Chapter 2: Atomic Structure & Interatomic Bonding

ISSUES TO ADDRESS...

- What promotes bonding?
- What types of bonds are there?
- What properties are inferred from bonding?

Atomic Structure (Freshman Chem.)

- atom electrons 9.11 x 10^{-31} kg protons neutrons $\left. \right\}$ 1.67 x 10^{-27} kg
- atomic number = # of protons in nucleus of atom
 = # of electrons in neutral species
- A [=] atomic mass unit = amu = 1/12 mass of ${}^{12}C$

Atomic wt = wt of 6.022×10^{23} molecules or atoms

1 amu/atom = 1 g/mol

- C 12.011
- H 1.008 etc.

Atomic Structure

- Some of the following properties
 - 1) Chemical
 - 2) Electrical
 - 3) Thermal
 - 4) Optical

are determined by electronic structure

Electronic Structure

- Electrons have wavelike and particulate properties.
- Two of the wavelike characteristics are
 - electrons are in orbitals defined by a probability.
 - each orbital at discrete energy level is determined by quantum numbers.

- Quantum # n = principal (energy level-shell) $\ell = \text{subsidiary (orbitals)}$ $m_l = \text{magnetic}$ $m_s = \text{spin}$

 Designation

 K, L, M, N, O (1, 2, 3, etc.)

 s, p, d, f (0, 1, 2, 3,..., n-1)

 1, 3, 5, 7 (- ℓ to + ℓ)

 $\frac{1}{2}, -\frac{1}{2}$

Electron Energy States

Electrons...

- have discrete energy states
- tend to occupy lowest available energy state.

SURVEY OF ELEMENTS

• Most elements: Electron configuration not stable.

<u>Element</u>	<u>Atomic #</u>	Electron configuration	
Hydrogen	1	1s ¹	
Helium	2	1s ² (stable)	
Lithium	3	1s ² 2s ¹	
Beryllium	4	1s ² 2s ²	
Boron	5	$1s^{2}2s^{2}2p^{1}$	Adapted from Table 2.2,
Carbon	6	$1s^{2}2s^{2}2p^{2}$	Callister & Rethwisch 9e.
Neon	10	$1s^22s^22p^6$ (stable)	
Sodium	11	1s ² 2s ² 2p ⁶ 3s ¹	
Magnesium	12	1s ² 2s ² 2p ⁶ 3s ²	
Aluminum	13	$1s^22s^22p^63s^23p^1$	
Argon	18	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ (s	stable)
Krypton	36	$1s^22s^22p^63s^23p^63d^{10}4s^24p$	⁶ (stable)

• Why? Valence (outer) shell usually not filled completely.

Electron Configurations

- Valence electrons those in unfilled shells
- Filled shells more stable
- Valence electrons are most available for bonding and tend to control the chemical properties
 - example: C (atomic number = 6)

Electronic Configurations

ex: Fe - atomic # = 26 $1s^2$ $2s^2 2p^6$ $3s^2 3p^6$ $3d^6 4s^2$

N-shell n = 4 valence electrons Adapted from Fig. 2.6, Callister & **3***d* Rethwisch 9e. (From K. M. Ralls, T. H. Courtney, and J. Wulff, Introduction to Materials Science and **4**S Engineering, p. 22. Copyright © 1976 by John Wiley & Sons, New York. Reprinted by permission of John Wiley & Sons, Inc.) Зр M-shell n = 3Energy <u>3s</u> 2p L-shell n = 2**2s 1**s K-shell n = 1

The Periodic Table

Columns: Similar Valence Structure

Adapted from Fig. 2.8, *Callister & Rethwisch 9e.*

Electropositive elements: Readily give up electrons to become + ions. Electronegative elements: Readily acquire electrons to become - ions.

Electronegativity

- Ranges from 0.9 to 4.1,
- Large values: tendency to acquire electrons.

Larger electronegativity

Ionic Bonding

- Occurs between + and ions.
- Requires electron transfer.
- Large difference in electronegativity required.
- Example: NaCl

Ionic Bonding

- Energy minimum energy most stable
 - Energy balance of attractive and repulsive terms

Examples: Ionic Bonding

• Predominant bonding in Ceramics

Covalent Bonding

- similar electronegativity : share electrons
- bonds determined by valence s & p orbitals dominate bonding
- Example: H₂

Each H: has 1 valence e⁻, needs 1 more

Electronegativities are the same.

 shared 1s electron from 1st hydrogen atom shared 1s electron from 2nd hydrogen atom

Fig. 2.12, Callister & Rethwisch 9e.

Bond Hybrization

• Carbon can form *sp*³ hybrid orbitals

Fig. 2.14, *Callister & Rethwisch 9e.* (Adapted from J.E. Brady and F. Senese, *Chemistry: Matter and Its Changes*, 4th edition. Reprinted with permission of John Wiley and Sons, Inc.)

Covalent Bonding: Carbon *sp*³

- Example: CH₄
 - C: has 4 valence *e*⁻, needs 4 more
 - H: has 1 valence *e*⁻, needs 1 more

Electronegativities of C and H are comparable so electrons are shared in covalent bonds.

Fig. 2.15, *Callister & Rethwisch 9e.* (Adapted from J.E. Brady and F. Senese, *Chemistry: Matter and Its Changes*, 4th edition. Reprinted with permission of John Wiley and Sons, Inc.)

Primary Bonding

- Metallic Bond -- delocalized as electron cloud
- Ionic-Covalent Mixed Bonding

% ionic character =
$$\left(1 - e^{-\frac{(X_A - X_B)^2}{4}}\right) \times (100\%)$$

where $X_A \& X_B$ are Pauling electronegativities

Ex: MgO $X_{Mg} = 1.3$ $X_{O} = 3.5$

% ionic character =
$$\left(1 - e^{-\frac{(3.5 - 1.3)^2}{4}}\right) \times (100\%) = 70.2\%$$
 ionic

Secondary Bonding

Arises from interaction between dipoles

Summary: Bonding

TypeBond EnergyCommentsIonicLarge!Nondirectional (ceramics)

Covalent Variable large-Diamond small-Bismuth Directional (semiconductors, ceramics polymer chains)

Metallic Variable large-Tungsten small-Mercury

Secondary smallest

Nondirectional (metals)

Directional inter-chain (polymer) inter-molecular

Properties From Bonding: T_m

• Bond length, r

• Bond energy, *E*_o

• Melting Temperature, T_m

 T_m is larger if E_o is larger.

Properties From Bonding: α

• Coefficient of thermal expansion, α

• α ~ symmetric at r_0

Summary: Primary Bonds

Ceramics

(Ionic & covalent bonding):

Large bond energy large T_m large Esmall α

Metals

(Metallic bonding):

Variable bond energy moderate T_m moderate Emoderate α

Polymers (Covalent & Secondary):

<mark>Secondary bondin</mark>g

Directional Properties Secondary bonding dominates small T_m small Elarge α

ANNOUNCEMENTS

Reading:

Core Problems:

Self-help Problems:

