaction. (Vapor pressure of water at $25^{\circ} \mathrm{C} 5$ $23.8 \mathrm{mmHg})$.
19.8 g .

