Linear Transformations

Mongi BLEL

King Saud University

October 12, 2018

Table of contents

Definition of Linear Transformation

(2) Kernel and Image of a Linear Transformation

Definition of Linear Transformation

Definition

Let V and W be two vector spaces and let $T: V \longrightarrow W$ be an application. We say that T is a linear transformation If for all $u, v \in V, \alpha \in \mathbb{R}$

$$T(u+v) = T(u) + T(v).$$

$$T(\alpha u) = \alpha T(u).$$

Kernel and Image of a Linear Transformation Matrix of Linear Transformation and the Change of Basis

Remarks

If $T: V \longrightarrow W$ is a linear transformation then

1
$$T(0) = 0.$$

2 $T(-u) = -T(u).$
3 $T(u - v) = T(u) - T(v).$

Example

Select from the following functions which is a linear transformation

$$\begin{split} T_1 \colon \mathbb{R}^3 \to \mathbb{R}^2, & T_1(x, y, z) = (x + y + z, x - z + y) \\ T_2 \colon \mathbb{R}^3 \to \mathbb{R}^2, & T_2(x, y, z) = (xy, z) \\ T_3 \colon \mathbb{R}^3 \to \mathbb{R}^2, & T_3(x, y, z) = (x + y - 3z, z + y - 1) \\ T_4 \colon \mathbb{R}^3 \to \mathbb{R}^3, & T_4(x, y, z) = (x + y, z + y, x^2) \\ T_5 \colon \mathbb{R}^3 \to \mathbb{R}^3, & T_5(x, y, z) = (x + y, z + y, 0) \\ T_6 \colon \mathbb{R}^3 \to \mathbb{R}^3, & T_6(x, y, z) = (-x + 2z, y + 2z, 2x + 2y) \\ T_7 \colon \mathbb{R}^3 \to \mathbb{R}, & T_7(x, y, z) = x + y - z. \end{split}$$

Kernel and Image of a Linear Transformation Matrix of Linear Transformation and the Change of Basis

Solution

- T_1 is a linear transformation .
- T_2 is not a linear transformation
- T_3 is not a linear transformation because $T(0) \neq 0$.
- T_4 is not a linear transformation
- T_5 is a linear transformation .
- T_6 is a linear transformation .
- T_7 is a linear transformation .

Kernel and Image of a Linear Transformation Matrix of Linear Transformation and the Change of Basis

Example

Let the vector space $V = M_n(\mathbb{R})$. We define the function $T: V \longrightarrow \mathbb{R}$ as follows: $T(A) = \det A$.

The function T is not linear because $det(A + B) \neq detA + detB$.

Kernel and Image of a Linear Transformation Matrix of Linear Transformation and the Change of Basis

Theorem

If $T: V \longrightarrow W$ is a mapping, then T is a linear transformation if and only if

$$T(\alpha u + \beta v) = \alpha T(u) + \beta T(v) \qquad \forall u, v \in V, \ \alpha, \beta \in \mathbb{R}.$$

Remarks

- If $T: V \longrightarrow W$ is a linear transformation, then $T(\alpha_1 u_1 + \ldots + \alpha_n u_n) = \alpha_1 T(u_1) + \ldots + \alpha_n T(u_n).$
- If T: V → W is a linear transformation and S = {u₁,... u_n} is a basis of the vector space V. The linear transformation is well defined if T(u₁),..., T(u_n) are defined.
- **3** The unique linear transformations $T : \mathbb{R} \longrightarrow \mathbb{R}$ are $T(x) = ax, a \in \mathbb{R}$.
- The unique linear transformations $T : \mathbb{R}^2 \longrightarrow \mathbb{R}$ are T(x, y) = ax + by, $a, b \in \mathbb{R}$.

Kernel and Image of a Linear Transformation Matrix of Linear Transformation and the Change of Basis

Theorem

If $A \in M_{m,n}(\mathbb{R})$, then the mapping $T_A \colon \mathbb{R}^n \longrightarrow \mathbb{R}^m$ defined by: $T_A(X) = AX$ for all $X \in \mathbb{R}^n$ is a linear transformation and called the linear transformation associated to the matrix A.

Kernel and Image of a Linear Transformation Matrix of Linear Transformation and the Change of Basis

Theorem

Let $T: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ be a linear transformation and let $B = (e_1, \ldots, e_n)$ be a basis of the vector space \mathbb{R}^n and $C = (u_1, \ldots, u_m)$ a basis of the vector space \mathbb{R}^m . Then $T = T_A$, where $A = [a_{i,j}] \in M_{m,n}(\mathbb{R})$ and its columns are in order $[T(e_1)]_C, \ldots, [T(e_n)]_C$. The matrix A is called the matrix of the linear transformation Twith respect to the basis B and C.

Kernel and Image of a Linear Transformation Matrix of Linear Transformation and the Change of Basis

Theorem

Let V, W be two vector spaces and $S = \{v_1, \ldots, v_n\}$ a basis of the vector space V and $\{w_1, \ldots, w_n\}$ a set of vectors in the vector space W. There is a unique linear transformation $T: V \longrightarrow W$ such that $T(v_j) = w_j$ for all $1 \le j \le n$.

Definition

Let $T: V \longrightarrow W$ be a linear transformation . The set $\{v \in V; T(v) = 0\}$ is called the kernel of the linear transformation T and denoted by: ker(T). The set $\{T(v); v \in V\}$ is called the image of the linear transformation T denoted by: Im(T).

Theorem

If $T: V \longrightarrow W$ is a linear transformation, then ker(T) is a vector sub-space of V and Im(T) is a vector sub-space of W.

Definition

If $T: V \longrightarrow W$ is a linear transformation then dimension the vector space ker(T) is called the nullity of the linear transformation T and denoted by: (nullity(T)). The dimension of the vector space Im(T) is called the rank of the linear transformation T and denoted by: (rank(T)).

Example

If $A \in M_{m,n}(\mathbb{R})$ and $T_A \colon \mathbb{R}^n \longrightarrow \mathbb{R}^m$ the linear transformation defined by: $T_A(X) = AX$, then rank $(T) = \operatorname{rank} A$, and $\operatorname{Im}(T) = \operatorname{col} A$.

Example

Let $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ be the linear transformation defined by the following:

$$T(x, y, z) = (2x - y + 3z, x - 2y + z).$$

$$(x, y, z) \in \ker(T) \iff \begin{cases} 2x - y + 3z = 0\\ x - 2y + z = 0 \end{cases}$$

The extended matrix of this linear system is:
$$\begin{bmatrix} 2 & -1 & 3 & 0\\ 1 & -2 & 1 & 0 \end{bmatrix}.$$

Then

$$(x, y, z) \in \ker(T) \iff x = 5y, z = -3y.$$

 $\ker(T) = \langle (5, 1, -3) \rangle.$
 $T(x, y, z) = x(2, 1) + y(-1, -2) + z(3, 1).$
Then

$$\mathrm{Im}(\mathcal{T}) = \langle (2,1), (-1,-2), (3,1) \rangle = \langle (2,1), (-1,-2) \rangle.$$

Theorem

If $T: V \longrightarrow W$ is a linear transformation and $\{v_1, \ldots, v_n\}$ is a basis of the vector space V, then the set $\{T(v_1), \ldots, T(v_n)\}$ generates the vector space Im(T).

The Dimension Theorem of the Linear Transformations

If $T: V \longrightarrow W$ is a linear transformation and if $\dim V = n$, then

$$\operatorname{nullity}(T) + (\operatorname{rank}(T) = n.$$

i.e.

 $\dim \ker(T) + \dim \operatorname{Im}(T) = n.$

Definition

- If $T: V \longrightarrow W$ is a linear transformation,
 - We say that T is injective if for all $u, v \in V$,

$$T(u) = T(v) \Rightarrow u = v.$$

2 We say that T is surjective if Im(T) = W.

Theorem

If $T: V \longrightarrow W$ is a linear transformation. The linear transformation T is injective if and only if ker $(T) = \{0\}$.

Corollary

If $T: V \longrightarrow W$ is a linear transformation and dim $V = \dim W = n$. Then the linear transformation T is injective if and only if T is surjective.

Example

Give a basis of the image of and of the kernel of the following linear transformation $T \colon \mathbb{R}^4 \longrightarrow \mathbb{R}^4$ defined by following:

$$T(x, y, z, t) = (x - y, 2z + 3t, y + 4z + 3t, x + 6z + 6t).$$

Solution

 $(x, y, z, t) \in \text{Ker}(T) \iff x = y = 3t = -2z.$ Then (6, 6, -3, 2) is a basis the kernel of the linear transformation. The image of the linear transformation T is spanned by columns of the following matrix

$$\begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 0 & 2 & 3 \\ 0 & 1 & 4 & 3 \\ 1 & 0 & 6 & 6 \end{pmatrix}$$

and the matrix

$$\begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & 4 & 3 \\ 0 & 0 & 1 & \frac{3}{2} \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

is a row reduced form of this matrix. Then

 $\{(1,0,0,1),(-1,0,1,0),(0,2,4,6)\}$

is a basis of the image of the linear transformation.

Example

Let V, W be two vector spaces and $T: V \longrightarrow W$ a linear transformation.

If the linear transformation injective and $S = \{u_1, \ldots, u_n\}$ is a set of linearly independent vectors, then the set $\{T(u_1), \ldots, T(u_n)\}$ is a set of linearly independent vectors.

Solution

$$a_1T(u_1) + \ldots + a_nT(u_n) = 0 \quad \Longleftrightarrow \quad T(a_1u_1 + \ldots + a_nu_n) = 0$$
$$\iff \quad a_1u_1 + \ldots + a_nu_n = 0$$

since T is injective and since the set S is linearly independent, then $a_1 = \ldots = a_n = 0$.

Theorem

Let $T: V \longrightarrow W$ be a linear transformation and let $B = (u_1, \ldots, u_n)$ be a basis of the vector space V and $C = (v_1, \ldots, v_m)$ basis of the vector space W. Then there is a unique matrix $[T]_B^C$ such that its columns $[T(u_1)]_C, \ldots, [T(u_n)]_C$. The matrix $[T]_B^C$ is called the matrix of the linear transformation T with respect to the basis B and the basis C. and satisfies

$$[T(v)]_C = [T]_B^C [v]_B; \quad \forall v \in V.$$

If V = W and B = C we write the matrix $[T]_C$ instead of $[T]_B^C$.

Example

Let $\mathcal{T}\colon \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ be the linear transformation defined by the following:

$$T(x, y, z) = (2x - y + 3z, x - 2y + z).$$

The matrix of the linear transformation T with respect to the stan-

dard basis of the vector space
$$\mathbb{R}^3$$
 is: $\begin{pmatrix} 2 & -1 & 3 \\ 1 & -2 & 1 \end{pmatrix}$

Example

Find the matrix of the linear transformation with respect to the standard basis of the vector space \mathbb{R}^3 and find $T_j(x, y, z)$ if

1
$$T_1((1,0,0)) = (1,1,1), T_1((0,1,0)) = (1,2,2), T_1((0,0,1)) = (1,2,3)$$

2
$$T_2((1,0,0)) = (1,-1,1), T_2((0,1,0)) = (-1,1,1), T_2((0,0,1)) = (-1,-1,1)$$

3
$$T_3((1,0,0)) = (1,1,1), T_3((0,1,0)) = (1,2,1), T_3((0,0,1)) = (2,-2,1).$$

Solution

$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 3 \end{pmatrix}, T_1(x, y, z) = (x + y + z, x + 2y + 2z, x + 2y + 3z). \begin{pmatrix} 1 & -1 & -1 \\ -1 & 1 & -1 \\ 1 & 1 & 1 \end{pmatrix}, T_2(x, y, z) = (x - y - z, -x + y - z, x + y + z). \\ \begin{pmatrix} 1 & 1 & 2 \\ 1 & 2 & -2 \\ 1 & 1 & 1 \end{pmatrix}, T_3(x, y, z) = (x + y + 2z, x + 2y - 2z, x + y + z).$$

Theorem

If $T: V \longrightarrow V$ is a linear transformation and B and C are basis of the vector space V, then

$$[T]_B = {}_B P_C [T]_C {}_C P_B.$$

Example

Let $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ be the linear transformation such that its matrix with respect to the standard basis C of the vector space \mathbb{R}^3 is

$$[T]_{C} = \begin{pmatrix} -3 & 2 & 2\\ -5 & 4 & 2\\ 1 & -1 & 1 \end{pmatrix}$$

Find the matrix of the linear transformation $[T]_B$ with respect to the following basis B

$$B = \{u = (1, 1, 1), v = (1, 1, 0), w = (0, 1, -1)\}.$$

Solution

The matrix of the linear transformation with respect to the basis B and C is

$${}_{C}P_{B} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & -1 \end{pmatrix}$$

Then the matrix of the linear transformation with respect to the basis S and the basis B is

$${}_{B}P_{C} = {}_{S}P_{B}^{-1} = \begin{pmatrix} -1 & 1 & 1\\ 2 & -1 & -1\\ -1 & 1 & 0 \end{pmatrix}$$

and

$$[T]_B = {}_BP_C[T]_{CC}P_B = \begin{pmatrix} 1 & 0 & 0\\ 0 & -1 & 0\\ 0 & 0 & 2 \end{pmatrix}$$
Viongi BLEL Linear Transformations

Example

Let the linear transformation $T : \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ defined by the following:

$$T(x, y, z) = (3x + 2y, 3y + 2z, 9x - 4z).$$

- **(**) Give the matrix of the linear transformation T.
- **2** Give the kernel of and image of the linear transformation T.
- Find the matrix the linear transformation T with respect to the basis S = {(0,0,1), (0,1,1), (1,1,1)}.

Solution

The matrix of the linear transformation T is
$$A = \begin{pmatrix} 3 & 2 & 0 \\ 0 & 3 & 2 \\ 9 & 0 & -4 \end{pmatrix}$$
The extended matrix of the linear system $AX = 0$ is:
$$\begin{bmatrix} 3 & 2 & 0 & 0 \\ 0 & 3 & 2 & 0 \\ 9 & 0 & -4 & 0 \end{bmatrix}$$
This matrix is equivalent to the matrix
$$\begin{bmatrix} 3 & 2 & 0 & 0 \\ 0 & 3 & 2 & 0 \\ 9 & 0 & -4 & 0 \end{bmatrix}$$
This matrix is equivalent to the matrix
$$\begin{bmatrix} 3 & 2 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$
Then ker(T) = {0} and the image of the linear transformation T is: \mathbb{R}^3 .
Let $P = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$
EVALUATE: The set of the linear transformation T is the set of th

Example

Let
$$u_1 = \frac{1}{3}(1,2,2)$$
, $u_2 = \frac{1}{3}(2,1,-2)$, $u_3 = \frac{1}{3}(2,-2,1)$.

- Prove that {u₁, u₂, u₃} is an orthonormal basis of the vector space ℝ³.
- **②** We define the linear transformation $T : \mathbb{R}^3 \mapsto \mathbb{R}^3$ by the following:

 $T(e_1) = u_1$, $T(e_2) = u_2$ and $T(e_3) = u_3$, where $\{e_1, e_2, e_3\}$ the standard basis of the vector space \mathbb{R}^3 .

Find P the matrix of the linear transformation T with respect to the basis $\{e_1, e_2, e_3\}$ and find T(x, y, z).

3 We define the linear transformation $S \colon \mathbb{R}^3 \mapsto \mathbb{R}^3$ by the following:

$$S(x, y, z) = (-x + 2z, y + 2z, 2x + 2y).$$

Prove that S is a linear transformation and find its matrix A with respect to the basis $\{e_1, e_2, e_3\}$.

Solution

As the determinant

$$\begin{vmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{vmatrix} = -27$$

then $\{u_1, u_2, u_3\}$ is a basis and as $||u_1|| = ||u_2|| = ||u_3|| = 1$ and $\langle u_1, u_2 \rangle = \langle u_1, u_3 \rangle = \langle u_2, u_3 \rangle = 0$, then $\{u_1, u_2, u_3\}$ is an orthonormal basis of the vector space \mathbb{R}^3 .

2

$$P = \frac{1}{3} \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{pmatrix}$$

and

Example

Let the matrix
$$A = \begin{pmatrix} 2 & -2 & 3 \\ -2 & 2 & 3 \\ 3 & 3 & -3 \end{pmatrix}$$
. We define the linear trans-

formation $T : \mathbb{R}^3 \mapsto \mathbb{R}^3$ defined by the matrix A with respect to the standard basis (e_1, e_2, e_3) of the vector space \mathbb{R}^3 .

- Find T(x, y, z).
- ② Find an orthogonal basis (u_1, u_2, u_3) of the vector space ℝ³ such that $T(u_1) = 3u_1$ and $T(u_2) = 4u_2$.
- Find the matrix of the linear transformation T with respect to the basis (u_1, u_2, u_3) .
- We define the linear transformation S: ℝ³ → ℝ³ by the following: S(e₁) = u₁, S(e₂) = u₂ and S(e₃) = u₃. Find the matrix P of the linear transformation S with respect to standard basis.

- **(**) Prove that the matrix P has an inverse and find P^{-1} .
- Let the linear transformation U defined by the matrix P⁻¹ with respect to the standard basis.
 Find U(u_k) for all k = 1, 2, 3.

Find $F(e_1)$, $F(e_2)$, $F(e_3)$.

Find the matrix of the linear transformation F and conclude the value A^n for all $n \in \mathbb{N}$.

Solution

1

$$T(x, y, z) = (2x - 2y + 3z, -2x + 2y + 3z, 3x + 3y - 3z).$$

2 Let $u = (x, y, z).$

$$T(u) = 3u \iff \begin{cases} -x - 2y + 3z = 0\\ -2x - y + 3z\\ 3x + 3y - 6z = 0 \end{cases} \iff x = y = z.$$

We take $u_1 = (1, 1, 1)$.

$$T(u) = 4u \iff \begin{cases} -2x - 2y + 3z = 0\\ -2x - 2y + 3z\\ 3x + 3y - 7z = 0 \end{cases} \iff \begin{cases} x = -y\\ z = 0 \end{cases}.$$
Mongi BLEL Linear Transformations

> • the matrix P has an inverse, then (u_1, u_2, u_3) is a basis. $P^{-1} = \frac{1}{6} \begin{pmatrix} 2 & 2 & 2 \\ 3 & -3 & 0 \\ 1 & 1 & -2 \end{pmatrix}.$ 2 $U(u_1) = (1,0,0), U(u_2) = (0,1,0), U(u_3) = (0,0,1).$ $\bullet F = U \circ T \circ S.$ $F(e_1) = U \circ T(u_1) = 3U(u_1) = 3(1,0,0),$ $F(e_2) = U \circ T(u_2) = 4U(u_2) = 4(0, 1, 0).$ $F(e_3) = U \circ T(u_3) = -6U(u_3) = -6(0, 0, 1).$ The matrix of the linear transformation F is

$$D = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & -6 \end{pmatrix}$$

$$A^n = PD^nP^{-1}$$