Chapter 3: The Structure of Crystalline Solids

ISSUES TO ADDRESS...

- What is the difference in atomic arrangement between crystalline and noncrystalline solids?
- What features of a material's atomic structure determine its density?
- Under what circumstances does a material property vary with the measurement direction?

Energy and Packing

- Non dense, random packing

- Dense, ordered packing

Dense, ordered packed structures tend to have lower energies.

Materials and Packing

Crystalline materials...

- atoms pack in periodic, 3D arrays
- typical of: -metals
-many ceramics
-some polymers

Noncrystalline materials...

- atoms have no periodic packing
- occurs for: -complex structures -rapid cooling
"Amorphous" = Noncrystalline

crystalline SiO_{2}
Adapted from Fig. 3.25(a), Callister \& Rethwisch 9e.
- Si • Oxygen

noncrystalline SiO_{2}
Adapted from Fig. 3.25(b), Callister \& Rethwisch 9e.

Metallic Crystal Structures

- How can we stack metal atoms to minimize empty space?

2-dimensions

VS.

Now stack these 2-D layers to make 3-D structures

Metallic Crystal Structures

- Tend to be densely packed.
- Reasons for dense packing:
- Typically, only one element is present, so all atomic radii are the same.
- Metallic bonding is not directional.
- Nearest neighbor distances tend to be small in order to lower bond energy.
- Electron cloud shields cores from each other.
- Metals have the simplest crystal structures.

We will examine three such structures...

Simple Cubic Structure (SC)

- Rare due to low packing density (only Po has this structure)
- Close-packed directions are cube edges.
- Coordination \# = 6 (\# nearest neighbors)

Click once on image to start animation
(Courtesy P.M. Anderson)

Wiley

Atomic Packing Factor (APF)

APF $=$ Volume of atoms in unit cell*
 Volume of unit cell
 *assume hard spheres

- APF for a simple cubic structure $=0.52$

close-packed directions
contains $8 \times 1 / 8=$
1 atom/unit cell
Adapted from Fig. 3.3 (a),
Callister \& Rethwisch 9e.

Body Centered Cubic Structure (BCC)

- Atoms touch each other along cube diagonals.
--Note: All atoms are identical; the center atom is shaded differently only for ease of viewing.
ex: Cr, W, Fe (α), Tantalum, Molybdenum
- Coordination \# = 8

Click once on image to start animation (Courtesy P.M. Anderson)

2 atoms/unit cell: 1 center +8 corners $\times 1 / 8$

VMSE Screenshot - BCC Unit Cell

Atomic Packing Factor: BCC

- APF for a body-centered cubic structure $=0.68$

Adapted from Fig. 3.2(a), Callister \& Rethwisch 9e.
$\frac{\text { atoms }}{\text { unit cell }} \leftrightarrows 2 \frac{4}{3} \pi(\sqrt{3} a / 4)^{3} \longleftarrow \frac{\text { volume }}{\text { atom }}$

$$
\text { APF }=\frac{a^{3} \longleftarrow \frac{\text { volume }}{\text { unit cell }}}{a^{2}}
$$

Face Centered Cubic Structure (FCC)

- Atoms touch each other along face diagonals.
--Note: All atoms are identical; the face-centered atoms are shaded differently only for ease of viewing.

ex: Al, Cu, Au, Pb, Ni, Pt, Ag

- Coordination \# = 12

Click once on image to start animation (Courtesy P.M. Anderson)

Adapted from Fig. 3.1, Callister \& Rethwisch 9e.

4 atoms/unit cell: 6 face $\times 1 / 2+8$ corners $\times 1 / 8$

Atomic Packing Factor: FCC

- APF for a face-centered cubic structure $=0.74$

FCC Stacking Sequence

- ABCABC... Stacking Sequence
- 2D Projection

A sites
B sites
C sites

- FCC Unit Cell

Hexagonal Close-Packed Structure (HCP)

- ABAB... Stacking Sequence
- 3D Projection
- Coordination \# = 12
- APF = 0.74
- 2D Projection

6 atoms/unit cell

- $c / a=1.633$

VMSE Screenshot - Stacking Sequence and Unit Cell for HCP

Main Menu

Close-packed Structures (Metals)

Print Main
In this submodule you may observe possible stacking sequences for close-packed planes of atoms, two of which lead to the generation of FCC and HCP crystal structures. Rotations of the images are possible using mouse click-and-drag.

ABA sequence - basis for HCP structure

Change to REDUCED-SPHERE
Single layer
Generate 2-layer AB
Generate 2-layer AC
Generate 3-layer ABA
Generate 3-layer ABC

Theoretical Density, ρ

$$
\text { Density }=\rho=\frac{\text { Mass of Atoms in Unit Cell }}{\text { Total Volume of Unit Cell }}
$$

$$
\rho=\frac{n A}{V_{C} N_{A}}
$$

where $\quad n=$ number of atoms/unit cell
$A=$ atomic weight
$V_{C}=$ Volume of unit cell $=a^{3}$ for cubic
$N_{A}=$ Avogadro's number
$=6.022 \times 10^{23}$ atoms $/ \mathrm{mol}$

Theoretical Density, ρ

atoms

volume

Densities of Material Classes

In general

$\rho_{\text {metals }}>\rho_{\text {ceramics }}>\rho_{\text {polymers }}$

Graphite/
Ceramics/ Polymers

Composites/ fibers

Why?

Metals have...

- close-packing (metallic bonding)
- often large atomic masses

Ceramics have...

- less dense packing
- often lighter elements

Polymers have...

- low packing density (often amorphous)
- lighter elements (C,H,O)

Composites have...

- intermediate values

Crystals as Building Blocks

- Some engineering applications require single crystals:
-- diamond single
crystals for abrasives

(Courtesy Martin Deakins,
GE Superabrasives, Worthington,
OH . Used with permission.)
- Properties of crystalline materials often related to crystal structure.
-- Ex: Quartz fractures more easily along some crystal planes than others.

(Courtesy P.M. Anderson)

Polycrystals

- Most engineering materials are polycrystals.

Fig. K, color inset pages of Callister $5 e$.
(Courtesy of Paul E.
Danielson, Teledyne Wah
Chang Albany)

- Nb-Hf-W plate with an electron beam weld.
- Each "grain" is a single crystal.
- If grains are randomly oriented,

overall component properties are not directional.
- Grain sizes typically range from 1 nm to 2 cm (i.e., from a few to millions of atomic layers).

Single vs Polycrystals

- Single Crystals
-Properties vary with direction: anisotropic.
-Example: the modulus of elasticity (E) in BCC iron:
- Polycrystals
-Properties may/may not vary with direction. -If grains are randomly oriented: isotropic.
($E_{\text {poly iron }}=210 \mathrm{GPa}$)
-If grains are textured, anisotropic.
$E($ diagonal $)=273 \mathrm{GPa}$

Data from Table 3.4, Callister \& Rethwisch 9e.
(Source of data is R.W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, 3rd ed., John Wiley and Sons, 1989.)

Adapted from Fig. 4.15(b), Callister \& Rethwisch 9e.
[Fig. 4.15(b) is courtesy of L.C. Smith and C. Brady, the National Bureau of Standards, Washington, DC (now the National Institute of Standards and Technology, Gaithersburg, MD).]

Polymorphism

- Two or more distinct crystal structures for the same material (allotropy/polymorphism)
iron system
titanium

$$
\alpha, \beta-\mathrm{Ti}
$$

carbon
diamond, graphite

Crystal Systems

Unit cell: smallest repetitive volume which contains the complete lattice pattern of a crystal.

7 crystal systems

14 crystal lattices
a, b, and c are the lattice constants

Point Coordinates

Point coordinates for unit cell center are $a / 2, b / 2, c / 2 \quad 1 / 21 / 21 / 2$

Point coordinates for unit cell corner are 111

Translation: integer multiple of lattice constants \rightarrow identical position in another unit cell

Crystallographic Directions

Algorithm

1. Determine coordinates of vector tail, pt. 1: $x_{1}, y_{1}, \& z_{1}$; and vector head, pt. 2: $x_{2}, y_{2}, \& z_{2}$. 2. Tail point coordinates subtracted from head point coordinates.
2. Normalize coordinate differences in terms of lattice parameters a, b, and c :

$$
\frac{x_{2}-x_{1}}{a} \frac{y_{2}-y_{1}}{b} \frac{z_{2}-z_{1}}{c}
$$

4. Adjust to smallest integer values
5. Enclose in square brackets, no commas
ex:

$$
\begin{array}{ll}
\text { pt. } 1 & x_{1}=0, y_{1}=0, z_{1}=0 \\
\text { pt. } 2 & x_{2}=a, y_{2}=0, z_{2}=c / 2
\end{array}
$$

[uvw]

$$
\begin{gathered}
=>\quad 1,0,1 / 2 \quad \Rightarrow \quad 2,0,1 \\
=>[201]
\end{gathered}
$$

Crystallographic Directions

Example 2:

$$
\begin{array}{lll}
\text { pt. } 1 & x_{1}=a, & y_{1}=b / 2, \\
\text { pt. } 2 & z_{1}=0 \\
x_{2}=-a, & y_{2}=b, & z_{2}=c \\
& \frac{-a-a}{a} & \frac{b-b / 2}{b} \\
= & \frac{c-0}{c} \\
=> & -2,1 / 2,1
\end{array}
$$

Multiplying by 2 to eliminate the fraction
$-4,1,2=>[\overline{4} 12]$ where the overbar represents a negative index
families of directions <uvw>

VMSE Screenshot - [101̄] Direction

This submodule allows you to do the following: (1) Display and rotate unit cells (using mouse click-and-drag) containing the five crystallographic directions listed on the left bar window; (2) Display and rotate unit cells and directions represented in Problems 3.29, 3.31, 3.32, and 3.35 in the text; (3) Test your ability to determine the indices of a given direction vector ("Exercises"), and (4) Choose a set of indices, and have displayed the corresponding direction vector ("Indices").

Linear Density

Adapted from
Fig. 3.1(a),
Callister \&
Rethwisch 9e.
ex: linear density of Al in [110] direction

$$
a=0.405 \mathrm{~nm}
$$

$\begin{aligned} & \text { \# atoms } \\ & \text { length } \\ & \text { LD }=\frac{2}{\sqrt{2} a}\end{aligned}=3.5 \mathrm{~nm}^{-1}$

Drawing HCP Crystallographic Directions (i)

Drawing HCP Crystallographic Directions (ii)

- Draw the [$\overline{1}$ 213] direction in a hexagonal unit cell.

[1̄1213] direction represented by vector from point o to point s

Determination of HCP Crystallographic Directions (ii)

Adapted from p. 72, Callister \& Rethwisch 9e.

Algorithm

1. Determine coordinates of vector tail, pt. 1: $x_{1}, y_{1}, \& z_{1}$; and vector head, pt. 2: $x_{2}, y_{2}, \& z_{2}$. in terms of three axis (a_{1}, a_{2}, and z)
2. Tail point coordinates subtracted from head point coordinates and normalized by unit cell dimensions a and c
3. Adjust to smallest integer values
4. Enclose in square brackets, no commas, for three-axis coordinates [$u^{\prime} v^{\prime} w^{\prime}$]
5. Convert to four-axis Miller-Bravais lattice coordinates using equations below:

$$
\begin{array}{ll}
u=\frac{1}{3}\left(2 u^{\prime}-v^{\prime}\right) & v=\frac{1}{3}\left(2 v^{\prime}-u^{\prime}\right) \\
t=-(u+v) & w=w^{\prime}
\end{array}
$$

6. Adjust to smallest integer values and enclose in brackets [uvtw]

Determination of HCP Crystallographic Directions (ii)

Determine indices for green vector

Example	a_{1}	a_{2}	z	
1.	Tail location	0	0	0
	Head location	a	a	$0 c$
2.	Normalized	1	1	0
3.	Reduction	1	1	0
4.	Brackets		$[110]$	

5. Convert to 4-axis parameters

$$
\begin{array}{ll}
u=\frac{1}{3}[(2)(1)-(1)]=\frac{1}{3} & v=\frac{1}{3}[(2)(1)-(1)]=\frac{1}{3} \\
t=-\left(\frac{1}{3}+\frac{1}{3}\right)=-\frac{2}{3} & w=0
\end{array}
$$

6. Reduction \& Brackets

$$
1 / 3,1 / 3,-2 / 3,0 \quad \Rightarrow \quad 1,1,-2,0 \quad \Rightarrow \quad[11 \overline{2} 0]
$$

Crystallographic Planes

Crystallographic Planes

- Miller Indices: Reciprocals of the (three) axial intercepts for a plane, cleared of fractions \& common multiples. All parallel planes have same Miller indices.
- Algorithm

1. Read off intercepts of plane with axes in terms of a, b, c
2. Take reciprocals of intercepts
3. Reduce to smallest integer values
4. Enclose in parentheses, no commas i.e., (hkl)

Crystallographic Planes

Crystallographic Planes

Family of Planes \{hkß\}
Ex: $\quad\{100\}=(100),(010),(001),(\overline{1} 00),(0 \overline{1} 0),(00 \overline{1})$

VMSE Screenshot－Crystallographic Planes

Main Menu

Module Menu

Crystallographic Planes

This submodule allows you to do the following：（1）Display and rotate（using mouse click－and－drag）unit cells containing the fíve crystallographic planes listed on the left bar window；（2）Display and rotate unit cells and planes represented in Problems 3．40，3．41， 3.42 and 3.49 in the text；（3）Test your ability to determine the indices of a given plane（＂Exercises＂），and（4）Choose a set of indices，and have displaved the

```
(011)
#(11彳)
(201)
(1) (70)
(3\overline{2}1)
[0] Prob. 3.40
malob. 3.41
## Prob. 3.42
(1) Prob. 3.49
*筑龻 Exercises
&yz Indices
国 Prob． 3.40
［国 Prob． 3.41
［1］Prob． 3.42
（iv）Prob． 3.49
解新 Exercises
\({ }^{x y z}\) Indices
```

Select the correct set of indices for the plane shown．
（3T2）
（00T）
（ $\overline{1} 12$ ）
（T32）
（ $\overline{1} \overline{2} 0$ ）
（0T1）

Additional practice on indexing crystallographic planes

Crystallographic Planes (HCP)

- In hexagonal unit cells the same idea is used
example

1. Intercepts
2. Reciprocals
3. Reduction
4. Miller-Bravais Indices
(1011)

Adapted from Fig. 3.14, Callister \& Rethwisch 9e.

Crystallographic Planes

- We want to examine the atomic packing of crystallographic planes
- Iron foil can be used as a catalyst. The atomic packing of the exposed planes is important.
a) Draw (100) and (111) crystallographic planes for Fe.
b) Calculate the planar density for each of these planes.

Planar Density of (100) Iron

Solution: At $\mathrm{C}=912^{\circ} \mathrm{C}$ iron has the BCC structure.

(100)

Radius of iron $R=0.1241 \mathrm{~nm}$

Fig. 3.2(c), Callister \& Rethwisch 9e [from W. G. Moffatt, G. W. Pearsall, and J. Wulff, The Structure and Properties of Materials, Vol. I, Structure, p. 51. Copyright © 1964 by John Wiley \& Sons, New York. Reprinted by permission of John Wiley \& Sons, Inc.]
atoms
$\overline{2 D \text { repeat unit }} 1$

Planar Density of (111) Iron

Solution (cont): (111) plane 1 atom in plane/ unit surface cell

O atoms above plane
atoms below plane

$$
\text { area }=\sqrt{2} a h=\sqrt{3} a^{2}=\sqrt{3}\left(\frac{4 \sqrt{3}}{3} R\right)^{2}=\frac{16 \sqrt{3}}{3} R^{2}
$$

$$
\begin{array}{|r|}
\hline 0.70 \times 10^{19} \frac{\text { atoms }}{\mathrm{m}^{2}} \\
\underset{\substack{\text { Chaperer } 3-41}}{\text { WILEY }}
\end{array}
$$

VMSE Screenshot - Atomic Packing (111) Plane for BCC

In this submobule you may observe unit cells for FCC and HCP crystal structures, as well as the atomic packing of several crystallographic planes for each crystal structure. You may also rotate these structures/planes using mouse click-and-drag.

X-Ray Diffraction

Electromagnetic Spectrum

- Diffraction gratings must have spacings comparable to the wavelength of diffracted radiation.
- Can't resolve spacings $<\lambda$
- Spacing is the distance between parallel planes of atoms.

X-Rays to Determine Crystal Structure

- Incoming X-rays diffract from crystal planes.

Measurement of critical angle, θ_{c}, allows computation of planar spacing, d.

X-Ray Diffraction Pattern

Adapted from Fig. 3.22, Callister 8 e.

Summary

- Atoms may assemble into crystalline or amorphous structures.
- Common metallic crystal structures are FCC, BCC, and HCP. Coordination number and atomic packing factor are the same for both FCC and HCP crystal structures.
- We can predict the density of a material, provided we know the atomic weight, atomic radius, and crystal geometry (e.g., FCC, BCC, HCP).
- Crystallographic points, directions and planes are specified in terms of indexing schemes.
Crystallographic directions and planes are related to atomic linear densities and planar densities.

Summary

- Materials can be single crystals or polycrystalline. Material properties generally vary with single crystal orientation (i.e., they are anisotropic), but are generally non-directional (i.e., they are isotropic) in polycrystals with randomly oriented grains.
- Some materials can have more than one crystal structure. This is referred to as polymorphism (or allotropy).
- X-ray diffraction is used for crystal structure and interplanar spacing determinations.

ANNOUNCEMENTS

Reading:

Core Problems:

Self-help Problems:

