(Q1) Classify the following redox reactions:
(a) $2 \mathrm{C}_{8} \mathrm{H}_{18}+25 \mathrm{O}_{2} \rightarrow 16 \mathrm{CO}_{2}+18 \mathrm{H}_{2} \mathrm{O}$

Combustion reaction
(b) $\mathrm{P}_{4}+10 \mathrm{Cl}_{2} \rightarrow 4 \mathrm{PCl}_{5}$

Combination reaction
(c) $2 \mathrm{NO} \rightarrow \mathrm{N}_{2}+\mathrm{O}_{2}$

Decomposition reaction
(d) $\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}$

Combination and combustion reaction
(Q2) Calculate the mass of KI in grams required to prepare $5.00 \times 10^{2} \mathrm{~mL}$ of a 2.80 M solution.
$\mathcal{M} \mathrm{KI}=166 \mathrm{~g} / \mathrm{mol}$
$\mathrm{n}=2.8 \times 0.5=1.4 \mathrm{~mol}$
$\mathrm{m}=1.4 \times 166=232.4 \mathrm{~g}$
(Q3) Describe how you would prepare 250 mL of a $0.707 \mathrm{M} \mathrm{NaNO}_{3}$ solution.
Dissolve $15.0 \mathrm{~g} \mathrm{NaNO}_{3}$ in enough water to make up 250 mL
(Q4) How many grams of KOH are present in 35.0 mL of a 5.50 M solution?
10.8 g
(Q5) Calculate the molarity of each of the following solutions:
(a) 6.57 g of methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ in $1.50 \times 10^{2} \mathrm{~mL}$ of solution,
1.37 M
(b) 10.4 g of calcium chloride $\left(\mathrm{CaCl}_{2}\right)$ in $2.20 \times 10^{2} \mathrm{~mL}$ of solution, 0.426 M
(c) 7.82 g of naphthalene $\left(\mathrm{C}_{10} \mathrm{H}_{8}\right)$ in 85.2 mL of benzene solution.
0.716 M
(Q6) Determine how many grams of each of the following solutes would be needed to make $2.50 \times 10^{2} \mathrm{~mL}$ of a 0.100 M solution:
(a) cesium iodide (CsI),
6.5 g
(b) sulfuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$,
2.45 g
(c) sodium carbonate $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$,
2.65 g
(d) potassium dichromate $\left(\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}\right)$,
7.36 g
(e) potassium permanganate $\left(\mathrm{KMnO}_{4}\right)$.
3.95 g
(Q7) Water is added to 25.0 mL of a $0.866 \mathrm{M} \mathrm{KNO}_{3}$ solution until the volume of the solution is exactly 500 mL . What is the concentration of the final solution?
0.0433 M
(Q8) You have 505 mL of a 0.125 M HCl solution and you want to dilute it to exactly 0.100 M . How much water should you add? Assume volumes are additive.
(Q9) A $46.2-\mathrm{mL}, 0.568 \mathrm{M}$ calcium nitrate $\left[\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}\right]$ solution is mixed with 80.5 mL of 1.396 M calcium nitrate solution. Calculate the concentration of the final solution.

