Chapter 3: The Structure of Crystalline Solids

ISSUES TO ADDRESS...

- What is the difference in atomic arrangement between crystalline and noncrystalline solids?
- What features of a material's atomic structure determine its density?
- Under what circumstances does a material property vary with the measurement direction?

Energy and Packing

Dense, ordered packed structures tend to have lower energies.

Materials and Packing

Crystalline materials...

- atoms pack in periodic, 3D arrays
- typical of: -metals
 - -many ceramics
 - -some polymers

Noncrystalline materials...

- atoms have no periodic packing
- occurs for: -complex structures

-rapid cooling

"Amorphous" = Noncrystalline

crystalline SiO₂
Adapted from Fig. 3.25(a),
Callister & Rethwisch 9e.

•Si

Oxygen

noncrystalline SiO₂

Adapted from Fig. 3.25(b), Callister & Rethwisch 9e.

Metallic Crystal Structures

 How can we stack metal atoms to minimize empty space?

2-dimensions

Now stack these 2-D layers to make 3-D structures

Metallic Crystal Structures

- Tend to be densely packed.
- Reasons for dense packing:
 - Typically, only one element is present, so all atomic radii are the same.
 - Metallic bonding is not directional.
 - Nearest neighbor distances tend to be small in order to lower bond energy.
 - Electron cloud shields cores from each other.
- Metals have the simplest crystal structures.

We will examine three such structures...

Simple Cubic Structure (SC)

- Rare due to low packing density (only Po has this structure)
- Close-packed directions are cube edges.

Click once on image to start animation (Courtesy P.M. Anderson)

Coordination # = 6 (# nearest neighbors)

Atomic Packing Factor (APF)

• APF for a simple cubic structure = 0.52

Adapted from Fig. 3.3 (a), Callister & Rethwisch 9e.

1 atom/unit cell

Body Centered Cubic Structure (BCC)

- Atoms touch each other along cube diagonals.
 - --Note: All atoms are identical; the center atom is shaded differently only for ease of viewing.

ex: Cr, W, Fe (α), Tantalum, Molybdenum

Coordination # = 8

Click once on image to start animation (Courtesy P.M. Anderson)

Adapted from Fig. 3.2, Callister & Rethwisch 9e.

2 atoms/unit cell: 1 center + 8 corners x 1/8

VMSE Screenshot – BCC Unit Cell

Atomic Packing Factor: BCC

• APF for a body-centered cubic structure = 0.68

Face Centered Cubic Structure (FCC)

- Atoms touch each other along face diagonals.
 - --Note: All atoms are identical; the face-centered atoms are shaded differently only for ease of viewing.

ex: Al, Cu, Au, Pb, Ni, Pt, Ag

Coordination # = 12

Click once on image to start animation

(Courtesy P.M. Anderson)

Adapted from Fig. 3.1, Callister & Rethwisch 9e.

4 atoms/unit cell: 6 face x 1/2 + 8 corners x 1/8

Atomic Packing Factor: FCC

• APF for a face-centered cubic structure = 0.74

maximum achievable APF

Rethwisch 9e.

Close-packed directions: length = $4R = \sqrt{2} a$

Unit cell contains:

$$6 \times 1/2 + 8 \times 1/8$$

= 4 atoms/unit cell

atoms
unit cell

APF =
$$\frac{4}{3}\pi (\sqrt{2a/4})^3$$
volume

volume

volume

unit cell

FCC Stacking Sequence

ABCABC... Stacking Sequence

2D Projection

A sites

B sites

C sites

• FCC Unit Cell

Hexagonal Close-Packed Structure (HCP)

- ABAB... Stacking Sequence
- 3D Projection

2D Projection

- Coordination # = 12
- APF = 0.74
- *c/a* = 1.633

6 atoms/unit cell

ex: Cd, Mg, Ti, Zn

VMSE Screenshot – Stacking Sequence and Unit Cell for HCP

Theoretical Density, p

Density =
$$\rho = \frac{\text{Mass of Atoms in Unit Cell}}{\text{Total Volume of Unit Cell}}$$

$$\rho = \frac{n A}{V_C N_A}$$

where n = number of atoms/unit cell

A = atomic weight

 V_C = Volume of unit cell = a^3 for cubic

 N_A = Avogadro's number

 $= 6.022 \times 10^{23} \text{ atoms/mol}$

Theoretical Density, ρ

Chapter 3 - 17

Densities of Material Classes

Crystals as Building Blocks

- Some engineering applications require single crystals:
 - -- diamond single crystals for abrasives

(Courtesy Martin Deakins, GE Superabrasives, Worthington, OH. Used with permission.)

Fig. 8.34(c), Callister & Rethwisch 9e. (courtesy of Pratt and Whitney)

-- turbine blades

- Properties of crystalline materials often related to crystal structure.
 - -- Ex: Quartz fractures more easily along some crystal planes than others.

(Courtesy P.M. Anderson)

Polycrystals

Anisotropic

Most engineering materials are polycrystals.

Fig. K, color inset pages of *Callister 5e*. (Courtesy of Paul E. Danielson, Teledyne Wah Chang Albany)

• Nb-Hf-W plate with an electron beam weld.

- Each "grain" is a single crystal.
- If grains are randomly oriented, overall component properties are not directional.
- Grain sizes typically range from 1 nm to 2 cm (i.e., from a few to millions of atomic layers).

Isotropic

WILEY

Single vs Polycrystals

Single Crystals

-Properties vary with direction: anisotropic.

-Example: the modulus of elasticity (*E*) in BCC iron:

E (diagonal) = 273 GPa

E (edge) = 125 GPa

Data from Table 3.4,
Callister & Rethwisch 9e.
(Source of data is R.W.
Hertzberg, Deformation and
Fracture Mechanics of
Engineering Materials, 3rd ed.,
John Wiley and Sons, 1989.)

Polycrystals

-Properties may/may not vary with direction.

-If grains are randomly oriented: isotropic.

 $(E_{\text{poly iron}} = 210 \text{ GPa})$

-If grains are textured, anisotropic.

Adapted from Fig. 4.15(b), Callister & Rethwisch 9e. [Fig. 4.15(b) is courtesy of L.C. Smith and C. Brady, the National Bureau of Standards, Washington, DC (now the National Institute of Standards and Technology, Gaithersburg, MD).]

Polymorphism

 Two or more distinct crystal structures for the same material (allotropy/polymorphism)

titanium

 α , β -Ti

carbon diamond, graphite

Crystal Systems

Unit cell: smallest repetitive volume which contains the complete lattice pattern of a crystal.

7 crystal systems

14 crystal lattices

a, b, and c are the lattice constants

Point Coordinates

Point coordinates for unit cell center are

a/2, b/2, c/2 ½½½½

Point coordinates for unit cell corner are 111

Translation: integer multiple of lattice constants → identical position in another unit cell

Crystallographic Directions

ex:

pt. 1
$$x_1 = 0$$
, $y_1 = 0$, $z_1 = 0$
pt. 2 $x_2 = a$, $y_2 = 0$, $z_2 = c/2$

$$\frac{a-0}{a} \frac{0-0}{b} \frac{c/2-0}{c}$$

Algorithm

- 1. Determine coordinates of vector tail, pt. 1:
- $x_1, y_1, \& z_1$; and vector head, pt. 2: $x_2, y_2, \& z_2$.
- 2. Tail point coordinates subtracted from head point coordinates.
- 3. Normalize coordinate differences in terms of lattice parameters a, b, and c:

$$\frac{X_2 - X_1}{a} \quad \frac{Y_2 - Y_1}{b} \quad \frac{Z_2 - Z_1}{c}$$

- 4. Adjust to smallest integer values
- 5. Enclose in square brackets, no commas

Crystallographic Directions

Example 2:

pt. 1
$$x_1 = a$$
, $y_1 = b/2$, $z_1 = 0$
pt. 2 $x_2 = -a$, $y_2 = b$, $z_2 = c$

$$\frac{-a-a}{a} \frac{b-b/2}{b} \frac{c-0}{c}$$

$$=> -2, 1/2, 1$$

Multiplying by 2 to eliminate the fraction

-4, 1, 2 => $[\overline{4}12]$ where the overbar represents a negative index

families of directions <uvw>

VMSE Screenshot – $[10\overline{1}]$ Direction

the five crystallographic directions listed on the left bar window; (2) Display and rotate unit cells and directions represented

Linear Density

• Linear Density of Atoms \equiv LD = $\frac{\text{Number of atoms}}{\text{Unit length of direction vector}}$

Adapted from Fig. 3.1(a), Callister & Rethwisch 9e.

ex: linear density of Al in [110] direction

a = 0.405 nm

atoms
$$LD = \frac{2}{\sqrt{2}a} = 3.5 \text{ nm}^{-1}$$
length

Drawing HCP Crystallographic Directions (i)

Algorithm (Miller-Bravais coordinates)

- 1. Remove brackets
- 2. Divide by largest integer so all values are ≤ 1
- 3. Multiply terms by appropriate unit cell dimension a (for a_1 , a_2 , and a_3 axes) or c (for z-axis) to produce projections
- 4. Construct vector by placing tail at origin and stepping off these projections to locate the head

Adapted from Figure 3.10, Callister & Rethwisch 9e.

Drawing HCP Crystallographic Directions (ii)

• Draw the $[\overline{1}\,\overline{2}13]$ direction in a hexagonal unit cell.

Algorithm

- a_1 a_2 a_3 Z
- 1. Remove brackets -1 -2
- 2. Divide by 3 $-\frac{1}{3} \frac{2}{3} \frac{1}{3}$
- 3. Projections $-\frac{a}{3} \frac{2a}{3} + \frac{a}{3} = 0$
- 4. Construct Vector

start at point o proceed -a/3 units along a_1 axis to point p -2a/3 units parallel to a_2 axis to point q

a/3 units parallel to a_3 axis to point r

c units parallel to z axis to point s

 $[\bar{1}\bar{2}13]$ direction represented by vector from point o to point s

Determination of HCP Crystallographic Directions (ii)

Adapted from p. 72, Callister & Rethwisch 9e.

Algorithm

- 1. Determine coordinates of vector tail, pt. 1: x_1 , y_1 , & z_1 ; and vector head, pt. 2: x_2 , y_2 , & z_2 . in terms of three axis (a_1 , a_2 , and z)
- 2. Tail point coordinates subtracted from head point coordinates and normalized by unit cell dimensions a and c
- 3. Adjust to smallest integer values
- 4. Enclose in square brackets, no commas, for three-axis coordinates [u'v'w']
- 5. Convert to four-axis Miller-Bravais lattice coordinates using equations below:

$$u = \frac{1}{3}(2u' - v') \quad v = \frac{1}{3}(2v' - u')$$
$$t = -(u + v) \qquad w = w'$$

6. Adjust to smallest integer values and enclose in brackets [uvtw]

Determination of HCP Crystallographic Directions (ii)

Determine indices for green vector

Exam	ple

- a_1 a_2
- Tail location 0cHead location
- 2. Normalized
- Reduction
- Brackets [110]
- 5. Convert to 4-axis parameters

$$u = \frac{1}{3}[(2)(1) - (1)] = \frac{1}{3} \qquad v = \frac{1}{3}[(2)(1) - (1)] = \frac{1}{3}$$
$$t = -(\frac{1}{3} + \frac{1}{3}) = -\frac{2}{3} \qquad w = 0$$

6. **Reduction & Brackets**

$$1/3, 1/3, -2/3, 0 => 1, 1, -2, 0 => [11\overline{2}0]$$

(c)

Adapted from Fig. 3.11, Callister & Rethwisch 9e.

 Miller Indices: Reciprocals of the (three) axial intercepts for a plane, cleared of fractions & common multiples. All parallel planes have same Miller indices.

Algorithm

- 1. Read off intercepts of plane with axes in terms of *a*, *b*, *c*
- 2. Take reciprocals of intercepts
- 3. Reduce to smallest integer values
- 4. Enclose in parentheses, no commas i.e., (hkl)

<u>example</u>		а	b	С	
1.	Intercepts	1	1	∞	
2.	Reciprocals	1/1	1/1	1/∞	
		1	1	0	
3.	Reduction	1	1	0	
4.	Miller Indices	(110)	1		
<u>example</u>		a	b	С	

<u>example</u>		а	b	С
1.	Intercepts	1/2	∞	∞
2.	Reciprocals	1/1/2	1/∞	1/∞
		2	0	0
3.	Reduction	2	0	0

4. Miller Indices (100)

Family of Planes {hkl}

Ex: $\{100\} = (100), (010), (001), (\bar{1}00), (0\bar{1}0), (00\bar{1})$

VMSE Screenshot – Crystallographic Planes

Additional practice on indexing crystallographic planes

Crystallographic Planes (HCP)

In hexagonal unit cells the same idea is used

$\underline{\text{example}}$ a_1		a_1	a_2	a_3	С	
1.	Intercepts	1	∞	-1	1	
2.	Reciprocals	1	1/∞	-1	1	
		1	0	-1	1	
3.	Reduction	1	0	-1	1	
					$a_{:}$	3
4.	Miller-Bravais Indices		(1011)			a_1

Adapted from Fig. 3.14, Callister & Rethwisch 9e.

Crystallographic Planes

- We want to examine the atomic packing of crystallographic planes
- Iron foil can be used as a catalyst. The atomic packing of the exposed planes is important.
 - a) Draw (100) and (111) crystallographic planes for Fe.
 - b) Calculate the planar density for each of these planes.

Planar Density of (100) Iron

Solution: At T < 912°C iron has the BCC structure.

Fig. 3.2(c), *Callister & Rethwisch 9e* [from W. G. Moffatt, G. W. Pearsall, and J. Wulff, *The Structure and Properties of Materials*, Vol. I, *Structure*, p. 51. Copyright © 1964 by John Wiley & Sons, New York. Reprinted by permission of John Wiley & Sons, Inc.]

Radius of iron R = 0.1241 nm

Planar Density =
$$\frac{1}{a^2} = \frac{1}{\left(\frac{4\sqrt{3}}{3}R\right)^2} = 12.1 \frac{\text{atoms}}{\text{nm}^2} = \frac{1.2 \times 10^{19} \frac{\text{atoms}}{\text{m}^2}}{\text{WILEY}}$$
2D repeat unit

Chapter 3 - 40

Planar Density of (111) Iron

Solution (cont): (111) plane

1 atom in plane/ unit surface cell

- atoms in plane
- atoms above plane
- atoms below plane

area =
$$\sqrt{2} ah = \sqrt{3} a^2 = \sqrt{3} \left(\frac{4\sqrt{3}}{3} R \right)^2 = \frac{16\sqrt{3}}{3} R^2$$

$$0.70 \times 10^{19} \frac{\text{atoms}}{\text{m}^2}$$

VMSE Screenshot – Atomic Packing – (111) Plane for BCC

X-Ray Diffraction

Electromagnetic Spectrum

- Diffraction gratings must have spacings comparable to the wavelength of diffracted radiation.
- Can't resolve spacings $< \lambda$
- Spacing is the distance between parallel planes of atoms.

X-Rays to Determine Crystal Structure

Incoming X-rays diffract from crystal planes.

Measurement of critical angle, θ_c , allows computation of planar spacing, d.

X-ray intensity (from detector)

X-Ray Diffraction Pattern

Diffraction pattern for polycrystalline α -iron (BCC)

Adapted from Fig. 3.22, Callister 8e.

Summary

- Atoms may assemble into crystalline or amorphous structures.
- Common metallic crystal structures are FCC, BCC, and HCP. Coordination number and atomic packing factor are the same for both FCC and HCP crystal structures.
- We can predict the density of a material, provided we know the atomic weight, atomic radius, and crystal geometry (e.g., FCC, BCC, HCP).
- Crystallographic points, directions and planes are specified in terms of indexing schemes.
 Crystallographic directions and planes are related to atomic linear densities and planar densities.

Summary

- Materials can be single crystals or polycrystalline.
 Material properties generally vary with single crystal orientation (i.e., they are anisotropic), but are generally non-directional (i.e., they are isotropic) in polycrystals with randomly oriented grains.
- Some materials can have more than one crystal structure. This is referred to as polymorphism (or allotropy).
- X-ray diffraction is used for crystal structure and interplanar spacing determinations.

ANNOUNCEMENTS

Reading:

Core Problems:

Self-help Problems: