(Q1) Describe the contributions of the following scientists to our knowledge of atomic structure:
J. J. Thomson:
R. A. Millikan:
E. Rutherford:
J. Chadwick:
(Q2) Roughly speaking, the radius of an atom is about 10,000 times greater than that of its nucleus. If an atom were magnified so that the radius of its nucleus became 2.0 cm , about the size of a marble, what would be the radius of the atom in miles?
($1 \mathrm{mi}=1609 \mathrm{~m}$).
0.12 mi .
(Q3) What do we call atoms of the same elements with different mass numbers?
Isotopes
(Q4) Calculate the number of neutrons of ${ }^{239} \mathrm{Pu}$.
Plutonium, atomic number $=94$
Number of neutron $=239-94=145$
(Q5) Indicate the number of protons, neutrons, and electrons in each of the following species:
${ }_{7}^{15} \mathrm{~N}$: $(7 \mathrm{p}, 8 \mathrm{n}, 7 \mathrm{e})$
${ }_{16}^{33} \mathrm{~S}:(16 \mathrm{p}, 17 \mathrm{n}, 16 \mathrm{e})$
${ }_{29}^{63} \mathrm{Cu}:(29 \mathrm{p}, 34 \mathrm{n}, 29 \mathrm{e}$)
${ }_{38}^{84}$ Sr: ($38 \mathrm{p}, 46 \mathrm{n}, 38 \mathrm{e}$)
${ }_{56}^{130} \mathrm{Ba}:(56 \mathrm{p}, 74 \mathrm{n}, 56 \mathrm{e})$
${ }_{74}^{186} \mathrm{~W}$: $(74 \mathrm{p}, 112 \mathrm{n}, 74 \mathrm{e})$
${ }_{80}^{202} \mathrm{Hg}:(80 \mathrm{p}, 122 \mathrm{n}, 80 \mathrm{e})$
(Q6) Write the appropriate symbol for each of the following isotopes: ${ }_{Z}^{A} \mathrm{X}$
A: mass number
Z : atomic number
(a) $Z=74, A=186:{ }_{74}^{186} \mathrm{~W}$
(b) $Z=80 ; A=201:{ }_{80}^{201} \mathrm{Hg}$
(Q7) State two differences between a metal and a nonmetal
(Q8) Write the names and symbols for four elements in each of the following categories: (a) nonmetal, (b) metal, (c) metalloid.
(Q9) Define, with two examples, the following terms: (a) alkali metals, (b) alkaline earth metals, (c) halogens, (d) noble gases.
(Q10) Show the locations of (a) groups, (b) rows, (c) alkali metals, (d) alkaline earth metals, (e) the halogens, and (f) the noble gases in the following outline of a periodic table. Also draw dividing lines between metals and metalloids and between metalloids and nonmetals.

(Q11) Describe the changes in properties (from metals to nonmetals or from nonmetals to metals) as we move in the periodic table;
(a) down group: metallic character increases down a group
(b) from left to right: metallic character decreases from left to right
(Q12) Give the number of protons and electrons in each of the following common ions:
K^{+}: $19 \mathrm{p}, 18$ e
$\mathrm{Mg}^{2+}: 12 \mathrm{p}, 10 \mathrm{e}$
$\mathrm{Fe}^{3+}: 26 \mathrm{p}, 23$ e
Br: 35 p, 36 e
$\mathrm{Mn}^{2+}: 25 \mathrm{p}, 23$ e
$C^{4-}: 6 \mathrm{p}, 10$ e
Cu^{2+} : $29 \mathrm{p}, 27 \mathrm{e}$
(Q13) Give two examples of each of the following:
(a) a diatomic molecule containing atoms of the same element:
$\mathrm{H}_{2}, \mathrm{~N}_{2}, \mathrm{O}_{2}, \mathrm{Cl}_{2}$
(b) a diatomic molecule containing atoms of different elements:
$\mathrm{CO}, \mathrm{HCl}, \mathrm{HF}$
(c) a polyatomic molecule containing atoms of the same element:
$\mathrm{S}_{8}, \mathrm{P}_{4}$
(d) a polyatomic molecule containing atoms of different elements:
$\mathrm{H}_{2} \mathrm{O}, \mathrm{CO}_{2}, \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
(Q14) What does P_{4} signify? How does it differ from 4P?
(Q15) Write the formulas for the following ionic compounds:
(a) sodium oxide: $\mathrm{Na}_{2} \mathrm{O}$
(b) iron sulfide (containing the Fe^{2+} ion): FeS
(c) cobalt sulfate (containing the Co^{3+} and SO_{4}^{2-} ions): $\mathrm{Co}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
(d) cobalt sulfate (containing the Co^{2+} and SO_{4}^{2-} ions): CoSO_{4}
(e) barium fluoride: BaF_{2}
(f) copper bromide (containing the Cu^{+}ion): CuBr
(g) manganese oxide (containing the Mn^{3+} ion): $\mathrm{Mn}_{2} \mathrm{O}_{3}$
(h) mercury iodide (containing the Hg_{2}^{2+} ion): $\mathrm{Hg}_{2} \mathrm{I}_{2}$
(i) magnesium phosphate (containing the PO_{4}^{3-} ion): $\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
(Q16) What are the empirical formulas of the following compounds?
(a) $\mathrm{Al}_{2} \mathrm{Br}_{6}: \mathrm{AlBr}_{3}$
(b) $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}: \mathrm{NaSO}_{2}$
(c) $\mathrm{N}_{2} \mathrm{O}_{5}: \mathrm{N}_{2} \mathrm{O}_{5}$
(d) $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}: \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
(Q17) Which of the following compounds are likely to be ionic? Which are likely to be molecular?
CH_{4} : molecular compound
NaBr : ionic compound
BaF_{2} : ionic compound
CCl_{4} : molecular compound
ICI: molecular compound
CsCl: ionic compound
NF_{3} : molecular compound
(Q18) Name these compounds:
(a) KCIO : potassium hypochlorite
(b) $\mathrm{Ag}_{2} \mathrm{CO}_{3}$: silver carbonate
(c) FeCl_{2} : iron (II) chloride
(d) KMnO_{4} : potassium permanganate
(e) CsClO_{3} : cesium chlorate
(f) HIO: hypoiodous acid
(g) FeO: iron (II) oxide
(h) $\mathrm{Fe}_{2} \mathrm{O}_{3}$: iron (III) oxide
(i) TiCl_{4} : titanium (IV) chloride
(j) NaH : sodium hydride
(k) $\mathrm{Li}_{3} \mathrm{~N}$: lithium nitride
(I) $\mathrm{Na}_{2} \mathrm{O}$: sodium oxide
(m) $\mathrm{Na}_{2} \mathrm{O}_{2}$: sodium peroxide (O_{2}^{2-}, peroxides)
(n) $\mathrm{FeCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$: iron (III) chloride hexahydrate
(Q19) Write the formulas for the following compounds:
(a) copper(I) cyanide: CuCN
(b) strontium chlorite: $\mathrm{Sr}\left(\mathrm{ClO}_{2}\right)_{2}$
(c) perbromic acid: HBrO_{4}
(d) hydroiodic acid: HI
(e) disodium ammonium phosphate: $\mathrm{Na}_{2}\left(\mathrm{NH}_{4}\right) \mathrm{PO}_{4}$
(f) lead(II) carbonate: PbCO_{3}
(g) tin(II) fluoride: SnF_{2}
(h) tetraphosphorus decasulfide: $\mathrm{P}_{4} \mathrm{~S}_{10}$
(i) mercury(II) oxide: HgO
(j) mercury(I) iodide: $\mathrm{Hg}_{2} \mathrm{I}_{2}$
(k) selenium hexafluoride: SeF_{6}
(Q20) Identify the elements represented by the following symbols and give the number of protons and neutrons in each case:
(a) ${ }_{10}^{20} \mathrm{X}: \mathrm{Ne}(10 \mathrm{p} \& 10 \mathrm{n})$
(b) ${ }_{29}^{63} \mathrm{X}: \mathrm{Cu}(29 \mathrm{p} \& 34 \mathrm{n})$
(c) ${ }_{47}^{107} \mathrm{X}: \mathrm{Ag}(47 \mathrm{p} \& 60 \mathrm{n})$
(d) ${ }_{74}^{182} \mathrm{X}: \mathrm{W}(74 \mathrm{p} \& 108 \mathrm{n})$
(e) ${ }_{84}^{203} \mathrm{X}$: Po ($\left.84 \mathrm{p} \& 119 \mathrm{n}\right)$
(f) ${ }_{94}^{234} \mathrm{X}: \mathrm{Pu}(94 \mathrm{p} \& 140 \mathrm{n})$
(Q21) Fill in the blanks in the following table:

Symbol	11 5	56 26 Fe^{2+}	31 $1_{5} \mathrm{P}^{3-}$	${ }_{79}^{196} \mathrm{Au}$	${ }_{86}^{22} \mathrm{Rn}$
Protons	5	26	15	79	86
Neutrons	6	28	16	117	136
Electrons	5	24	18	79	86
Net charge	0	+2	-3	0	0

(Q22) Which of the following symbols provides more information about the atom: ${ }^{23} \mathrm{Na}$ or ${ }_{11} \mathrm{Na}$? Explain.
${ }^{23} \mathrm{Na}$
(Q23) List the elements that exist as gases, liquids and solids at room temperature $\left(25^{\circ} \mathrm{C}\right)$.
Gases: $\mathrm{H}_{2}, \mathrm{~N}_{2}, \mathrm{O}_{2}, \mathrm{~F}_{2}, \mathrm{Cl}_{2}, \mathrm{He}, \mathrm{Ne}, \mathrm{Ar}, \mathrm{Kr}, \mathrm{Xe}, \mathrm{Rn}$
Liquids: Hg, Br
Solids: the rest of the elements
(Q24) Predict the formula and name of a binary compound formed from the following elements:
(a) Na and $\mathrm{H}: \mathrm{NaH}$, sodium hydride
(b) B and $\mathrm{O}: \mathrm{B}_{2} \mathrm{O}_{3}$, diboron trioxide
(c) Na and $\mathrm{S}: \mathrm{Na}_{2} \mathrm{~S}$, sodium sulfide
(d) Al and $\mathrm{F}: \mathrm{AlF}_{3}$, aluminum fluoride
(e) F and $\mathrm{O}: \mathrm{OF}_{2}$, oxygen difluoride
(f) Sr and $\mathrm{Cl}: \mathrm{SrCl}_{2}$, strontium chloride
(Q25) Fill the blanks in the following table.

Cation	Anion	Formula	Name
Mg^{2+}	HCO_{3}^{-}	$\mathrm{Mg}\left(\mathrm{HCO}_{3}\right)_{2}$	magnesium bicarbonate
Sr^{2+}	Cl^{-}	SrCl_{2}	strontium chloride
Fe^{3+}	NO_{2}^{-}	$\mathrm{Fe}\left(\mathrm{NO}_{2}\right)_{3}$	iron(III) nitrite
Mn^{2+}	ClO_{3}^{-}	$\mathrm{Mn}\left(\mathrm{ClO}_{3}\right)_{2}$	manganese(II) chlorate
Sn^{4+}	Br^{-}	SnBr_{4}	tin(IV) bromide
Co^{2+}	PO_{4}^{3-}	$\mathrm{Co}_{3}\left(\mathrm{PO}_{4}\right)_{2}$	cobalt(II) phosphate
Hg_{2}^{2+}	I^{-}	$\mathrm{Hg}_{2} \mathrm{I}_{2}$	mercury(I) iodide
Cu^{+}	CO_{3}^{2-}	$\mathrm{Cu}_{2} \mathrm{CO}_{3}$	lopper(I) carbonate
Li^{+}	N^{3-}	$\mathrm{Li}_{3} \mathrm{~N}$	lithium nitride
Al^{3+}	S^{2-}	$\mathrm{Al}_{2} \mathrm{~S}_{3}$	aluminum sulfide

