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Definition

A mapping U : Ω −→ R defined on an open subset Ω of C twice
continuously differentiable (U is of class C2) is called harmonic if

∆U = 0, known as Laplace equation, with ∆U =
∂2U

∂x2
+
∂2U

∂y2
. (∆

is called the Laplace operator).
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Examples

1. U(x , y) = x2 − y2 is harmonic.

2. If f is holomorphic on Ω, then <f and =f are harmonic on Ω.

We intend to show that in general any real harmonic function is
locally the real part of a holomorphic function.

Theorem

If Ω is a simply connected domain of C and U : Ω −→ R harmonic
on Ω, there exists a holomorphic function f on Ω such that
U = <f on Ω.
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Proof

The mapping g(z) =
∂U

∂x
(x , y)− i

∂U

∂y
(x , y) is holomorphic on Ω,

with z = x + iy . Since Ω is simply connected, g has a primitive in
Ω. Let G be any primitive of g . G is holomorphic and

g(z) =
∂U

∂x
(x , y)− i

∂U

∂y
(x , y) =

∂<G
∂x

(x , y) + i
∂=G
∂x

(x , y)

= −i∂<G
∂y

(x , y) +
∂=G
∂y

(x , y).

Thus 
∂U

∂x
=
∂<G
∂x

∂U

∂y
=
∂<G
∂y

and U = <G + C ; C ∈ R.
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Corollary

Any harmonic function is locally the real part of a holomorphic
function.

Corollary

Any harmonic function is infinitely continuously differentiable.

Corollary

If U : D(0,R) −→ R is harmonic, then for all 0 ≤ r < R

U(re iθ) =
+∞∑
−∞

anr
|n|e inθ,

and the convergence is uniform on the disc D(0, r) and

an =
1

2πr |n|

∫ 2π

0
U(re iθ)e−inθ dθ.
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Proof
Let f be a holomorphic function such that U = <f ,

f (z) =
+∞∑
n=0

bnz
n, then

U(re iθ) = <b0 +
1

2

+∞∑
n=1

bnr
ne inθ +

1

2

+∞∑
n=1

bnr
ne−inθ.

We set a0 = <b0 and for n ≥ 1, an = 1
2bn and for n ≤ −1,

an = 1
2b−n. We remark that

anr
|n| =

1

2π

∫ 2π

0
U(re iθ)e−inθ dθ.
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We can prove the same result using Fourier series of functions The
mapping θ 7−→ U(re iθ) is infinitely continuously differentiable

(C∞) and 2π-periodic, thus U(re iθ) =
+∞∑

n=−∞
Cne

inθ, for all r < R.

The Fourier’s coefficients Cn are given by

Cn =
1

2π

∫ 2π

0
U(re iθ)e−inθ dθ = anr

n.
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Corollary (Liouville’s Theorem)

Any bounded harmonic function on C is constant.

Proof
Let U be a harmonic function bounded by M on C. For all r > 0,
we have

U(re iθ) =
+∞∑
−∞

anr
|n|e inθ.

anr
|n| =

1

2π

∫ 2π

0
U(re iθ)e−inθ dθ.

Then that |anr |n|| ≤ M and an = 0 if n 6= 0.
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Corollary

Any harmonic function on C, bounded above or bounded below is
constant.

Proof
If we replace U by −U, we can suppose that U is bounded above.
Since C is a simply connected domain, there exists a holomorphic
function f on C such that U = <f . Without loss of generality, we
can suppose that U is non positive. Thus |ef | = e<f = eU ≤ 1. By
Liouville’s theorem ef is constant, then f and U are constant.
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Theorem

Let U be a harmonic function on a domain Ω. If Ω′ 6= ∅ is a
subdomain of Ω and U = 0 on Ω′, then U = 0 on Ω.

Proof
Suppose first that Ω′ is a disc, f analytic on Ω′ and U = <f . In
view of the Cauchy-Riemann equations, f is constant on Ω∗, and
therefore f is constant on Ω, and hence U = 0.
For arbitrary domain, we consider the subset
A = {z ∈ Ω,U = 0 in a neighborhood of z}. A is open and closed
in Ω, then it is equal to Ω.
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Remark

Let Ω1, and Ω2 be two domains such that Ω1 ∩ Ω2 6= ∅. If U1,U2

are harmonic functions on Ω1 respectively on U2 and U1 = U2 on
Ω1 ∩ Ω2. These conditions determine a unique harmonic function
on Ω1 ∪ Ω2 uniquely. Indeed, if V2 is another harmonic function
satisfying the same conditions, then V2 − U2 = 0 on Ω1 ∩ Ω2. In
view of the previous theorem, V2 = U2 on Ω2.
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The function U2 is called the harmonic continuation (or extension)
of U1, into the domain Ω2.

Proposition

Let Ω be an open subset of C and U a harmonic function on
Ω \ {a}, bounded above in a neighborhood of a, (a ∈ Ω). Then
there exists a constant c ≥ 0 such that U − c ln |z − a| can be
extended on Ω to a harmonic function.
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Proof
We can suppose that a = 0 and we consider R > 0 such that
D(0,R) ⊂ Ω. We set

Ux =
∂U

∂x
, Uy =

∂U

∂y
, Ur =

∂U

∂r
and Uθ =

∂U

∂θ
,

with z = x + iy = r cos θ + ir sin θ. We have

Ur = Ux cos θ + Uy sin θ and Uθ = −rUx sin θ + rUy cos θ.
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The mapping rUr − iUθ = (x + iy)(Ux − iUy ) = zW (z) is
holomorphic on a neighborhood of 0 except at 0. Let
zW (z) =

∑+∞
−∞ C ′nz

n its Laurent expansion. If C ′n = a′n + ib′n, we
have

rUr =
+∞∑
−∞

(a′n cos nθ−b′n sin nθ)rn, Uθ = −
+∞∑
−∞

(b′n cos nθ+a′n sin nθ)rn.

For 0 < r0 < R,

U(re iθ)−U(r0e
iθ) = a′0 ln

r

r0
+

+∞∑
n=−∞,n 6=0

(a′n cos nθ−b′n sin nθ)(
rn − rn0

n
).
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U(r0e
iθ)−U(r0) = −b′0θ+

+∞∑
n=−∞,n 6=0

(a′n(cos nθ−1)−b′n sin nθ)
rn0
n
.

Since U(re iθ) is 2πperiodic, then b′0 = 0. Thus

U(re iθ)−U(r0) = C + a′0 ln
r

r0
+

+∞∑
n=−∞,n 6=0

(a′n cos nθ−b′n sin nθ)
rn

n
,

with C = −
+∞∑

n=−∞,n 6=0

a′n
rn0
n

. Then

U(re iθ) = k ln r + a0 +
+∞∑

n=−∞,n 6=0

(an cos nθ − bn sin nθ)rn,
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k ln r + a0 =
1

2π

∫ 2π

0
U(e iθ)dθ. Since U is bounded above on a

neighborhood of 0, then k ≥ 0 and an = 0 and bn = 0, for all
n < 0. Thus U − k ln r can be extended to a harmonic function on
a neighborhood of 0.
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Corollary

Let Ω be an open subset of C and let a ∈ Ω. Then any harmonic
function U on Ω \ {a} bounded on any neighborhood of a can be
extended on Ω to a harmonic function.

Proof
If a = 0, it results from the previous proposition,

U(re iθ) = k ln r + a0 +
+∞∑

n=−∞,n 6=0

(an cos nθ + bn sin nθ)rn,

Since U is bounded on a neighborhood of 0, then k = 0, an = 0
and bn = 0, for n < 0. Then U can be extended to a harmonic
function on Ω.
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Theorem

Let U : Ω −→ R be a harmonic function. We assume that
Ω ⊃ D(z0,R), then

U(z0) =
1

2π

∫ 2π

0
U(z0 + re iθ) dθ, ∀r < R,

and

U(z0) =
1

πR2

∫ ∫
D(z0,R)

U(x , y) dxdy .
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The number
1

2π

∫ 2π

0
U(z0 + re iθ) dθ is called the mean of f on

the circle of center z0 and radius r and the number
1

πR2

∫ ∫
D(z0,R)

U(x , y) dxdy is called the mean of f on the disc of

radius R and centered at z0.
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Proof
Let ε > 0 such that D(z0,R + ε) ⊂ Ω. There exists
f ∈ H(D(z0,R + ε)) such that U = <f on this disc. Since

f (z0) =
1

2π

∫ 2π

0
f (z0 + re iθ) dθ,

then

U(z0) =
1

2π

∫ 2π

0
U(z0 + re iθ) dθ.
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Moreover∫ R

0
U(z0)r dr = U(z0)

R2

2
=

1

2π

∫ R

0

∫ 2π

0
U(z0 + re iθ) rdr dθ.

Thus

U(z0) =
1

πR2

∫ ∫
D(z0,R)

U(x , y) dx dy .
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Corollary (Liouville’s Theorem)

Any non negative harmonic function on C is constant.

This is an other proof of Corollary 1.8. This result is generalized by
Picard for harmonic function on Rn, with n ≥ 3. We yield a proof
on R2, which is the same in Rn, with n ≥ 3.
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Let a, b ∈ C and r = |a− b|. Then by the mean property

πR2U(a) =

∫
D(a,R)

U(y)dy ≤
∫
D(b,R+r)

U(y)dy = π(R + r)2U(b).

Then U(a) ≤ U(b). (It is enough to divide by πR2 and tends R to
+∞.) Thus U(a) = U(b).

Corollary

Any non negative harmonic function on C∗ is constant.

Proof
If U is a non negative harmonic function on C∗, then the function
z 7−→ U(ez) is a non negative harmonic on C, thus it is constant,
which shows that U is constant.
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Theorem (Maximum principle)

Let Ω be a bounded domain and U a continuous function on Ω
and harmonic on Ω. Then sup

Ω

U = sup
∂Ω

U, inf
Ω

U = inf
∂Ω

U and if the

maximum or the minimum of U is reached in Ω, then U is
constant.
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Proof
In considering −U which is harmonic, it suffices to prove the result
for the maximum. Let M = sup

Ω

U and A = {z ∈ Ω; U(z) = M}.

• If A = ∅ the result is trivial.
• If A 6= ∅ and z0 ∈ Ω such that U(z0) = M, then there exists
R > 0 such that D(z0,R) ⊂ Ω.

U(z0) =
1

2π

∫ 2π

0
U(z0 + re iθ) dθ ∀ r ≤ R.
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Then

∫ 2π

0

(
U(z0)− U(z0 + re iθ)

)
dθ = 0 and(

U(z0)− U(z0 + re iθ)
)
≥ 0. Thus U(z0) = U(z0 + re iθ) for all

r ≤ R and θ ∈ [0, 2π]. Then U is constant on any disc D(z0,R).
It results that A = ∅ or A = Ω.
(We remarked in chapter that any function which verifies the Mean
Property it fulfills the maximum principle.)
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Corollary

Let U and V be two harmonic functions on a bounded domain Ω.
We assume that U and V are continuous on Ω and U�∂Ω

= V�∂Ω
,

then U ≡ V on Ω.
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Proof
U − V and V − U are harmonic on Ω,
sup
∂Ω

(U − V ) = inf
∂Ω

(U − V ) = 0, thus U ≡ V .

Corollary (Maximum Principle)

Let Ω 6= C be a domain non necessarily bounded of C, and let U
be a harmonic function on Ω. We assume that for any sequence
(an)n of Ω which converges to a point of ∂Ω or tends to ∞,
limn→+∞U(an) ≤ M, then U ≤ M on Ω.
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(We say that the sequence (an)n of Ω tends to ∞, if
lim

n→+∞
|an| = +∞.)

Proof
Let M ′ = supz∈Ω U(z). There exists a sequence (an)n of Ω such
that lim

n→+∞
U(an) = M ′. If the sequence (an)n has a limit point b

in Ω, then there exists a subsequence (ank )k which converges to b
and lim

k→+∞
U(ank ) = M ′. By maximum principle, U is constant on

Ω.
If the sequence (an)n has no limit point in Ω, then there exists a
subsequence (ank )k which converges to a point in ∂Ω or tends to
∞. Then M ′ ≤ M. Then M ′ ≤ M.
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Corollary

Any real harmonic function can not have an isolate zero.

Proof
Let a be a zero of a harmonic function U on a domain Ω. We
assume that U 6≡ 0 on Ω. For all r > 0 such that D(a, r) ⊂ Ω, by
mean value property, the function U has a zero on C(a, r).
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Let Ω be a bounded open subset and ψ a continuous function on
∂Ω. The Dirichlet problem on Ω with the given function ψ on ∂Ω,
consists to find a continuous function U : Ω −→ R and harmonic
on Ω such that U�∂Ω

= ψ. If there exists a such function, it is
unique.
Poisson Kernel
Let 0 ≤ r < 1. The Poisson kernel is the mapping defined on R by

Pr (θ) =
1− r2

1− 2r cos(θ) + r2
.
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Properties

1. Pr (θ − t) =
1− r2

1− 2r cos(θ − t) + r2
= <e

it + re iθ

e it − re iθ
.

2. Pr ≥ 0.

3. Pr (θ) =
∞∑
−∞

r |n|e inθ.

4.
1

2π

∫ 2π

0
Pr (θ) dθ = 1.

5. For all 0 < δ < π, sup
δ≤θ≤2π−δ

Pr (θ) −→
r→1

0. (

Pr (θ) =
1− r2

|1− re iθ|2
≤ 1− r2

sin2 δ
−→
r→1

0.)
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Theorem (Poisson Formula)

Let f be a holomorphic function on a neighborhood of D, then for
all |z | < 1,

f (z) =
1

2π

∫ 2π

0
<e

it + z

e it − z
f (e it) dt. (1)

U(re iθ) =
1

2π

∫ 2π

0
Pr (θ − t)U(e it) dt, with U = <f .
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Proof
The formula (1) for z = 0 is the Mean Property.
For z 6= 0, we apply the Cauchy’s formula to the function f , we
find

f (z) =
1

2iπ

∫
γ

f (w)

w − z
dw ,

with γ(t) = e it , t ∈ [0, 2π].

If |z ′| > 1,
1

2iπ

∫
γ

f (w)

w − z ′
dw = 0. In particular for z ′ = 1

z̄ , with

z = re iθ, we have

f (re iθ) =
1

2π

∫ 2π

0
(

1

e it − re iθ
− 1

e it − eiθ

r

)f (e it) dt.
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1

e it − re iθ
− 1

e it − eiθ

r

= Pr (θ − t).
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Theorem

Let ψ : R −→ R be a continuous function, 2π-periodic, then there
exists a function U : D(0,R) −→ R continuous on D(0,R) and
harmonic on D(0,R) such that U(Re it) = ψ(t) and for all
0 ≤ r < R

U(re iθ) =
1

2π

∫ 2π

0
P r

R
(θ − t)ψ(t) dt =

1

2π

∫ π

−π
P r

R
(t)ψ(θ − t) dt.
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Proof
Let z0 = Re iθ0 .

U(re iθ)− ψ(θ0) =
1

2π

∫ π

−π
P r

R
(t)(ψ(θ − t)− ψ(θ0)) dt.

By the continuity of ψ, for ε > 0, ∃ η > 0 be such that
|α− θ0| < η ⇒ |ψ(α)− ψ(θ0)| ≤ ε. For θ ∈]θ0 − η

2 , θ0 + η
2 [ and

|t| < η
2 , then |θ − t − θ0| < η.

∫ π

−π
P r

R
(t)(ψ(θ − t)− ψ(θ0)) dt =

∫
|t|< η

2

P r
R

(t)(ψ(θ − t)− ψ(θ0)) dt

+

∫
η
2
<|t|<π

P r
R

(t)(ψ(θ − t)− ψ(θ0)) dt.
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We have

1

2π
|
∫
|t|< η

2

P r
R

(t)(ψ(θ − t)− ψ(θ0)) dt| ≤ ε

and

1

2π
|
∫
η
2
<|t|<π

P r
R

(t)(ψ(θ − t)− ψ(θ0)) dt| ≤ 2M
1− ( r

R )2

sin2 η
2

≤ ε.

For r ≥ r0, with r0 close to R and M = sup
t∈R
|ψ(t)|.
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Thus ∀ ε > 0, ∃ η > 0 and 0 < r0 ≤ R such that if |θ − θ0| < η
2

and r ≥ r0, we have |U(re iθ)− ψ(θ0)| ≤ 2ε. Thus U is continuous
on D(0,R) and U(Re iθ) = ψ(θ). U is harmonic on D(0,R)
because U is the real part of a holomorphic function.
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Remarks

1. The solution of the Dirichlet problem is unique (by the the
maximum principle).

2. If ψ is a locally integrable function on R and 2π-periodic, then
for all R > 0, the mapping U defined on D(0,R) by

U(re iθ) =
1

2π

∫ 2π

0
P r

R
(θ−t)ψ(t) dt =

1

2π

∫ π

−π
P r

R
(t)ψ(θ−t) dt,

for all r < R is harmonic on D(0,R) and for any point of
continuity θ0 of ψ, limθ→θ0,r→R U(re iθ) = ψ(θ0).
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Theorem

Any continuous function on an open subset Ω of C which verifies
the Mean Property is harmonic.

Proof
Let U : Ω −→ R be a continuous function which verifies the Mean
Property. To show that U is harmonic on Ω, it suffices to show
that U is harmonic in a neighborhood of each point. Let D be a
disc of center z and of boundary C contained in Ω. There exists a
continuous function V on D, harmonic on D and equal to U on
the circle C. Then V = U on D.
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Corollary

Let Ω be an open subset of C, the space of harmonic functions
equipped with the topology of the uniform convergence on any
compact is a complete space.

Proof
It suffices to show that the space of harmonic functions on an open
subset Ω is closed in the space of continuous functions on Ω
equipped with the topology of the uniform convergence on any
compact.
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Let (Un)n be a sequence of harmonic functions which converges
uniformly on compact subsets to a function U on Ω. U is
continuous and is the Mean Property, thus U is harmonic.

Theorem

Let U be a locally integrable function on a domain Ω and such that

U(a) =
1

πr2

∫
D(a,r)

U(x , y)dxdy

for all a ∈ Ω and all r > 0 such that D(a, r) ⊂ Ω, then U is
harmonic.
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Proof
Il suffices to show that U is continuous.
Let a ∈ Ω and r > 0 such that K = D(a, 2r) ⊂ Ω. We consider a
sequence (an)n which converges to a. We can suppose that (an)n
is in the disc D(a, r). Then by dominated convergence theorem

lim
n→+∞

U(an) =
1

πr2

∫
D(an,r)

U(x , y)dxdy = lim
n→+∞

1

πr2

∫
K
χD(an,r)U(x , y)dxdy

=
1

πr2

∫
D(a,r)

U(x , y)dxdy = U(a).

An other proof of the Corollary 2.4
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Let r > 0 such that D(a, r) ⊂ Ω. We consider the harmonic
function V solution of the Dirichlet problem on the disc D(a, r)
and equal to U on ∂D(a, r). We intend to show that U = V on
D(a, r).
Let ε > 0 small enough and the mapping

Uε = U − V − ε ln( x
2+y2

r2 ).
lim

x2+y2→r2
Uε(x , y) = 0 and lim

(x ,y)→(0,0)
Uε(x , y) = +∞. Then by the

the Maximum principle Uε ≥ 0 on D(a, r) \ {0}. In making tends ε
to 0, we have U ≥ V . In consider −U, we have U = V . Thus U
can be extended to a harmonic function on Ω.
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Theorem (Characterization of Harmonic Functions)

Let U : Ω −→ C be a continuous function. The following
properties are equivalent

1. U is harmonic on Ω.

2. U verifies the Mean Property.

3. For any disc D(a,R) ⊂ Ω, and any polynomial P,

sup
z∈D(a,R)

|(U − P)(z)| = sup

z∈C(a,R)

|(U − P)(z)|.

4. For any disc D(a, r) ⊂ Ω,

U(re iθ) =
1

2π

∫ 2π

0
P r

R
(θ−t)U(t) dt =

1

2π

∫ π

−π
P r

R
(t)U(θ−t) dt,

for all 0 ≤ r < R.
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Proof
1)⇒ 2) results from theorem 3.1.
2)⇒ 1) results from theorem 6.1.
1)⇒ 4) results from the Poisson’s formula 5.2.
4)⇒ 1) results from theorem 5.3, since the solution of the
Dirichlet’s problem is harmonic.
1)⇒ 3) results from the fact that any polynomial is a holomorphic
function, thus the maximum principle yields the result.
It remains to show that 3⇒ 4.
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Let a ∈ Ω and R > 0 such that D(a,R) ⊂ Ω and Ũ the solution of
the Dirichlet problem on D(a,R) and equal to U on C(a,R).
There exist two holomorphic functions g and h on D(a,R) such
that <g = <Ũ and <h = =Ũ.
Ũ is uniformly continuous on the compact D(a,R), then for ε > 0,
there exists s ∈]0, 1[ such that, whenever z ,w ∈ D(a,R) and
|z − w | ≤ sR, |Ũ(z)− Ũ(w)| ≤ ε.
The Taylor series of g and h has a radius of convergence at least
R, then these series converge uniformly on D(a, (1− s)R). If

g(a + z) =
+∞∑
n=0

anz
n, for |z | < R, there exist N ∈ N such that∣∣∣∣∣

+∞∑
n=N+1

anz
n

∣∣∣∣∣ ≤ ε, ∀z ∈ D(0, (1− s)R).

We set P(z) =
N∑

n=0

an(z − a)n(1− s)n.
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Then whenever θ ∈ [0, 2π],∣∣∣P(a + Re iθ)− g(a + (1− s)Re iθ)
∣∣∣ ≤ ε,

∣∣∣<P(a + Re iθ)−<g(a + (1− s)Re iθ)
∣∣∣ ≤ ε

and ∣∣∣<P(a + Re iθ)−<g(a + Re iθ)
∣∣∣ ≤ 2ε.

Then ∣∣∣<(P − g)(a + Re iθ)
∣∣∣ ≤ 2ε.
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If w ∈ D(a,R), the assumption 3) gives that whenever t ∈ R,∣∣∣(Ũ − P + t)(w)
∣∣∣ ≤ sup

θ∈R

∣∣∣(Ũ − P + t)(a + Re iθ)
∣∣∣

Then ∣∣∣(Ũ − P + t)(w)
∣∣∣2 ≤ sup

θ∈R

∣∣∣(Ũ − P + t)(a + Re iθ)
∣∣∣2

It results that

∣∣∣(Ũ − P)(w)
∣∣∣2+2t<(Ũ−P)(w) ≤ sup

θ∈R

∣∣∣(Ũ − P)(a + Re iθ)
∣∣∣2+2t sup

θ∈R

∣∣∣<(Ũ − P)(a + Re iθ)
∣∣∣ .

If we tend t to ±∞,
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we have ∣∣∣<(Ũ − P)(w)
∣∣∣ ≤ sup

θ∈R

∣∣∣<(Ũ − P)(a + Re iθ)
∣∣∣ ≤ 2ε.

Since Ũ − P is harmonic and
∣∣∣<(P − g)(a + Re iθ)

∣∣∣ ≤ 2ε, then∣∣∣<(Ũ − g)(w)
∣∣∣ ≤ 4ε.

We prove in the same way that
∣∣∣=(Ũ − g)(w)

∣∣∣ ≤ 4ε, then∣∣∣(Ũ − g)(w)
∣∣∣ ≤ 4ε, which proves that Ũ = g .

BLEL Mongi Harmonic Functions of two Variables



Generalities on Harmonic Functions
Extension of Harmonic Functions

Mean Property for Harmonic Functions
Maximum Principle

Poisson Formula and the Dirichlet Problem
Topology on The Space of Harmonic Functions

Rado’s Theorem
Harnack’s Inequality

The Reflection Principle of Harmonic Functions

Theorem (The Rado’s Theorem)

Let f be a continuous function on an open subset Ω and
holomorphic on Ω \ Zf , where Zf = {z ∈ Ω; f (z) = 0} the zero
set of f . Then f is holomorphic on Ω.

Proof
Let P be a polynomial and R > 0 such that D(a,R) ⊂ Ω. We
claim that (f − P) is harmonic on Ω. By theorem ??, to prove
that f is harmonic on D(a,R), it suffices to prove that the
maximum of |f − P| on D(a,R) is reached on C(a,R).
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If |f − P| reaches it maximum at w ∈ D(a,R) and not on C(a,R),
then f − P is not holomorphic in a neighborhood of w , which
proves that w is in the boundary of Zf . There exists a sequence
(wn)n of D(a,R) \ Zf which converges to w , where
Zf = {z ; f (z) = 0}. Then

|(f − P)(wn)| > M = sup

z∈C(a,R)

|(f − P)(z)| , ∀n ∈ N.

If m = sup

z∈C(a,R)

|f (z)|, there exists an integer N such that

(
|(f − P)(wn)|

M

)N

>
m

|f (wn)|
Let g be the function defined by g = f (f − P)N . Since
|g(wn)| > sup

z∈C(a,R)

|g(z)|, then g reaches its maximum on

D(a,R) at b ∈ D(a,R) such that g can not be holomorphic in a
neighborhood of b. Then b ∈ Zf . But g(b) = 0 because f (b) = 0,
which is in contradiction of |g(b)| ≥ |g(wn)| > 0.
It results that f is harmonic on D(a,R), then it is C∞. The

function
∂f

∂z̄
is continuous and vanishing out Zf and in the interior

of Zf , then it vanishes in a dense subset. It results that
∂f

∂z̄
vanishes everywhere, which proves that f is holomorphic on
D(a,R).
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Proposition (Harnack’s Inequality)

Let Ω be an open subset of C, a ∈ Ω, R > 0 and U a continuous
function on D(a,R), harmonic on D(a,R) and U ≥ 0. Then for all
0 ≤ r < R and all θ ∈ R we have

R − r

R + r
U(a) ≤ U(a + re iθ) ≤ R + r

R − r
U(a). (2)
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Proof
By Poisson Formula, we have

U(a + re it) =
1

2π

∫ 2π

0

R2 − r2

R2 − 2rR cos(θ − t) + r2
U(a + Re iθ) dθ.

R − r

R + r
≤ R2 − r2

R2 − 2rR cos(θ − t) + r2
≤ R + r

R − r
. The result is

deduced by mean property.
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Corollary

Let Ω be a domain of C and (Un)n an increasing sequence of
harmonic functions. If the limit of (Un(a))n exists and finite at
a ∈ Ω, then the sequence (Un)n converges uniformly on compact
subsets of Ω to a harmonic function.

Proof
We can assume that Un ≥ 0 (if not we take Un − U0). We set
U(z) = supn∈N Un(z). From the Harnack’s inequality.

R − |z − a|
R + |z − a|

Un(a) ≤ Un(z) ≤ R + |z − a|
R − |z − a|

Un(a).
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Thus the sequence (Un)n converges on any closed disc centered at
a in Ω. (Increasing sequence and bounded above). Let
A = {z ∈ Ω; (Un(z))n converge}. The set A is non empty because
a ∈ A and A is an open subset from which above.
Let z0 ∈ A ∩ Ω and r > 0 such that D(z0, r) ⊂ Ω. There exists
z1 ∈ A such that z1 ∈ D(z0,

r
2 ), thus z0 ∈ D(z1,

r
2 ) and in this disc

the sequence (Un)n converges. Thus A = Ω.
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Let prove that U is continuous. Let z0 ∈ Ω, by Harnack’s
inequality, if z ∈ D(z0,R) ⊂ Ω

R − |z − z0|
R + |z − z0|

U(z0) ≤ U(z) ≤ R + |z − z0|
R − |z − z0|

U(z0).

Then

−2|z − z0|
R + |z − z0|

U(z0) ≤ U(z)− U(z0) ≤ 2|z − z0|
R − |z − z0|

U(z0).
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Thus U is continuous on Ω. (Un)n verifies the mean property, by
the monotone convergence theorem, U is harmonic on Ω. By
Dini’s theorem, the convergence is uniform on any compact of Ω.
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For harmonic extension (continuation) we prove the Schwarz
reflection principle.

Theorem

Let Ω be a domain in C symmetric with respect to the real axis.
Let Ω+ = Ω∩H+, Ω− = Ω∩H− and I a non empty open interval
of Ω ∩ R. Suppose that a harmonic function U(x , y) = U(z) on
Ω+ and such that for all a ∈ I , lim

z∈Ω+−→a
U(z) = 0. Then U can be

continued (extended) harmonically on the domain Ω. The
harmonic continuation is defined by the function Ũ which is equal
to U on Ω+, 0 on the segment I , and −U(z̄) on Ω−.
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Proof
We must prove that Ũ is harmonic on the domain Ω. By
definition, Ũ is harmonic on the domain Ω+ ∪Ω−. To show that Ũ
is also harmonic on the segment I , we consider a disc D(0,R) with
a ∈ I and R is so small that D(0,R) ⊂ Ω. Let V be the solution
of the Dirichlet problem on the disc D(0,R) and equal to Ũ on the
boundary of D(0,R).

V (z) = V (a+re iθ) =
1

2π

∫ 2π

0
Ũ(a+Re iϕ)

R2 − r2

R2 + r2 − 2rR cos(θ − ϕ)
dθ

To prove that Ũ is harmonic on the real axis, we will show that
Ũ(z) = V (z) in D(0,R).
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The functions V and Ũ are equal on the semi circle
{z ∈ C; =z > 0, |z − a| = R}. If z lies on the real axis, the
integral from the upper and lower semi-circles cancel, hence,
V = 0 = Ũ on that part of I which lies in D(0,R). By the
Maximum and Minimum Principles, V (z) = Ũ(z) in the upper half
of D(0,R).
Suppose first that z is in the upper half of D(0,R). On the
boundary arc =z > 0, |z − a| = R, the function V takes the
boundary values Ũ(a + Re iθ). By the same argument V (z) = Ũ(z)
in the lower half of D(0,R). Then V is equal to Ũ on D(0,R).
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