Diagonalization of Matrix

Mongi BLEL
King Saud University
August 29, 2018

Table of contents

(1) Eigenvalue and Eigenvector
(2) Diagonalization

Eigenvalue and Eigenvector

Definition

If $A \in M_{n}(\mathbb{R})$ and $\lambda \in \mathbb{R}$.
We say that λ is an eigenvalue of the matrix A if there is $X \in \mathbb{R}^{n} \backslash\{0\}$ such that

$$
A X=\lambda X
$$

In this case, we say that X is an eigenvector of the matrix A with respect to the eigenvalue λ.

Theorem

If $A \in M_{n}(\mathbb{R})$ and $\lambda \in \mathbb{R}$.
λ is an eigenvalue the matrix A if and only if $|\lambda I-A|=0$.

Definition

If $A \in M_{n}(\mathbb{R})$, the polynomial

$$
q_{A}(\lambda)=|\lambda I-A|
$$

is called the characteristic equation of the matrix A.

Example

Find the eigenvalues of the following matrix
$A=\left(\begin{array}{ccc}1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1\end{array}\right), A=\left(\begin{array}{lll}5 & 4 & 2 \\ 4 & 5 & 2 \\ 2 & 2 & 2\end{array}\right), A=\left(\begin{array}{ccc}-1 & 4 & -2 \\ -3 & 4 & 0 \\ -3 & 1 & 3\end{array}\right)$.

Theorem

If $A \in M_{n}(\mathbb{R})$ and v_{1}, \ldots, v_{m} are eigenvectors for different eigenvalues $\lambda_{1}, \ldots, \lambda_{m}$, then v_{1}, \ldots, v_{m} are linearly independent.

Proof

We do the proof by induction.
The result is true for $m=1$. We assume the result for m and let v_{1}, \ldots, v_{m+1} eigenvectors for different eigenvalues $\lambda_{1}, \ldots, \lambda_{m+1}$.

If

$$
a_{1} v_{1}+\ldots a_{m} v_{m}+a_{m+1} v_{m+1}=0
$$

then

$$
a_{1} \lambda_{1} v_{1}+\ldots a_{m} \lambda_{m} v_{m}+a_{m+1} \lambda_{m+1} v_{m+1}=0
$$

Also we have

$$
a_{1} \lambda_{m+1} v_{1}+\ldots a_{m} \lambda_{m+1} v_{m}+a_{m+1} \lambda_{m+1} v_{m+1}=0
$$

Then

$$
a_{1}\left(\lambda_{1}-\lambda_{m+1}\right) v_{1}+\ldots+a_{m}\left(\lambda_{m}-\lambda_{m+1}\right) v_{m}=0
$$

Since $\left(\lambda_{j}-\lambda_{m+1} \neq 0\right.$ for all $j=1, \ldots m$, then $a_{1}=\ldots=a_{m}=0$ and so $a_{m+1}=0$.

Definition

We say that a matrix $A \in M_{n}(\mathbb{R})$ is diagonalizable if there exists an invertible matrix $P \in M_{n}(\mathbb{R})$ such that the matrix $P^{-1} A P$ is diagonal.

Remark

If X_{1}, \ldots, X_{n} are the columns of the matrix P, then the columns of the matrix $A P$ are: $A X_{1}, \ldots, A X_{n}$.
Moreover if

$$
D=\left(\begin{array}{ccccc}
\lambda_{1} & 0 & \ldots & \ldots & 0 \\
0 & \lambda_{2} & 0 & \ldots & \vdots \\
\vdots & 0 & \ddots & \vdots & \vdots \\
\vdots & \vdots & \ldots & \ddots & 0 \\
0 & \ldots & \ldots & 0 & \lambda_{n}
\end{array}\right)
$$

then the columns of the matrix $P D$ are: $\lambda_{1} X_{1}, \ldots, \lambda_{n} X_{n}$.
Then $P^{-1} A P=D \Longleftrightarrow P D=A P$ and the columns of the matrix P form a basis of \mathbb{R}^{n} and eigenvectors of the matrix A.

Theorem
The matrix $A \in M_{n}(\mathbb{R})$ is diagonalizable if and only if it has n eigenvectors linearly independent, then these vectors form a basis of the vector space \mathbb{R}^{n}.

Examples

Prove that the following matrices are diagonalizable and find an invertible matrix $P \in M_{n}(\mathbb{R})$ such that the matrix $P^{-1} A P$ is diagonal and find A^{15}.

$$
A=\left(\begin{array}{ccc}
1 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 1
\end{array}\right), A=\left(\begin{array}{lll}
5 & 4 & 2 \\
4 & 5 & 2 \\
2 & 2 & 2
\end{array}\right), A=\left(\begin{array}{ccc}
-1 & 4 & -2 \\
-3 & 4 & 0 \\
-3 & 1 & 3
\end{array}\right)
$$

Definition

Let $A \in M_{n}(\mathbb{R})$ and λ an eigenvalue of the matrix A. We define

$$
E_{\lambda}=\left\{X \in \mathbb{R}^{n} ; A X=\lambda X\right\}
$$

This space is called called the eigenspace associated to the eigenvalue λ.

Remark

If λ is an eigenvalue of the matrix $A \in M_{n}(\mathbb{R})$, then $E_{\lambda}=\left\{X \in \mathbb{R}^{n} ; A X=\lambda X\right\}$ is vector sub-space of \mathbb{R}^{n}. Its dimension is called the the geometric multiplicity of λ.

Definition

If $A \in M_{n}(\mathbb{R})$ and the characteristic function

$$
q_{A}(\lambda)=\left(\lambda-\lambda_{1}\right)^{m} Q(\lambda)
$$

such that $Q\left(\lambda_{1}\right) \neq 0$ we say that m is the algebraic multiplicity of the eigenvalue λ_{1}.

Theorem

If $A \in M_{n}(\mathbb{R})$ and the characteristic function

$$
q_{A}(\lambda)=C\left(\lambda-\lambda_{1}\right)^{m_{1}} \ldots\left(\lambda-\lambda_{p}\right)^{m_{p}}
$$

then A is diagonalizable if and only if the algebraic and geometric multiplicities are the same.

Remark

Special case
If $A \in M_{n}(\mathbb{R})$ and has n different eigenvalues, then A is diagonalizable.

Exercise

Show if the following matrix is diagonalizable and find the matrix P such that the matrix $P^{-1} A P$ is diagonal.

$$
A=\left(\begin{array}{cc}
5 & 4 \\
-4 & -3
\end{array}\right)
$$

Solution

The characteristic function of the matrix A is

$$
q_{A}(\lambda)=\left|\begin{array}{cc}
5-\lambda & 4 \\
-4 & -3-\lambda
\end{array}\right|=(1-\lambda)^{2} .
$$

Then the matrix is not diagonalizable.

Exercise

Show if the following matrix is diagonalizable and find the matrix P such that the matrix $P^{-1} A P$ is diagonal.

$$
A=\left(\begin{array}{cc}
-10 & -6 \\
18 & 11
\end{array}\right)
$$

Solution The characteristic function of the matrix A is

$$
q_{A}(\lambda)=\left|\begin{array}{cc}
-10-\lambda & -6 \\
18 & 11-\lambda
\end{array}\right|=(\lambda-2)(1+\lambda)
$$

Then the matrix is diagonalizable.
$E_{-1}=\langle(-2,3)\rangle$ and $E_{2}=\langle(1,-2)\rangle$.
The diagonal matrix is $D=\left(\begin{array}{cc}-1 & 0 \\ 0 & 2\end{array}\right)$
and the matrix P is $P=\left(\begin{array}{cc}-2 & 1 \\ 3 & -2\end{array}\right)$.

Exercise

Show if the following matrix is diagonalizable and find the matrix P such that the matrix $P^{-1} A P$ is diagonal.

$$
A=\left(\begin{array}{ccc}
5 & 0 & 4 \\
2 & 1 & 5 \\
-4 & 0 & -3
\end{array}\right)
$$

Solution The characteristic function of the matrix A is

$$
q_{A}(\lambda)=\left|\begin{array}{ccc}
5-\lambda & 0 & 4 \\
2 & 1-\lambda & 5 \\
-4 & 0 & -3-\lambda
\end{array}\right|=(1-\lambda)^{3} .
$$

Then the matrix is not diagonalizable.

Exercise

Show if the following matrix is diagonalizable and find the matrix P such that the matrix $P^{-1} A P$ is diagonal.

$$
A=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & -1 \\
1 & 0 & 2
\end{array}\right)
$$

Solution The characteristic function of the matrix A is

$$
q_{A}(\lambda)=\left|\begin{array}{ccc}
1-\lambda & 0 & 0 \\
-1 & 1-\lambda & -1 \\
1 & 0 & 2-\lambda
\end{array}\right|=(1-\lambda)^{2}(2-\lambda) .
$$

$E_{1}=\langle(0,1,0),(1,0,-1)\rangle$ and $E_{2}=\langle(0,1,-1)\rangle$.
Then the matrix is diagonalizable.
the diagonal matrix is $D=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2\end{array}\right)$
and the matrix P is $P=\left(\begin{array}{ccc}0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & -1 & -1\end{array}\right)$.

Exercise

Show if the following matrix is diagonalizable and find the matrix P such that the matrix $P^{-1} A P$ is diagonal.

$$
A=\left(\begin{array}{cccc}
5 & -3 & 0 & 9 \\
0 & 3 & 1 & -2 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 2
\end{array}\right)
$$

Solution The characteristic function of the matrix A is

$$
q_{A}(\lambda)=\left|\begin{array}{cccc}
5-\lambda & -3 & 0 & 9 \\
0 & 3-\lambda & 1 & -2 \\
0 & 0 & 2-\lambda & 0 \\
0 & 0 & 0 & 2-\lambda
\end{array}\right|=(5-\lambda)(3-\lambda)(2-\lambda)^{2} .
$$

The matrix is diagonalizable if and only if the dimension of the vector space E_{2} is 2.
$E_{2}=\langle(1,1,-1,0),(-1,2,0,1)\rangle$.
Then the matrix A is diagonalizable.
$E_{5}=\langle(1,0,0,0)\rangle$ and $E_{3}=\langle(3,2,0,0)\rangle$.
The diagonal matrix is $D=\left(\begin{array}{cccc}5 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2\end{array}\right)$
and the matrix P is $P=\left(\begin{array}{cccc}1 & 3 & 1 & -1 \\ 0 & 2 & 1 & 2 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$.

Exercise

Show if the following matrix is diagonalizable and find the matrix P such that the matrix $P^{-1} A P$ is diagonal.

$$
A=\left(\begin{array}{ccc}
2 & 2 & -1 \\
1 & 3 & -1 \\
-1 & -2 & 2
\end{array}\right)
$$

Solution The characteristic function of the matrix A is

$$
q_{A}(\lambda)=\left|\begin{array}{ccc}
2-\lambda & 2 & -1 \\
1 & 3-\lambda & -1 \\
-1 & -2 & 2-\lambda
\end{array}\right|=-(\lambda-1)^{2}(\lambda-5)
$$

$E_{1}=\langle(1,0,1),(-2,1,0)\rangle, E_{5}=\langle(1,1,-1)\rangle$.
Then the matrix A is diagonalizable.
The diagonal matrix is $D=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 5\end{array}\right)$ and the matrix P is $P=$ $\left(\begin{array}{ccc}1 & -2 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & -1\end{array}\right)$

Exercise

Show if the following matrix is diagonalizable and find the matrix P such that the matrix $P^{-1} A P$ is diagonal.

$$
A=\left(\begin{array}{ccc}
7 & 4 & 16 \\
2 & 5 & 8 \\
-2 & -2 & -5
\end{array}\right)
$$

Solution The characteristic function of the matrix A is

$$
q_{A}(\lambda)=\left|\begin{array}{ccc}
7-\lambda & 4 & 16 \\
2 & 5-\lambda & 8 \\
-2 & -2 & -5-\lambda
\end{array}\right|=-(\lambda-3)^{2}(\lambda-1)
$$

$E_{3}=\langle(1,-1,0),(4,0,-1)\rangle, E_{1}=\langle(2,1,-1)\rangle$.
Then the matrix A is diagonalizable.

The diagonal matrix is $D=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3\end{array}\right)$ and the matrix P is $P=$ $\left(\begin{array}{ccc}2 & 1 & 4 \\ 1 & -1 & 0 \\ -1 & 0 & -1\end{array}\right)$

Exercise

Show if the following matrix is diagonalizable and find the matrix P such that the matrix $P^{-1} A P$ is diagonal.

$$
A=\left(\begin{array}{cccc}
2 & -1 & 0 & \frac{1}{2} \\
0 & 1 & 0 & \frac{1}{2} \\
-1 & 1 & 1 & -1 \\
1 & -1 & 1 & 3
\end{array}\right)
$$

Solution The characteristic function of the matrix A is

$$
q_{A}(\lambda)=\left|\begin{array}{cccc}
2-\lambda & -1 & 0 & \frac{1}{2} \\
0 & 1-\lambda & 0 & \frac{1}{2} \\
-1 & 1 & 1-\lambda & -1 \\
1 & -1 & 1 & 3-\lambda
\end{array}\right|=(1-\lambda)(2-\lambda)^{3} .
$$

The matrix is diagonalizable if and only if the dimension the vector space E_{2} is 3 .

