Conformal Mappings And Riemann's Theorem

BLEL Mongi

Department of Mathematics King Saud University

2016-2017

イロン イヨン イヨン イヨン

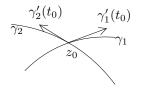
э

Theorem

Let $f : \Omega \longrightarrow \mathbb{C}$ be a holomorphic function on an open subset Ω . Then f preserves the oriented angles at all $z \in \Omega$ where $f'(z) \neq 0$.

イロト イポト イヨト イヨト

Proof



æ

Let γ_1 and γ_2 be two curves continuously differentiable such that $\gamma_1(t_0) = \gamma_2(t_1) = z_0$, $\gamma'_1(t_0) \neq 0$ and $\gamma'_2(t_1) \neq 0$. The tangent vector to γ_1 (respectively to γ_2) at z_0 is given by $\gamma'_1(t_0)$ (respectively $\gamma'_2(t_1)$). There exists $\lambda > 0$ and $\theta \in \mathbb{R}$ such that $\gamma'_2(t_1) = \lambda e^{i\theta} \gamma'_1(t_0)$. θ is the oriented angle between the tangent vectors to γ_1 and γ_2 at z_0 . The tangent vector to $f \circ \gamma_1$ (respectively $f \circ \gamma_2$) at $f(z_0)$ is given by $\gamma'_1(t_0).f'(z_0)$ (respectively $\gamma'_2(t_0).f'(z_0)$) and we have $f'(z_0).\gamma'_2(t_1) = \lambda e^{i\theta} \gamma'_1(t_0)f'(z_0)$. Then θ is again the oriented angle between the tangent vectors to $f \circ \gamma_1$ and $f \circ \gamma_2$. Thus f preserves the oriented angles.

イロト イポト イヨト イヨト

Definition

A holomorphic function f on an open set Ω is called a conformal mapping if $f'(z) \neq 0$, $\forall z \in \Omega$. Recall

- 1. If $f'(z_0) \neq 0$, then f is injective on a neighborhood of z_0 .
- 2. If $f'(z_0) = 0$, then f is not injective on any neighborhood of z_0 .
- 3. If $f'(z) \neq 0$ for every $z \in \Omega$, then f is locally injective but not necessary injective on Ω . (Example e^z on \mathbb{C}).
- If f ∈ H(Ω) is injective, then f(Ω) is an open subset and f⁻¹ is holomorphic from f(Ω) onto Ω and f'(z) ≠ 0, ∀z ∈ Ω.

Definition

Let Ω_1 and Ω_2 be two open subsets and $f: \Omega_1 \longrightarrow \Omega_2$ a holomorphic function. f is called a conformal mapping from Ω_1 onto Ω_2 if f is an analytic isomorphism from Ω_1 onto Ω_2 .

Theorem

For all $a \in D$, the mapping $z \mapsto h_a(z) = \frac{a-z}{1-\bar{a}z}$ is holomorphic and bijective from D onto itself, $h_a(0) = a$, $h_a(a) = 0$. Furthermore $h_a \circ h_a = \operatorname{id}$ and h_a is bijective from the boundary of the unit disc onto itself. (h_a is a conformal mapping from the unit disc onto itself.)

Proof

 $h_a(0) = a$, $h_a(a) = 0$, then $h_a \circ h_a(0) = 0$ and $h_a \circ h_a(a) = a$, then by Schwarz lemma $h_a \circ h_a(z) = z$. Moreover, for |z| = 1, $|h_a(z)| = 1$, then by the maximum principle, h_a is a biholomorphism of the unit disc.

Theorem

Let f be a conformal mapping from the unit disc D onto itself, then there exists $a \in D$, $\theta \in \mathbb{R}$ such that $f(z) = e^{i\theta}h_a(z)$.

Proof

Let $a \in D$ such that f(a) = 0 and let $g(z) = f \circ h_a(z)$. We have g(0) = 0 and $|g(z)| \le 1$, whenever $z \in D$. By Schwarz's lemma, $|g(z)| \le |z|$ for |z| < 1. But g is bijective from the unit disc onto itself, then there exists $\lambda \in \mathbb{C}$ such that $|\lambda| = 1$ and $g(z) = \lambda z$. If $\lambda = e^{i\theta}$, then $f \circ h_a(z) = e^{i\theta}z$ and $f(z) = e^{i\theta}h_a(z)$.

Theorem

Let $\alpha \in \mathcal{H}^+ = \{z \in \mathbb{C}; \exists z > 0\}$. The mapping $f_{\alpha}(z) = \frac{z - \alpha}{z - \overline{\alpha}}$ is a conformal mapping from \mathcal{H}^+ onto D. $f_{\alpha}(\mathbb{R}) = \mathscr{C}(0,1) \setminus \{1\}$, f_{α} is bijective from \mathbb{R} onto $\mathscr{C}(0,1) \setminus \{1\}$.

・ロト ・回ト ・ヨト

Proof

$$\begin{split} &\alpha=a+\mathrm{i}b,\ z=x+\mathrm{i}y,\ \mathrm{with}\ b>0\ \mathrm{and}\ y>0.\\ &f_{\alpha}(z)=\frac{(x-a)+\mathrm{i}(y-b)}{(x-a)+\mathrm{i}(y+b)}. \ \mathrm{Since}\ b>0\ \mathrm{and}\ y>0,\\ &(y-b)^2<(y+b)^2,\ \mathrm{thus}\ |f_{\alpha}(z)|^2=\frac{(x-a)^2+(y-b)^2}{(x-a)^2+(y+b)^2}.<1.\\ &f_{\alpha}(z_1)=f_{\alpha}(z_2)\iff z_1(\alpha-\bar{\alpha})=z_2(\alpha-\bar{\alpha})\iff z_1=z_2,\ \mathrm{thus}\\ &f_{\alpha}\ \mathrm{is\ injective}.\ \mathrm{For\ all}\ z\in D,\ h_{\alpha}(w)=z\ \mathrm{with}\ w=\frac{\alpha-\bar{\alpha}z}{1-z}. \ \mathrm{It}\\ &\mathrm{results\ that}\ f_{\alpha}\ \mathrm{is\ bijective\ from}\ \mathcal{H}^+\ \mathrm{onto}\ D. \end{split}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

If
$$x \in \mathbb{R}$$
, $|f_{\alpha}(x)| = |\frac{x - \alpha}{x - \overline{\alpha}}| = 1$, it results that if $z \neq 1$,
 $f_{\alpha}(\frac{\alpha - \overline{\alpha}z}{1 - z}) = z$.

Theorem

Every conformal mapping from \mathcal{H}^+ onto D is of the form

$$f(z)=e^{\mathrm{i} heta}f_lpha(z)=e^{\mathrm{i} heta}rac{z-lpha}{z-arlpha}; \quad ext{whith } heta\in\mathbb{R}, \; lpha\in\mathcal{H}^+.$$

イロン イヨン イヨン イヨン

Э

Proof

Let $\alpha \in \mathcal{H}^+$ be such that $f(\alpha) = 0$, the mapping $g(z) = f \circ f_{\alpha}^{-1}(z)$ is an automorphism of the unit disc and g(0) = 0, then there exists $\theta \in \mathbb{R}$ such that $g(z) = e^{i\theta}z$, which yields that $f(z) = e^{i\theta}f_{\alpha}(z)$, $\forall z \in \mathcal{H}^+$.

- 4 同 6 4 日 6 4 日 6

Definition

A Möbius transformation or a linear transformation is a mapping of the form $f(z) = \frac{az + b}{cz + d}$ with $ad - bc \neq 0$.

・ロン ・回 と ・ ヨ と ・ ヨ と

Remarks

1) Note that if ad = bc the same expression would yield a constant.

2) The coefficients aren't unique, since we can multiply them all by any nonzero complex constant.

3) The Möbius transformation $f(z) = \frac{az+b}{cz+d}$ with $ad - bc \neq 0$ is defined on $\mathbb{C} \setminus \{\frac{-d}{c}\}$ if $c \neq 0$. We add to \mathbb{C} a new point denoted ∞ and we define $f(\frac{-d}{c}) = \infty$, $f(\infty) = \frac{a}{c}$ if $c \neq 0$ and $f(\infty) = \infty$ if c = 0. The set $\mathbb{C} \cup \{\infty\}$ is called the extended complex plane and denoted by \mathbb{C}_{∞} . A Möbius transformation is then defined on \mathbb{C}_{∞} with values in \mathbb{C}_{∞} .

4) Any Möbius transformation is a bijective mapping from C_∞ onto C_∞. Indeed if w ∈ C_∞,
w = f(z) = az + b/cz + d ⇔ z = -dw + b/cw - a = f⁻¹(w) which is a Möbius transformation. Thus f is a bijection from C_∞ onto C_∞.
5) The set H of Möbius transformations is a group under composite of mappings.

・ロト ・回ト ・ヨト ・ヨト

6) Let f be a Möbius transformation, $f(z) = \frac{az+b}{cz+d}$. We can suppose that ad - bc = 1, and we associate to f the matrix $M_f = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. This matrix is in $SL(2, \mathbb{C})$, the special linear group of \mathbb{C}^2 .

Inversely if $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \mathbb{C})$, we associate the Möbius transformation $f(z) = \frac{az+b}{cz+d}$ and the matrix $-M_f$ gives the same Möbius transformation. Thus we can identify the group of Möbius transformations with the the projective special linear group $PSL(2, \mathbb{C})$, the group of 2×2 matrices with complex coefficients, determinant = 1, modulo the equivalence relation $A \sim -A$.

7) Let
$$A = \begin{matrix} a & b \\ c & d \end{matrix}$$
, $B = \begin{matrix} a' & b' \\ c' & d' \end{matrix}$ two matrix in $PSL(2, \mathbb{C})$,
 $f(z) = \begin{matrix} az+b \\ cz+d \end{matrix}$ and $g(z) = \begin{matrix} a'z+b' \\ c'z+d' \end{matrix}$ the associate Möbius transformations, then $f \circ g$ is the Möbius transformation associate to the matrix AB .

8) If f is a Möbius transformation associated to the matrix A, then f^{-1} is the Möbius transformation associated to the matrix A^{-1} .

・ロト ・回ト ・ヨト ・ヨト

Lemma

The Möbius transformation $z \mapsto f(z) = \frac{1}{z}$ transforms a general circle to a general circle in \mathbb{C}_{∞} . (cf theorem ??, chapter I)

Proof

Let $a \in \mathbb{C}$, r > 0 and $\mathscr{C}(a, r)$ the circle of radius r > 0 and centered at a.

$$z \in \mathscr{C}(a,r) \iff |z-a|^2 = r^2 \iff |z|^2 - 2\Re z \overline{a} = r^2 - |a|^2.$$

First ca case r = |a|, which is equivalent to $0 \in \mathcal{C}(a, r)$. This condition is equivalent that the pole 0 of f is on the circle $\mathcal{C}(a, r)$. We set $w = \frac{1}{z}$, then $z \in \mathcal{C}(a, r) \iff 1 - \Re \bar{w} \bar{a} = 0$. Then the image under f of the circle $\mathcal{C}(a, r)$ in \mathbb{C}_{∞} is the straight line of equation $1 - \Re \bar{w} \bar{a} = 0$. **Second case** $r \neq |a|$, then the pole 0 of f is not on the circle $\mathcal{C}(a, r)$.

$$z \in \mathscr{C}(a, r) \iff |w|^2 - 2\Re \bar{w} \left(\frac{\bar{a}}{|a|^2 - r^2}\right) + \frac{1}{|a|^2 - r^2} = 0, \text{ which}$$

is the equation of the circle of radius R , with
$$R^2 = \frac{1}{r^2 - |a|^2} - \frac{|a|^2}{(r^2 - |a|^2)^2}, R = \frac{r}{|r^2 - |a|^2|} \text{ and centered at}$$
$$\frac{\bar{a}}{|a|^2 - r^2}.$$

We deduce that if the pole of f belongs to the circle $\mathscr{C}(a, r)$, the image of this circle is a straight line and passes through the pole, and if the pole is not on the circle, its image under f is a circle.

イロト イポト イヨト イヨト

By topological considerations of connectedness, we deduce that

- 1. If $0 \in \mathscr{C}(a, r)$, then the image under f of the disc D(a, r) is a half-plane delimited by $f(\mathscr{C}(a, r))$.
- 2. If $0 \in D(a, r)$, then the image under f of the disc D(a, r) is the complementary of the disc $D(\frac{\overline{a}}{|a|^2 - r^2}, \frac{r}{|r^2 - |a|^2|})$.
- 3. If 0 belongs to the complementary of the disc D(a, r), then the image under f of this disc is the disc $D(\frac{\overline{a}}{|a|^2 r^2}, \frac{r}{|r^2 |a|^2|})$.

・ロン ・回と ・ヨン ・ヨン

Remark

Since $f \circ f = Id$, we deduce that the image under f of a straight line passing through the origin 0 is a straight line passing through the origin, the image under f of a circle passing through the origin is a straight line and the image under f of a circle or a straight line which not passing through the origin is a circle.

In what follows, a straight line in \mathbb{C}_{∞} is a straight line in \mathbb{C} which we add the point ∞ . Moreover we define a **general circle** in \mathbb{C}_{∞} , any circle or a straight line.

Theorem

A Möbius transformation transforms a general circle to a general circle in $\mathbb{C}_{\infty}.$

We agree to set that ∞ is the pole of the function f(z) = az, when $a \neq 0$.

Proof

- Let f be a Möbius transformation, $f(z) = \frac{az+b}{cz+d}$.
 - 1. If c = 0, $f(z) = |\frac{a}{d}|e^{i\theta}z + \frac{b}{d}$, then f is the composite of translation, rotation and a dilation. These mappings preserve the set of general circles in \mathbb{C}_{∞} .
 - 2. If $c \neq 0$, then $f(z) = \frac{a}{c} + \frac{bc ad}{c(cz + d)}$. We set $f_1(z) = cz$, $f_2(z) = z + d$, $f_3(z) = \frac{1}{z}$, $f_4(z) = \frac{bc - ad}{c}z$ and $f_5(z) = \frac{a}{c}z$. Then $f = f_5 \circ f_4 \circ f_3 \circ f_2 \circ f_1$, which is the composite of a translation, rotation, dilation and an inversion. Every of these mappings preserves the set of general circles in \mathbb{C}_{∞} .

Remark

We deduce that if the pole of the Möbius transformation f belongs to the general circle \mathcal{F} , then the image under f of this general circle is a straight line and if the pole not belongs to \mathcal{F} , then $f(\mathcal{F})$ is a circle.

イロト イポト イヨト イヨト

Examples

1) Let $\mathcal{H}^+ = \{z \in \mathbb{C}; \exists z > 0\}, \mathcal{D} = \{z = x + iy \in \mathbb{C}; y = 0\}$ and $f(z) = \frac{1}{1-z}$. $f(\mathcal{D}) = \mathcal{D}$ and $f(i) = \frac{1+i}{2}$, then $f(\mathcal{H}^+) = \mathcal{H}^+$. 2) Let $Q = \{z = x + iy \in \mathbb{C}; x > 0\},\$ $\Delta = \{z = x + iy \in \mathbb{C}; x = 0\}$ and $f(z) = \frac{1}{1 - z}$. Then the pole 1 of f is not on Δ , then $f(\Delta)$ is a circle. To identify this circle, it suffices to determine the image of three points of Δ . We find that the image of Δ is the circle of radius $\frac{1}{2}$ and centered at $\frac{1}{2}$ and as $f(1) = \infty$, then the image under f of Q is the complementary of the closed disc of radius $\frac{1}{2}$ and centered at $\frac{1}{2}$.

3) Let $f(z) = \frac{1}{1-z}$, *D* the unit disc and let \mathscr{C} be the unit circle. Since the pole of *f* is on \mathscr{C} , then $f(\mathscr{C})$ is a straight line. To determine this line, it suffices of determine the image of two points of \mathscr{C} . f(i) and f(-i) on the straight line of equation $x = \frac{1}{2}$. Since f(0) = 1, then f(D) is the half plane $\{x + iy \in \mathbb{C}; x > \frac{1}{2}\}$.

Remarks

- 1. A Möbius transformation different to the identity has at most two fixed points. indeed the equation $z = \frac{az+b}{cz+d}$ for $z \neq \infty$ is equivalent to $cz^2 + (d-a)z - b = 0$ which has at most two solutions in \mathbb{C} and exactly two solutions in \mathbb{C}_{∞} .
- 2. It results that two Möbius transformations which coincide at three different points in \mathbb{C}_{∞} are equal.

Definition

Let α, β and γ be three distinct elements of \mathbb{C}_{∞} . We define the Möbius transformation called the cross ratio by

$$S(z) = (z, \alpha, \beta, \gamma) = \frac{z - \beta}{z - \gamma} \frac{\alpha - \gamma}{\alpha - \beta}, \text{ if } \alpha, \beta, \gamma \in \mathbb{C}$$

$$(z, \alpha, \beta, \gamma) = S(z) = \frac{z - \beta}{z - \gamma}, \text{ if } \alpha = \infty.$$

$$(z, \alpha, \beta, \gamma) = S(z) = \frac{\alpha - \gamma}{z - \gamma}, \text{ if } \beta = \infty.$$

and $(z, \alpha, \beta, \gamma) = S(z) = \frac{z - \beta}{\alpha - \beta}, \text{ if } \gamma = \infty.$

・ロン ・回と ・ヨン・

æ

The transformation S is the only Möbius transformation which verifies $S(\alpha) = 1$, $S(\beta) = 0$ and $S(\gamma) = \infty$.

Remarks

1) The cross ratio is invariant under Möbius transformations. i.e. for any Möbius transformation T we have $(z, \alpha, \beta, \gamma) = (T(z), T(\alpha), T(\beta), T(\gamma))$. Indeed if we denote S_1 the cross ratio defined by $S_1(z) = (z, T(\alpha), T(\beta), T(\gamma))$, then S_1 verifies $S_1(T(\alpha)) = 1$, $S_1(T(\beta)) = 0$ and $S_1(T(\gamma)) = \infty$. Then $S_1 \circ T(\alpha) = 1$, $S_1 \circ T(\beta) = 0$ and $S_1 \circ T(\gamma) = \infty$, thus $S_1 \circ T = S$.

イロト イポト イヨト イヨト

2) For all $z_1, z_2, z_3 \in \mathbb{C}_{\infty}$ different and $w_1, w_2, w_3 \in \mathbb{C}_{\infty}$ different, there exists one and only one Möbius transformation which transforms z_1 to w_1 , z_2 to w_2 and z_3 to w_3 . Indeed let $S_1(z) = (z, z_1, z_2, z_3)$ and $S_2(z) = (z, w_1, w_2, w_3)$. The Möbius transformation $T = S_2^{-1} \circ S_1$ fulfills the desired property. 3) A Möbius transformation is a conformal mapping. Thus it preserves the angles.

Lemma

The cross ratio $[z_1, z_2, z_3, z_4]$ is real if and only if all z_1, z_2, z_3, z_4 lie in the same general circle. Further, if $[z_1, z_2, z_3, z_4] < 0$, then the points z_1, z_2, z_3, z_4 have to appear in this general circle in the following order: z_1, z_2, z_3, z_4 .

Proof

Let \mathscr{C} be the unique general circle passing through z_2 , z_3 and z_4 and f the Möbius transformation sending z_2 to 0, z_3 to 1 and z_4 to ∞ . Then $f(\mathscr{C})$ is the real axis. Now $z_1 \in \mathscr{C}$ if and only if $f(z_1) \in f(\mathscr{C}) = \mathbb{R}$, which proves the first part of the lemma. If $f(z_1) < 0$, then $f(z_j)$ appear in the line in the following order $f(z_1) < f(z_2) < f(z_3) < f(z_4)$, and hence the same is true about the inverse image.

Theorem (Ptolemy's Theorem)

Given four points A, B, C and D on the plane. The following holds

$\overline{AB} \ \overline{CD} + \overline{BC} \ \overline{AD} \ge \overline{AC} \ \overline{BD}.$

Equality holds if and only if A, B, C, D lie in a circle and appear in alphabetical order (clockwise or counterclockwise).

Proof

Let z_1, z_2, z_3 and z_4 be the complex numbers representing A, B, Cand D, respectively. We can easily check the identity

$$(z_1-z_2)(z_3-z_4)+(z_1-z_4)(z_2-z_3)=(z_1-z_3)(z_2-z_4).$$

Hence, using the triangle inequality, we have:

$$|z_1 - z_2||z_3 - z_4| + |z_1 - z_4||z_2 - z_3| \ge |z_1 - z_3||z_2 - z_4|,$$

which proves the first part of the theorem. So, the equality holds when both vectors involved have the same direction and orientation, i.e, we have equality if and only if $\frac{(z_1 - z_2)(z_3 - z_4)}{(z_1 - z_4)(z_2 - z_3)} \in \mathbb{R}^+$. Or equivalently, if the cross ratio $[z_1, z_2, z_3, z_4]$ is real and negative. The result then follows by lemma 3.11.

Definition

We say that two points z_1 and z_2 are symmetric with respect to the circle $\mathscr{C}(a, r)$ if a, z_1 and z_2 are on the same half-straight line outgrowing of a and $|z_1 - a||a - z_2| = r^2$.

Remarks

1) We can easily prove that in this definition each straight line or circle passing through z_1 and z_2 intersects $\mathscr{C}(a, r)$ orthogonally. 2) If $z \in \mathbb{C}$, then the symmetry of z with respect to the circle $\mathscr{C}(a, r)$ is $z' = a + \frac{r^2}{\overline{z} - \overline{a}}$. If we denote $S_{\mathscr{C}}(z) = a + \frac{r^2}{\overline{z} - \overline{a}}$ which designs the image of the symmetric of z with respect to the circle $\mathscr{C}(a, r)$, then the mappings $T(z) = \overline{\mathscr{S}}_{\mathscr{C}}(z)$ and $H(z) = S_{\mathscr{C}}(\overline{z})$ are Möbius transformations. Let \mathscr{D} be a straight line of equation $z = \alpha + xe^{i\theta}$ ($x \in \mathbb{R}$, α and θ are fixed in \mathbb{R} .) An immediate computation shows that the affix of the symmetric of z with respect to the straight line \mathscr{D} is $z' = S (z) = \alpha + e^{2i\theta}(\overline{z} - \alpha)$. Then the mappings $T(z) = \overline{S}(z)$ and $H(z) = S (\overline{z})$ are also Möbius transformations.

Theorem

Every Möbius transformation transforms two symmetric points with respect to a general circle to two points symmetric with respect to the general circle image.

Proof

Let \mathcal{F} be a general circle and f a Möbius transformation. We denote by S(z) the symmetric of z with respect to \mathcal{F} , $H = f(\mathcal{F})$ and T(z) the symmetric of z with respect to H. To prove the theorem, it suffices to prove that $T \circ f(z) = f \circ S(z)$. From the previous remark $\overline{T \circ f}$ and $\overline{f \circ S}$ are Möbius transformations. Then it suffices to prove that $T \circ f$ and $f \circ S$ coincide on three different points. It is obvious that these Möbius transformations coincide on \mathcal{F} .

(日) (圖) (目) (目)

1) Characterization of Möbius transformations which transform the unit disc on itself.

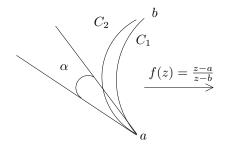
Let *h* be such Möbius transformation and $a \in D$ such that h(a) = 0, thus $h(\frac{1}{\overline{a}}) = \infty$. $(\frac{1}{\overline{a}} \text{ is the symmetric of } a \text{ with respect to}$ the unit circle. If a = 0, $\frac{1}{\overline{a}} = \infty$). Then that $h(z) = k \frac{a-z}{1-\overline{a}z}$. Moreover *h* transforms *D* on itself, then $k = e^{i\theta}$, with $\theta \in \mathbb{R}$.

2) Characterization of Möbius Transformations Which Transform the Upper Half Plane on the Unit Disc Let \mathcal{H}^+ be the upper half plane and h a Möbius transformation which transforms \mathcal{H}^+ on the unit disc D. There exists $\alpha \in \mathcal{H}^+$ such that $h(\alpha) = 0$, then $h(\bar{\alpha}) = \infty$ and $h(z) = e^{i\theta} \frac{z - \alpha}{z - \bar{\alpha}}$.

3) Characterization of Conformal Mappings Which Transform a Crescent on a Half Plane

We consider the open subset Ω defined by the region of \mathbb{C} between two arc of circles \mathcal{C} and \mathcal{C} . (cf figure **??**). Ω is a simply connected domain. The mapping $f: \Omega \longrightarrow \mathbb{C}$ defined by $f(z) = \frac{z-a}{z-b}$ transforms the domain Ω onto the domain Ω' defined by the sector between two half-lines L_1 and L_2 outgrowing of 0 and the angle between L_1 and L_2 is equal to α , where α is the angle between the circles \mathscr{C}_1 and \mathscr{C}_2 at a. (L₁ is the image of the arc of circle \mathcal{C}_1 under f and L_2 is the image of the arc of circle \mathscr{C} under f). The mapping $z \mapsto z^{\frac{\pi}{\alpha}}$ transforms the domain Ω' on a half plane.

(日) (同) (E) (E) (E)



Solution

Let
$$\Omega = \{ z \in \mathbb{C}; \ |z - \frac{\mathrm{i}}{2}| < 1, \ |z + \frac{\mathrm{i}}{2}| < 1 \}.$$

1. Prove that Ω is simple connected.

2. Let
$$C_1 = \{z \in \mathbb{C}; |z - \frac{i}{2}| = 1\}, C_2 = \{z \in \mathbb{C}; |z + \frac{i}{2}| = 1\}, A = -\sqrt{3}/2 \text{ and } B = -\sqrt{3}/2.$$
 We consider the function $f(z) = \frac{z + \sqrt{3}/2}{z - \sqrt{3}/2}.$
a) Give the angle between C_1 and C_2 at A .
b) Find $f(\Omega)$ and deduce a conformal mapping from Ω onto the upper half plane.

イロン イヨン イヨン イヨン

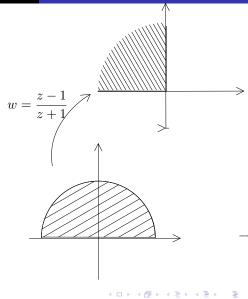
Solution

 $1.\ \Omega$ is convex, then it is simple connected.

2. a) Let
$$\gamma_1(t) = \frac{1}{2} + e^{it}$$
 and $\gamma_2(t) = -\frac{1}{2} + e^{it}$ for $t \in [0, 2\pi]$.
 $\gamma_1(t) = -\sqrt{3}/2 \iff t = \frac{7\pi}{6}$ and
 $\gamma_2(t) = -\sqrt{3}/2 \iff t = \frac{5\pi}{6}$, then since $\gamma'_1(t) = ie^{it}$ and
 $\gamma'_2(t) = ie^{it}$, the angle between C_1 and C_2 at A is $\frac{\pi}{3}$.
b) $f(-\frac{i}{2}) = e^{\frac{2i\pi}{3}}$ and $f(\frac{i}{2}) = e^{\frac{4i\pi}{3}}$ and $f(0) = -1$, then
 $f(\Omega) = \{z = re^{i\theta}; \frac{2\pi}{3} < \theta < \frac{4\pi}{3}, r > 0\}$. If $z = re^{i\theta}$ with
 $\frac{2\pi}{3} < \theta < \frac{4\pi}{3}, z^{\frac{3}{2}} = r^{\frac{3}{2}}e^{i\frac{3}{2}\theta}$ with $\pi < \frac{3}{2}\theta < 2\pi$.
The mapping $h(z) = \frac{z+i}{z-i}$ is a conformal mapping from the
half plane $\{z = re^{i\theta}; \pi < \theta < 2\pi\}$ is the unit disc. Then
 $h \circ g \circ f$ is a conformal mapping from Ω to the unit disc,
where $g(z) = z^{\frac{3}{2}}$.

4) Characterization of Conformal Mappings Which Transform a Domain Delimited by a Semi Circle and a Line onto a Half Plane

If Ω is the domain of \mathbb{C} delimited by a semi circle of center the origin and radius 1 and contained in the upper half plane. (cf figure ??). The Möbius transformation $f(z) = \frac{z-1}{z+1}$ transforms Ω onto the quarter of the plane $\{z \in \mathbb{C}; x < 0 \text{ and } y > 0\}$ and the mapping $g(z) = -z^2$ transform this quarter of the plane onto the upper half plane.



Theorem

Let $\Omega \neq \mathbb{C}$ be a simply connected domain and let $a \in \Omega$. There exists a unique conformal mapping f from Ω onto D such that f(a) = 0 and f'(a) > 0.

・ロン ・回と ・ヨン ・ヨン

Proof

Uniqueness Let f and g be to such transformations. Bt schwarz lemma, the function $g \circ f^{-1}$ is a conformal mapping from the unit disc onto itself and $g \circ f^{-1}(0) = 0$. Then $g \circ f^{-1}$ is linear. Moreover $(g \circ f^{-1})'(0) > 0$, thus $g \circ f^{-1} = Id \Rightarrow g = f$.

イロト イポト イヨト イヨト

Existence Let $\mathscr{F} = \{f \in \mathcal{H}(\Omega) \text{ injective; } f(a) = 0, f'(a) > 0\}$ $0, |f(z)| < 1 \ \forall \ z \in \Omega$. The family \mathscr{F} is normal and let proving that \mathscr{F} is not empty. Let $\alpha \notin \Omega$ and the function $g(z) = (z - \alpha)^{1/2}$. (Since Ω is simple connected and $z - a \neq 0$ for all $z \in \Omega$, then g is well defined on Ω). The function g is holomorphic on Ω , injective and $g(z_1) \neq -g(z_2)$, $\forall z_1 \neq z_2$ in Ω . Then by open mapping theorem, there exists $\varepsilon > 0$ such that the disc { $w \in \mathbb{C}$; $|w - g(a)| < \varepsilon$ } $\subset g(\Omega)$ and $\{w \in \mathbb{C}; |w + g(a)| < \varepsilon\} \cap g(\Omega) = \emptyset$ (because $g(z_1) \neq -g(z_2) \ \forall \ z_1, z_2 \in \Omega$). Let ψ the Möbius transformation which transforms $\{w \in \mathbb{C}; |w + g(a)| > \varepsilon\}$ in the unit disc with $\psi(g(a)) = 0$ and $(\psi \circ g)'(a) > 0$.

소리가 소문가 소문가 소문가

$$\psi(z) = e^{\mathrm{i}\theta} rac{arepsilon(g(a)-z)}{2(z+g(a))\overline{g(a)}-arepsilon^2},$$

 θ is such that $(\psi \circ g)'(a) > 0$. Then $\psi \circ g \in \mathscr{F}$, indeed ψ is injective, g is injective, thus $\psi \circ g$ is injective. $\psi \circ g(a) = 0$, $|\psi \circ g(z)| < 1$ by construction. Let $M = \sup\{f'(a); f \in \mathscr{F} \leq +\infty$. There exists a sequence $(f_n)_n \in \mathscr{F}$ such that $\lim_{n \to +\infty} f'_n(a) = M$. Since \mathscr{F} is a normal family, we can extract from the sequence $(f_n)_n$ a convergent subsequence, set f its limit for the topology of $\mathcal{H}(\Omega)$. Then f is injective or constant. The function f is not constant because f'(a) = M > 0, thus $M < +\infty$ and $f \in \mathscr{F}$.

イロト イポト イヨト イヨト

If f is not surjective, there exists
$$w \in D$$
 such that
 $f(z) \neq w, \forall z \in \Omega$.
We define the holomorphic functions F and G by:
 $F(z) = \left(\frac{f(z) - w}{1 - \bar{w}f(z)}\right)^{1/2}$ and $G(z) = e^{i\theta} \frac{F(z) - F(a)}{1 - \overline{F(a)}F(z)}$, with
 $e^{i\theta} = \frac{\overline{F'(a)}}{|F'(a)|}$. F is injective, $|F(z)| < 1$, $\forall z \in \Omega$, $G \in \mathscr{F}$ and
 $G'(a) = \frac{|F'(a)|}{1 - |F(a)|^2} = \frac{1 + |w|}{2\sqrt{w}} f'(a)$. Thus $g'(a) > f'(a)$, which is
absurd, then f is surjective and f realizes the conformal mapping
from Ω onto the unit disc.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Theorem (Caracthéodory's Extension Theorem)

Let Ω be a bounded simply connected domain such that the boundary $\partial \Omega$ is a Jordan curve C and let $f: \Omega \longrightarrow D$ be a conformal mapping from Ω onto D. Then f can be extended to an homeomorphisms from $\overline{\Omega}$ onto \overline{D} .

イロト イポト イヨト イヨト