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Generalities on Harmonic Functions

Definition

A mapping U: Q — R defined on an open subset Q0 of C twice

continuously differentiable (U is of class C2) is called harmonic if
2 2

AU =0, known as Laplace equation, with AU = 8—U + a—U (A
Ox2 ~ Oy?

is called the Laplace operator).
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Generalities on Harmonic Functions

Examples

1. U(x,y) = x? — y? is harmonic.

2. If f is holomorphic on Q, then Rf and f are harmonic on €.

We intend to show that in general any real harmonic function is
locally the real part of a holomorphic function.

Theorem

If Q is a simply connected domain of C and U: Q — R harmonic
on 2, there exists a holomorphic function f on 2 such that
U=Rf on Q.
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Generalities on Harmonic Functions

Proof 5U 5U

The mapping g(z) = a—(x,y) - ia—(x,y) is holomorphic on €,
X y

with z = x 4+ iy. Since Q is simply connected, g has a primitive in

Q. Let G be any primitive of g. G is holomorphic and

N
8@ = 50 —i5 ) = ) +1% x)
.ORG 033G
= —lw(an)‘Fw(X,Y)
Thus
ou ORG
ox  Ox

e
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Generalities on Harmonic Functions

Corollary

Any harmonic function is locally the real part of a holomorphic
function.

Corollary

Any harmonic function is infinitely continuously differentiable.

Corollary

If U: D(0,R) — R is harmonic, then for all0 < r < R

“+o0o
0 n| ,in@
U(re”) = E anr!"ein?
BLEL Mongi Harmonic Functions of two Variables



Generalities on Harmonic Functions

Proof
Let f be a holomorphic function such that U = Rf,

“+oo
f(z) = bnz", then
n=0

. 13 . 13 .

U(re'?) = Rby + 5 Z bar"e 4 5 Z byr"e=in?.
n=1 n=1

We set ag = Rbg and for n > 1, a, = %b,, and for n < —1,

an = %b_n. We remark that

1 27

apr = 5 U(reie)e_i”e de.
T Jo
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Generalities on Harmonic Functions

We can prove the same result using Fourier series of functions The
mapping 0 — U(re'?) is infinitely continuously differentiable

+oo
(C>) and 27-periodic, thus U(re'?) = Z Cpe™, for all r < R.

n=—oo

The Fourier's coefficients C,, are given by

1 2w ) )
Cn / U(rele)e*1"9 do = a,r".
0

:27r
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Generalities on Harmonic Functions

Corollary (Liouville’s Theorem)

Any bounded harmonic function on C is constant.

Proof
Let U be a harmonic function bounded by M on C. For all r > 0,
we have

. +OO .

U(re‘e) = Z ariein?.
1 2 ) )
anr!"l = / U(re%)e= "% dp.

2 0

Then that |a,,r|”|\ <Mand a,=0if n#0. O
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Generalities on Harmonic Functions

Corollary

Any harmonic function on C, bounded above or bounded below is
constant.

Proof

If we replace U by —U, we can suppose that U is bounded above.
Since C is a simply connected domain, there exists a holomorphic
function f on C such that U = Rf. Without loss of generality, we
can suppose that U is non positive. Thus |ef| = e®f = eV < 1. By
Liouville's theorem ef is constant, then f and U are constant. O
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Extension of Harmonic Functions

Theorem

Let U be a harmonic function on a domain Q. If Q' #£ () is a
subdomain of Q and U =0 on Q', then U =0 on Q.

Proof

Suppose first that Q' is a disc, f analytic on Q" and U = Rf. In
view of the Cauchy-Riemann equations, f is constant on Q*, and
therefore f is constant on Q, and hence U = 0.

For arbitrary domain, we consider the subset

A={z€Q,U=0in a neighborhood of z}. Ais open and closed
in Q, then it is equal to Q. O
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Extension of Harmonic Functions

Remark

Let Q1, and Q2 be two domains such that Q1 N Qy # 0. If Uy, U,
are harmonic functions on €01 respectively on Us and Uy = U on
Q1 N Q. These conditions determine a unique harmonic function
on Q1 U Qo uniquely. Indeed, if Vi is another harmonic function
satisfying the same conditions, then Vo — U, =0 on Q21 N 2. In
view of the previous theorem, Vo = U, on .
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Extension of Harmonic Functions

The function U, is called the harmonic continuation (or extension)
of Uy, into the domain Q.

Proposition

Let Q be an open subset of C and U a harmonic function on
Q\ {a}, bounded above in a neighborhood of a, (a € Q). Then
there exists a constant ¢ > 0 such that U — clIn |z — a| can be
extended on ) to a harmonic function.
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Extension of Harmonic Functions

Proof
We can suppose that a = 0 and we consider R > 0 such that

D(0,R) C Q. We set

ou ou ou ou
= e =3, Ur_ﬁ and Uy = —,

Ux
00
with z = x + iy = rcosf + irsin . We have

Uy

Ur = Uxcost + Uysind and Uy = —rUxsin6 + rU, cos 6.
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Extension of Harmonic Functions

The mapping rU, — iUy = (x +1iy)(Ux —iUy) = zW(z) is
holomorphic on a neighborhood of 0 except at 0. Let
ZW(z) = 3.+ C/z" its Laurent expansion. If C, = al, + ib),, we

have
+00 oo
rU, = Z(a’n cosnf—b,sinnd)r", Uy = — Z(bi, cos nf+al, sin nf)r".

For0<rnp <R,

+oo n__ ,.n
U(re'®)—U(rpe'?) = aj In r—ro—i— Z (al, cos nf—b], sin n@)(%).

n=—00,n#0
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Extension of Harmonic Functions

+oo n
U(roel) — U(ro) = —bpf + Z (al(cos nfl — 1) — bl sin ne)%o.
n=—o00,n#0
Since U(rel?) is 2rperiodic, then b = 0. Thus
+oo n
U(re'?) — U(r)) = C+ajIn LA Z (al, cos nf — bl sin n9)r—,
0 n=—00,n#0 n
+00 n
with C = — Z a:,%O. Then
n=—o00,n#0
+o0
U(re') = kinr + ag + (an cos n — by sinnf)r”,
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Extension of Harmonic Functions

2w

1 .
kinr+ag = 2/ U(e'%)dé. Since U is bounded above on a
s

0
neighborhood of 0, then k > 0 and a, = 0 and b, = 0, for all
n < 0. Thus U — klInr can be extended to a harmonic function on
a neighborhood of 0.
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Extension of Harmonic Functions

Corollary

Let Q be an open subset of C and let a € Q. Then any harmonic
function U on Q \ {a} bounded on any neighborhood of a can be
extended on ) to a harmonic function.

Proof

If a =0, it results from the previous proposition,

—+00
U(re') = kinr + ag + Z (ap cos nf + by, sin nB)r",
n=—00,n#0
Since U is bounded on a neighborhood of 0, then Kk =0, a, =0
and b, =0, for n < 0. Then U can be extended to a harmonic

al ‘alalalal .
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Mean Property for Harmonic Functions

Theorem

Let U: Q — R be a harmonic function. We assume that

Q D D(z, R), then
2T

1 )
U(z0) = o i U(zo + re’) db, Vr <R,

and

1
U(z) = — //D(ZO’R) U(x, y) dxdy.
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Mean Property for Harmonic Functions

1 2 .
The number 2/ U(zo + re'?) db is called the mean of f on
T Jo

the circle of center zy and radius r and the number
1

TR? ) JD(20,R)
radius R and centered at zj.

U(x,y) dxdy is called the mean of f on the disc of
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Mean Property for Harmonic Functions

Proof
Let € > 0 such that D(z, R +¢) C Q. There exists
f € H(D(zy, R+ €)) such that U = Rf on this disc. Since

1 2 .
fz0) = 5- /0 F(zo + rei®) do,

then
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Mean Property for Harmonic Functions

Moreover

R R2 1 (R or .
/ U(zo)r dr = U(zp) = = / / U(zo + re'’) rdr df.
0 2 27 0 0
Thus
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Mean Property for Harmonic Functions

Corollary (Liouville’s Theorem)

Any non negative harmonic function on C is constant.

This is an other proof of Corollary 1.8. This result is generalized by
Picard for harmonic function on R”, with n > 3. We yield a proof
on R2, which is the same in R”, with n > 3.
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Mean Property for Harmonic Functions

Let a,b € C and r = |a — b|. Then by the mean property

TR?U(a) = / U(y)dy < / U(y)dy = m(R + r)>U(b).
D(a,R) D(b,R+r)

Then U(a) < U(b). (It is enough to divide by 7R? and tends R to
+00.) Thus U(a) = U(b).

Corollary

Any non negative harmonic function on C* is constant.

Proof

If U is a non negative harmonic function on C*, then the function
z — U(e?) is a non negative harmonic on C, thus it is constant,
which shows that U is constant.
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Maximum Principle

Theorem (Maximum principle)

Let Q be a bounded domain and U a continuous function on Q

and harmonic on Q. Then sup U = sup U, inf U = inf U and if the
Q o0 Q o0

maximum or the minimum of U is reached in ), then U is
constant.
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Maximum Principle

Proof

In considering —U which is harmonic, it suffices to prove the result

for the maximum. Let M =supU and A= {z € Q; U(z) = M}.
Q

o If A= the result is trivial.

o If A% () and zp € Q such that U(z) = M, then there exists

R > 0 such that D(z, R) C Q.

1 27

U(zo) = U(zo + re'?) do v r <R.

27 Jo
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Maximum Principle

27

Then (U(20) — U(zo + re'?)) df = 0 and
0

79) — U(zo + rel’)) > 0. Thus U(zo) = U(zo + re?) for all
r g R and 6 € [0,27]. Then U is constant on any disc D(z, R).
It results that A=0 or A= Q. a
(We remarked in chapter that any function which verifies the Mean
Property it fulfills the maximum principle.)
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Maximum Principle

Corollary

Let U and V' be two harmonic functions on a bounded domain Q.

We assume that U and V are continuous on Q and Uisa = Viga:
then U=V on Q.
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Maximum Principle

Proof

U — V and V — U are harmonic on Q,
sup(U — V) =inf(U—- V) =0, thus U= V.
a0 o

Corollary (Maximum Principle)

Let Q2 # C be a domain non necessarily bounded of C, and let U
be a harmonic function on ). We assume that for any sequence

&)n of Q which converges to a point of 9§2 or tends to oo,
limp—100U(an) < M, then U < M on Q.
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Maximum Principle

(We say that the sequence (a,), of Q tends to oo, if
lim |ap| = +00.)
n—+00
Proof
Let M" = sup,cq U(z). There exists a sequence (a,), of € such

that lim U(a,) = M. If the sequence (a,), has a limit point b

n—+00
in Q, then there exists a subsequence (a,, )« which converges to b

and lim U(ap,) = M'. By maximum principle, U is constant on
k—4o00

If the sequence (a,), has no limit point in Q, then there exists a
subsequence (ap,, ), which converges to a point in 02 or tends to
oo. Then M' < M. Then M’ < M.
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Maximum Principle

Corollary

Any real harmonic function can not have an isolate zero.

Proof
Let a be a zero of a harmonic function U on a domain 2. We

assume that U # 0 on . For all r > 0 such that D(a,r) C Q, by
mean value property, the function U has a zero on C(a, r).
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Poisson Formula and the Dirichlet Problem

Let Q be a bounded open subset and v a continuous function on
0f2. The Dirichlet problem on € with the given function ¢ on 01,
consists to find a continuous function U: Q — R and harmonic
on € such that U,,, = 1. If there exists a such function, it is
unique.

Poisson Kernel

Let 0 < r < 1. The Poisson kernel is the mapping defined on R by

1—1r2

Pr(0) = 1 —2rcos(f) + r?’
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Poisson Formula and the Dirichlet Problem

Properties
1—r? elt + rel?
1. P(—1t)= =R— —.
ol ) 1—2rcos(d —t)+r? eit — reif

2. P, >0.

3. P(0) = Z rlnlein?.

1 27
4 — : —1.
o /O P,(0) d6 = 1

5. Forall0<dé<m, sup P(0) —0.(
§<0<2m—6 r—1

1—r2 1—r2
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Poisson Formula and the Dirichlet Problem

Theorem (Poisson Formula)

Let f be a holomorphic function on a neighborhood of D, then for

all |z| < 1,
flz) = — /%yeeit T2 e (eit) gt (1)
2w )y eit—z ‘
. 1 [27 .
U(re) = 2/ P, (6 — t)U(elt) dt, with U = Rf.
™ Jo
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Poisson Formula and the Dirichlet Problem

Proof
The formula (1) for z = 0 is the Mean Property.
For z # 0, we apply the Cauchy's formula to the function f, we

find
@) =5 [ o
Y

2ir J,w—z
with y(t) = elt te [0 277]
If |2/| > 1, / / dw = 0. In particular for 2/ = 1, with
—z

z=rel? we have

. 1 [ 1 1 :
f(reg):z/o (G — =)A€ .

T it _ peif eit
r
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Poisson Formula and the Dirichlet Problem

eit _ 619 eit _e?
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Poisson Formula and the Dirichlet Problem

Theorem

Let ¥: R — R be a continuous function, 2w-periodic, then there
exists a function U: D(0, R) — R continuous on D(0, R) and
harmonic on D(0, R) such that U(Re't) = +(t) and for all

0<r<R

1 ™

27
U(re%) = 217r /0 P (0 — t)y(t) dt = Pr(t)y(0 —t) dt.

2t J_. R
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Poisson Formula and the Dirichlet Problem

Proof
Let zg = Relto.

Ulre") = 0(60) = 5 | P4(e)(w(0 1) = 0(60)) ok

By the continuity of v, for € > 0, 3 n > 0 be such that
|oe — Og] < m = |1(a) —YP(6o)| < €. For 0 €]6g — g,&o + g[ and
|t| < Z, then |6 — t — 6| < .

[ Paowe—o-vemn s = [ Piowe -0 - v ¢

! /Z<t|<n Pe(8)(¥(0 = 1) = (%))
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Poisson Formula and the Dirichlet Problem

We have

(t)((0 — t) — (o)) dt| < e

|~

1
Lo
2m t|<?

and

1

N

P (6)(6(0 — £) — b(60) dt| < 2M—— RV

>
<]
=1

For r > ry, with rg close to R and M = sup |[¢(t)].
teR
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Poisson Formula and the Dirichlet Problem

Thus Ve >0, 3n>0and 0 <ry < R such that if [§ — 0| < 2
and r > ry, we have |U(rel?) — ()| < 2. Thus U is continuous
on D(0, R) and U(Re'’) = +(6). U is harmonic on D(0, R)
because U is the real part of a holomorphic function.
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Poisson Formula and the Dirichlet Problem

Remarks

1. The solution of the Dirichlet problem is unique (by the the
maximum principle).

2. If 1 is a locally integrable function on R and 2m-periodic, then
for all R > 0, the mapping U defined on D(0, R) by

. 2w 1 ™
U(rel%) = / Pr(0—t)p(t)dt = — [ P (t)p(0—t) dt,
0 27 —r K
for all r < R is harmonic on D(0, R) and for any point of
continuity 6o of 1, limg_,g, r—r U(rel?) = 1)(6o).
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Topology on The Space of Harmonic Functions

Theorem

Any continuous function on an open subset Q0 of C which verifies
the Mean Property is harmonic.

Proof
Let U: Q — R be a continuous function which verifies the Mean
Property. To show that U is harmonic on €, it suffices to show
that U is harmonic in a neighborhood of each point. Let D be a
disc of center z and of boundary 7 contained in Q. There exists a
continuous function V on D, harmonic on D and equal to U on
the circle % Then V = U on D.

d
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Topology on The Space of Harmonic Functions

Corollary

Let ) be an open subset of C, the space of harmonic functions
equipped with the topology of the uniform convergence on any
compact is a complete space.

Proof

It suffices to show that the space of harmonic functions on an open
subset Q is closed in the space of continuous functions on
equipped with the topology of the uniform convergence on any
compact.
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Topology on The Space of Harmonic Functions

Let (Un)n be a sequence of harmonic functions which converges
uniformly on compact subsets to a function U on Q. U is
continuous and is the Mean Property, thus U is harmonic.

Theorem

Let U be a locally integrable function on a domain Q0 and such that

1
U(a) = —3 /D(a : U(x, y)dxdy

for all a € Q and all r > 0 such that D(a,r) C Q, then U is
harmonic.
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Topology on The Space of Harmonic Functions

Proof

I suffices to show that U is continuous.

Let a € Q and r > 0 such that K = D(a,2r) C Q. We consider a
sequence (a,), which converges to a. We can suppose that (a,),

is in the disc D(a, r). Then by dominated convergence theorem

1 1
lim U(ap) = —5 U(x,y)dxdy = lim — U(x,
n—-Foo (an) mr? D(an,r) b y)ebcy noo 72 /KXD(a,,,r) &
1
= = U(x, y)dxdy = U(a).
mr? D(a,r) ( ) ( )

An other proof of the Corollary 2.4
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Topology on The Space of Harmonic Functions

Let r > 0 such that D(a, r) C Q. We consider the harmonic
function V solution of the Dirichlet problem on the disc D(a, r)
and equal to U on dD(a, r). We intend to show that U =V on
D(a,r).

Let € > 0 small enough and the mapping

U.= U—V—en(Z%2).

X2+I)i/r2n_>r2 U:(x,y) =0 and (X,y;@(0,0) Us(x,y) = 4+00. Then by the

the Maximum principle U. > 0 on D(a, r) \ {0}. In making tends ¢
to 0, we have U > V. In consider —U, we have U = V. Thus U

can be extended to a harmonic function on .
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Topology on The Space of Harmonic Functions

Theorem (Characterization of Harmonic Functions)

Let U: Q — C be a continuous function. The following
properties are equivalent

1. U is harmonic on Q.

2. U verifies the Mean Property.

3. For any disc D(a, R) C Q, and any polynomial P,

sup [(U=P)(z)[= sup |(U=P)(2)l
zeD(a,R) zc %a,R)

4. For any disc D(a,r) C Q,
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Topology on The Space of Harmonic Functions

Proof

1) = 2) results from theorem 3.1.

2) = 1) results from theorem 6.1.

1) = 4) results from the Poisson’s formula 5.2.

4) = 1) results from theorem 5.3, since the solution of the
Dirichlet’s problem is harmonic.

1) = 3) results from the fact that any polynomial is a holomorphic
function, thus the maximum principle yields the result.

It remains to show that 3 = 4.
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Topology on The Space of Harmonic Functions

Let a € Q and R > 0 such that D(a, R) € Q and U the solution of
the Dirichlet problem on D(a, R) and equal to U on Aa, R).

There exist two holomorphic functions g and h on D(a, R) such
that Rg = RU and Rh = SU.

Uis uniformly continuous on the compact D(a, R), then for £ > 0,
there exists s €]0, 1] such that, whenever z, w € D(a, R) and

|z —w| <sR, |U(z) — O(w)| <.

The Taylor series of g and h has a radius of convergence at least
R, then these series converge uniformly on D(a, (1 — s)R). If

400
gla+z)= Z apz", for |z| < R, there exist N € N such that
=0
n oo -
Y anz"| <e, VzeD(0,(1-5s)R).
n=N+1
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Topology on The Space of Harmonic Functions

Then whenever 6 € [0, 27],

‘P(a +Re’) —gla+(1- S)Reie)’ <é

‘%P(a + Rel%) —Rg(a+ (1 — s)Reie)’ <e

and
‘?RP(a + Re'?) — Rg(a+ Reie)‘ < 2e.

Then .
‘?R(P —g)(at Rele)( < 2.
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Topology on The Space of Harmonic Functions

If w € D(a, R), the assumption 3) gives that whenever t € R,

](0 Py t)(W)’ < sup \(U— Pt t)(at Reie)‘
OeR

Then

~ 2 ~ . 2
](u— P+ t)(W)‘ < sup ‘(U— Pit)(at Rele)‘
OeR

It results that

2 N .
(U - P)(w)’ +2tR(U—P)(w) < sup ‘(U P)(a+ Re‘e)‘ +2t sup |R(U
R 9eR

If we tend t to fo0,
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Topology on The Space of Harmonic Functions

we have

‘%(U - P)(w)‘ < sup R(0 — P)(a+ Rew)‘ < 2.

Since U — P is harmonic and ‘?R(P —g)(a+ Reie)‘ < 2¢, then
’%(0 — g)(w)‘ < A4e.
We prove in the same way that ’%(U — g)(W)‘ < 4¢, then

’(0 - g)(w)‘ < 4e, which proves that U= g.
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Rado’s Theorem

Theorem (The Rado’s Theorem)

Let f be a continuous function on an open subset  and
holomorphic on Q \ Z¢, where Zs = {z € Q; f(z) = 0} the zero
set of f. Then f is holomorphic on Q.

Proof

Let P be a polynomial and R > 0 such that D(a, R) C Q. We
claim that (f — P) is harmonic on Q. By theorem 7?7, to prove
that f is harmonic on D(a, R), it suffices to prove that the
maximum of |f — P| on D(a, R) is reached on %{a, R).
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Rado’s Theorem

If |f — P| reaches it maximum at w € D(a, R) and not on C(a, R),
then f — P is not holomorphic in a neighborhood of w, which
proves that w is in the boundary of Zr. There exists a sequence
(wn)n of D(a, R) \ Z¢ which converges to w, where

= {z; f(z) =0}. Then

|(f = P)(wn)| >M=sup |(f—P)(z)|, VneN.
ze Cga,R)

If m= sup |f(z)|, there exists an integer N such that
z€e %a,R)
<|(f - P)(wn)|>” _om
M | (wn)]

Let g be the function defined by g = f(f - P)N, Since
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Harnack’s Inequality

Proposition (Harnack’s Inequality)

Let Q be an open subset of C, a € Q, R > 0 and U a continuous
function on D(a, R), harmonic on D(a,R) and U > 0. Then for all
0<r<Randall 8 €R we have

R— ; R
rU(a) < U(a+rel) < tr

Ryr = R U@ (2)
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Harnack’s Inequality

Proof
By Poisson Formula, we have

o 1 21 R2—r2 »

") = Re') dé.
Ua+ret) 27r/0 R2 — 2rRcos(0 — t) + r? Ua+ Re™)
R—r R% — r2 R+r

< < . Th It i
R+r ~ R2—2rRcos(f —t)+r> — R—r € resuit s
deduced by mean property.
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Harnack’s Inequality

Corollary

Let Q be a domain of C and (U,), an increasing sequence of
harmonic functions. If the limit of (Un(a)), exists and finite at

a € Q, then the sequence (U,), converges uniformly on compact
subsets of {2 to a harmonic function.

Proof

We can assume that U, > 0 (if not we take U, — Up). We set
U(z) = sup,cn Un(z). From the Harnack’s inequality.

R+ |z — 4

R— |z — a
- < < — .
Rtz —a (3 = Un2) < g Un(a)
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Harnack’s Inequality

Thus the sequence (U,), converges on any closed disc centered at
ain Q. (Increasing sequence and bounded above). Let
A={z¢€Q; (Uy(z))n converge}. The set A is non empty because
a € A and A is an open subset from which above.

Let zo € AN and r > 0 such that D(zp, r) C Q. There exists

z1 € A such that z; € D(zo, 5), thus zg € D(z1, 5) and in this disc
the sequence (Up), converges. Thus A = Q.
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Harnack’s Inequality

Let prove that U is continuous. Let zg € 2, by Harnack's
inequality, if z € D(z,R) C Q

R — |z — z| R+ |z — z|

< U < U .
Rz =z V120 < V) < gy — V=)
Then
—2|z — z| 2|z — zo|
e ] < - < S2 A0 ,
2l U < Ul - U < 22 U

BLEL Mongi Harmonic Functions of two Variables



Harnack’s Inequality

Thus U is continuous on Q. (U,), verifies the mean property, by
the monotone convergence theorem, U is harmonic on Q. By
Dini's theorem, the convergence is uniform on any compact of €.
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The Reflection Principle of Harmonic Functions

For harmonic extension (continuation) we prove the Schwarz
reflection principle.

Theorem

Let Q be a domain in C symmetric with respect to the real axis.
Let Qt =QNHT, Q- =QNH™ and | a non empty open interval
of QN R. Suppose that a harmonic function U(x,y) = U(z) on
Q7T and such that forallac I, lim U(z)=0. Then U can be

zeQt—a
continued (extended) harmonically on the domain Q. The

harmonic continuation is defined by the function U which is equal
to U on QF, 0 on the segment |, and —U(Z) on Q™.

BLEL Mongi Harmonic Functions of two Variables



The Reflection Principle of Harmonic Functions

Proof

We must prove that  is harmonic on the domain Q. By
definition, U is harmonic on the domain QT U Q™. To show that U
is also harmonic on the segment /, we consider a disc D(0, R) with
a €l and R is so small that D(0, R) C €. Let V be the solution
of the Dirichlet problem on the disc D(0, R) and equal to U on the
boundary of D(0, R).

" 1 2 . R? —r?
V(z) =V 0y = — [ U(a+Re” v
(2) (a+re”) 27 /0 (atRe )R2 + r2 —2rRcos(f — ¢)

To prove that U is harmonic on the real axis, we will show that
U(z) = V(z) in D(0, R).
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The Reflection Principle of Harmonic Functions

The functions V and U are equal on the semi circle
{ze€C; Sz >0, |z— a] = R}. If z lies on the real axis, the
integral from the upper and lower semi-circles cancel, hence,
V =0 = U on that part of / which lies in D(0, R). By the
Maximum and Minimum Principles, V(z) = U(z) in the upper half
of D(0, R).
Suppose first that z is in the upper half of D(0, R). On the
boundary arc 3z > 0, |z — a| = R, the function V takes the
boundary values U(a + Re'’). By the same argument V(z) = U(z)
in the lower half of D(0, R). Then V is equal to U on D(0, R).

O
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