then back along	the line from B to A over the entire trip?		of 3.00 m/s. What is	point A to point B and his average speed and (e) $3.75 \text{ m/s}, 0 \text{ m/s}$
				n, what is the minimum
stopping distance	for the same car movi	ng at 30 m/s?(assum)	-	cceleration).
a) 100 m	b) 12 m	c) 25 m	d) 75 m	e) 50 m
	b) 25 s 3.5 m south, then 8.2 rection of the resultant b) 22.3 m, 175.6°	displacement?	d) 1 s th of east, and finally d) 7.9 m, 175.7°	e) 5 s y 15 m west. What is the e) 24. 2 m, 55.6°
5- Given the disp of the vector D =		(3 i – 4 j +4 k) m as	•	k) m, find the magnitude
a) 28 m	b) 19 m	c) 10 m	d) 5 m	e) 33 m
	The second secon	о шин шин түү түүн түүн түүн байчай	n sekkelencen ender kriste und mit erfentet sekken en en en en er er en en eller kriste kriste kriste bilden m	gistani Madenia ja eti singani pakani jankani kalendari jankan tahun kalendari jankan jankan sala sala sala sa

Circle the right answers for the questions from 1 to 8 🌣
N.B. Take g (earth gravitational constant) = 10 m/s^2
1- A boy runs 145 m in a direction 20.0° east of north (displacement vector A) and then 105 m in a
direction 35.0° south of east (displacement vector B). Using components, determine the magnitude and

•						
$\frac{1}{2-\text{ If } A} = (6 \text{ i } -6 \text$	$(\mathbf{B} \mathbf{j})$ units, $\mathbf{B} = (-8)$	$(\mathbf{i} + 3 \mathbf{j})$ units, and $\mathbf{C} = ($	26 i + 19 j) units	s, determine a and b such that		
$a\mathbf{A} + b\mathbf{B} + \mathbf{C} = 0$						
a) 14, 15	b) 2, 3	c) 11, 13	d) 6, 8	(e) 5, 7		

c) 78, 15°

3- A straight track is 1600 m in length. A runner begins at the starting line, runs due east for the full length of the track, turns around, and runs halfway back. The total time for this run is five minutes. What is the runner's average velocity, and what is his average speed?

a) 2.7 m/s, 8 m/s

a) 110,38°

b) 3 m/s, 9 m/s

direction of the resultant vector C for the net displacement.

b) 210, 45°

c) 6 m/s, 8 m/s

d) 4.4 m/s, 10 m/s

d) 155, 29°

e) 1.5 m/s, 5 m/s

e) 15, 23°

(7) Vector B has x, and y components of 4.00, and 6.00 units, respectively. Calculate the magnitude of B and the angle that B makes with x-axis.

a) 44.33, 67.4°

b) 19.23, 39.8°

c) 7.81, 29.2°

d) 19.23, 41.2°

e) 7.21, 56.3°

