## Solution to HW Problems Chapter 27

104 Phys

Prof. Nasser S. Alzayed

5. Two wires A and B of circular cross section are made of the same metal and have equal lengths, but the resistance of wire A is three times greater than that of wire B. What is the ratio of their cross-sectional areas? How do their radii compare?

Q#\$ /27: 
$$l_A = l_B$$
  $P_A = P_B$   $R_A = 3 R_B$ 

find  $r_B/r_A$ ?

$$R = \frac{PR}{A} \rightarrow \frac{R_A}{RR} = \frac{PR}{\pi r_A^2} = \frac{3}{\pi r_A^2} = \frac{3}{\pi r_A^2}$$

$$r_A^2 = 3 \rightarrow r_B = \sqrt{3} r_A \not \Rightarrow$$

21. A metal wire of resistance R is cut into three equal pieces that are then connected side by side to form a new wire the length of which is equal to one-third the original length. What is the resistance of this new wire?

P21/27:
for the original wive 
$$R = \frac{Pl}{A}$$

NOW  $l = \frac{1}{3}l$ 
 $A \rightarrow 3A$ 
 $R \rightarrow \frac{Pl}{3A} = \frac{Pl}{9A}$ 
 $R' = \frac{R}{9}$ 

22. Aluminum and copper wires of equal length are found to have the same resistance. What is the ratio of their radii?

$$P 27/27: P_{AL} = 2.82 \times 10^8 \Omega \cdot m P_{cn} = 1.7 \times 10^8 \Omega \cdot m$$

$$l_{AL} = l_{cn} R_{AL} = R_{cn}$$

$$P_{Cn} = \frac{P_{cn}}{A} \Rightarrow R_{AL} = \frac{P_{AL}}{A_{AL}} = R_{cn} = \frac{P_{cn}}{A_{cn}}$$

$$\Rightarrow \frac{P_{AL}}{A R_{AL}} = \frac{P_{cn}}{A R_{Cn}} \Rightarrow \frac{R_{AL}}{A R_{cn}} = \frac{P_{aL}}{P_{cn}} = \frac{2.82}{1.7} = 1.29$$

35. The temperature of a sample of tungsten is raised while a sample of copper is maintained at 20.0°C. At what temperature will the resistivity of the tungsten be four times that of the copper?

P 27/27: 
$$\int cu \, dt \, T = 20^{\circ} = 1.7 \times 10^{8} \, \Lambda \cdot m \, d_{t} = 4.5 \times 10^{3} \, d_{t} \, d_{t} \, T = 20^{\circ} = 5.6 \times 10^{8} \, \Lambda \cdot m \, d_{t} = 4.5 \times 10^{3} \, d_{t} \, d_{t} \, T = 20^{\circ} = 5.6 \times 10^{8} \, \Lambda \cdot m \, d_{t} = 4.5 \times 10^{3} \, d_{t} \, d_{t}$$

**49.** Compute the cost per day of operating a lamp that draws a current of 1.70 A from a 110-V line. Assume the cost of energy from the power company is \$0.060 0/kWh.

P. 
$$u9127$$
:  $I = 1.7A$   $V = 110V$  \$ = 0.06 14Wh  
 $E = 24 \text{ h}$ .  
If  $P = VI = 10 \times 1.7$   
I total  $P = (10 \times 1.7 \times 24 = 4488 \text{ W} = 4.488 \text{ W}$   
 $\therefore 4 = 4.488 \times 0.06 \Rightarrow 0.27$