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Let Ω be an open subset of C, C(Ω) the vector space of
continuous functions on Ω and H(Ω) the vector subspace of
holomorphic functions on Ω.
For all n ∈ N, we set Kn = {z ∈ C; |z | ≤ n and d(z ,C \ Ω) ≥ 1

n}.
The sequence of compacts (Kn)n is increasing and

⋃
n≥1 Kn = Ω.

We define the following sequence of semi-norms and distance the
on C(Ω)

||f − g ||n = sup
z∈Kn

|f (z)− g(z)|

and

d(f , g) =
∞∑
n=1

||f − g ||n
2n(1 + ||f − g ||n)

.
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Proposition

The mapping d : C(Ω)×C(Ω) −→ R is a distance.

Proof
d(f , g) = 0 ⇐⇒ f = g on Kn for all n ∈ N, then f = g on Ω. d
is symmetric. To prove the triangle inequality, we use the following
inequality: for s, t ∈ [0,+∞[, we have

t

1 + t + s
≤ t

1 + t
⇒ t + s

1 + t + s
≤ t

1 + t
+

s

1 + s
.

Since ||f − g ||n ≤ ||f − h||n + ||h − g ||n, then
||f − g ||n

1 + ||f − g ||n
≤ ||f − h||n + ||h − g ||n

1 + ||f − h||n + ||h − g ||n
, because the mapping

t 7−→ t
1+t is increasing, which proves the triangle inequality.
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Proposition

The convergence relative to the metric d is equivalent to the
uniform convergence on compact subsets of Ω.

we recall the definition of the uniformly convergence on compact
subsets:

Definition

A sequence (fn)n of continuous functions on an open set Ω is
called uniformly convergent on compact subsets of Ω to f , if for all
ε > 0 and any compact K subset of Ω, there exists a integer
N = N(K , ε) such that sup

z∈K
|fn(z)− f (z)| ≤ ε, for n ≥ N.
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Proof
Let (fn)n be a sequence of continuous functions which converges
with respect to the metric d to a function f ,
(limn→+∞ d(fn, f ) = 0), then

∀ε > 0; ∃N ∈ N; d(fn, f ) ≤ ε; ∀n ≥ N.

Thus for all n ≥ N and for all m ∈ N,
1

2m
||fn − f ||m

1 + ||fn − f ||m
≤ ε. It

results that the sequence (fn)n converges uniformly on compact
subsets of Ω to f . (The sequence (Kn)n is exhaustive.)
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Conversely, if a sequence (fn)n converges uniformly on compact
subsets of Ω to f , then f ∈ C(Ω). Furthermore
∀ε > 0; ∃N ∈ N;

∑+∞
k=N

1
2n ≤ ε and there exists M ∈ N such that

for all n ≥ M, ||fn − f ||N ≤ ε. Since the sequence (Kn)n is
increasing, then ||fn − f ||k ≤ ε for all n ≥ M and all k ≤ N. For
j ≥ M

d(fj , f ) =
N−1∑
n=1

1

2n
||fj − f ||n

1 + ||fj − f ||n
+

+∞∑
n=N

1

2n
||fj − f ||n

1 + ||fj − f ||n

≤ ε

N−1∑
n=1

1

2n
+ ε

+∞∑
n=N

1

2n
≤ 2ε.

Then d(fj , f ) ≤ 2ε for all j ≥ M.
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Theorem

The space (C(Ω), d) is a complete metric space. The subspace
H(Ω) is closed subspace, thus it is complete.

Proof
Let (fn)n be a Cauchy sequence of C(Ω). For all z ∈ Ω, the
sequence (fn(z))n is a Cauchy sequence in C, thus it is convergent.
We denote f (z) its limit. Let K be a compact subset of Ω. Since

lim
j ,k→+∞

d(fj , fk) = 0, then lim
j ,k→+∞

||fj − fk ||K = 0 and

lim
j→+∞

sup
z∈K

∣∣∣fj(z)− f (z)
∣∣∣ = 0. Therefore the sequence (fn)n

converges uniformly on any compact subset to f and f is
continuous, which proves that C(Ω) is complete.
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We know that if a sequence of holomorphic functions (fn)n which
converges uniformly on any compact subset to f , the function f is
holomorphic. Then H(Ω) is a closed subspace of C(Ω), which is
complete, then H(Ω) is also complete.

Theorem

Let (fn)n be a sequence of holomorphic functions on a domain Ω.
We assume that for all n, the function fn never vanishing on Ω and
the sequence (fn)n converges uniformly on any compact subset to a
function f 6≡ 0. Then f never vanishing on Ω.
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Proof
Since the sequence (fn)n is uniformly convergent on any compact
subset of Ω, then f is holomorphic. We assume that f is not
identically zero and there exists z0 which is a zero of multiplicity
k ≥ 1 of f . Let r > 0 such that f (z) 6= 0 for all z ∈ D(z0, r) \ {z0}
and let γ be the closed curve defined by the circle of radius r and
centered at z0 traversed in the counterclockwise direction. Then

1

2iπ

∫
γ

f ′(z)

f (z)
dz = k . Since f never vanishing on γ, the sequence( f ′n

fn

)
n

converges uniformly on γ to
f ′

f
, thus

k =
1

2iπ

∫
γ

f ′(z)

f (z)
dz = lim

n→+∞

1

2iπ

∫
γ

f ′n(z)

fn(z)
dz = 0,

which is absurd.
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Corollary

Let (fn)n be a sequence of holomorphic functions on a domain Ω
which converges uniformly on any compact subset to a function f .
We assume that f has some zeros in Ω. Then there exists a rank
N such that, fn has some zeros in Ω, whenever n ≥ N.

Theorem

Let (fn)n be a sequence of holomorphic functions on a domain Ω
which converges uniformly on any compact subset to a function f .
We assume that there exists a disc D(z0, r) ⊂ Ω such that f never
vanishing on the circle C(z0, r) = {z ∈ C; |z − z0| = r}, then
there exists an integer N such that for all n ≥ N, the functions f
and fn have the same number of zeros in the disc D(z0, r).
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Proof
Since f never vanishing on C(z0, r), then
α = infz∈C(z0,r) |f (z)| > 0 and there exists N ∈ N such that for
n ≥ N, sup

|z−z0|=r
|fn(z)− f (z)| ≤ α/2 < α < |f (z)|. Thus for

|z − z0| = r , |fn(z)− f (z)| < |f (z)|. By Rouché’s theorem the
functions fn and f have the same number of zeros on D(z0, r) for
n ≥ N.
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Theorem

Let (fn)n be a sequence of injective holomorphic functions on a
domain Ω which converges uniformly on any compact subset to a
function f , then f is constant or injective on Ω.
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Proof
Let z1 6= z2 be two points of Ω. There exists U1 and U2 two
disjoints connected open subsets Ω containing respectively z1 and
z2. The sequence (gn)n defined by gn(z) = fn(z)− fn(z1) is a
sequence of injective functions on U2 which converges uniformly on
any compact subset of U2 to the function g defined by
g(z) = f (z)− f (z1). The functions gn never vanishing on U2

(connected), thus either f (z) ≡ f (z1) on U2 and thus f (z) ≡ f (z1)
on Ω, or f (z) 6= f (z1) on U2, in particular f (z2) 6= f (z1).
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Definition

1. Let K be a compact subset of Ω, a family F of H(Ω) is called
bounded on K, if there exists M > 0 such that
sup
z∈K
|f (z)| ≤ M, ∀f ∈ F .

2. A family F is called locally bounded if F is bounded on any
compact of Ω.

3. A family F is called equicontinuous at z0 ∈ Ω if
∀ ε > 0; ∃η > 0 such that if |z − z0| < η, then
|f (z)− f (z0)| < ε, ∀ f ∈ F .
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Theorem

Every locally bounded family F of H(Ω) on Ω is equicontinuous at
any point of Ω.
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Proof
Let z0 ∈ Ω and r > 0 such that D(z0, r) ⊂ Ω. If |z − z0| < r

2 and
|z ′ − z0| < r

2 , we have

f (z)− f (z ′) =
1

2iπ

∫
γ
f (w)(

1

w − z
− 1

w − z ′
) dw ,

with γ(t) = z0 + reit , t ∈ [0, 2π].

f (z)− f (z ′) =
(z − z ′)

2iπ

∫
γ

f (w)

(w − z)(w − z ′)
dw .

Let M = sup
f ∈F

sup

w∈C(z0,r)

|f (w)|, we have

|f (z)− f (z ′)| ≤ 4M
r |z − z ′|, for all z and z ′ in D(z0,

r
2 ) and all

f ∈ F , thus F is equicontinuous on Ω.
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Theorem

Let F be a family of continuous functions on an open subset Ω.
We assume that F is equicontinuous on Ω.

1. Let (fn)n be a sequence of F which is pointwise convergent to
f on Ω, then f is continuous. Furthermore the sequence (fn)n
converges to f uniformly on compact subsets of Ω.

2. Let E be a dense subset in Ω, if the sequence (fn(z))n has a
limit for all z in E , then the sequence (fn)n converges
uniformly on compact subsets of Ω.
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Proof
1) Let z0 ∈ Ω. Since F is equicontinuous at z0, we have

∀ ε > 0;∃η > 0; ∀z ∈ Ω; |z−z0| < η ⇒ |g(z)−g(z0)| < ε, ∀ g ∈ F .

In particular |fj(z)− fj(z0)| < ε, ∀j ∈ N. By taking the limit, we
deduce that |f (z)− f (z0)| < ε.
It remains to show the uniform convergence on compact subsets of
the sequence (fn)n.
Let K be a compact subset of Ω. For all w ∈ K , there exists an
open disc D(w) 6= {w} centered at w such that |g(z)− g(w)| ≤ ε,
∀z ∈ D(w) and ∀ g ∈ F . K is covered by a finite number of such
discs D(wj), thus ∀z ∈ K , ∃j such that z ∈ D(wj).
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|fn(z)− f (z)| ≤ |fn(z)− fn(wj)|+ |fn(wj)− f (wj)|+ |f (wj)− f (z)|.

|fn(z)− fn(wj)| ≤ ε because z ∈ D(wj),
By taking the limit, we have |f (z)− f (wj)| ≤ ε. There exists an
integer N such that for n ≥ N, |fn(wj)− f (wj)| ≤ ε. Thus for
z ∈ K , |fn(z)− f (z)| ≤ 3ε. It results that the sequence (fn)n
converges uniformly on compact subsets to f .
2) Let z0 ∈ Ω, we claim that the sequence (fn(z0))n is convergent.
∀ε > 0, ∃α > 0, such that if |z − z0| < α, |g(z)− g(z0)| ≤ ε,
∀ g ∈ F .
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Let w ∈ E such that |w − z0| < α, then |g(w)− g(z0)| ≤ ε,
∀ g ∈ F .
fn(z0)−fm(z0) = fn(z0)−fn(w)+fn(w)−fm(w)+fm(w)−fm(z0)⇒
|fn(z0)− fn(w)| ≤ ε.
Since the sequence (fn(w))n is convergent, then for all ε > 0, there
exists an integer N such that for n ≥ N, |fn(z0)− fm(z0)| ≤ 3ε, for
all n,m ≥ N. It results that the sequence (fn(z0))n is a Cauchy
sequence, then it is convergent. Thus the sequence (fn)n is
pointwise convergent on Ω and the result is deduced from the first
part of the theorem.
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Definition

A family F ⊂C(Ω) is called a normal family if for any sequence
(fn)n ∈ F , we can extract a convergent subsequence for the
topology of the uniform convergence on compact subsets of Ω.
(The limit is not in general in F .)

Theorem (Montel’s Theorem)

Let F in H(Ω) be a family of locally bounded holomorphic
functions, then F is normal.
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Proof
Let (fn)n be a sequence of F , F ⊂C(Ω). The family is
equicontinuous. Let E be a countable dense subset in Ω. We
denote E = {(wn)n∈N}.
For w1, there exists M1 > 0 such that |g(w1)| ≤ M1, ∀g ∈ F . In
particular the sequence (fn(w1))n is bounded in C. Thus we can
extract a convergent subsequence denoted (f1,n(w1))n.
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For w2, the sequence (f1,n(w2))n is bounded thus we can extract a
convergent subsequence denoted (f2,n(w2))n. The sequence
(f2,n(w1))n is convergent. By iteration, for every wk , there exists a
subsequence of (fk−1,n)n denoted (fk,n)n such that the sequences
(fk,n(wj))n are convergent for any 1 ≤ j ≤ k . Set gk = fk,k , for
k ∈ N. The sequence (gn)n is convergent on E . In use the previous
theorem (3.3), we derive the theorem.
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Exercise

1) The family F1 = {sin nz ; n ∈ N} is not normal on any open
subset. Indeed for z = x + iy, y 6= 0, | sin z |2 = sin2 x + sinh2 y,
which is not bounded. Thus it is not normal.
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Exercise

The family F2 = {f ∈ H(D); f (0) = −1, f (D) ⊂ C\]−∞, 0]} is

normal. Indeed, we consider the mapping ϕ(z) =
(1− z

1 + z

)2
which

is a bijective holomorphic function from D onto C\]−∞, 0], with
ϕ(0) = 1. We denote ψ the inverse function of ϕ and
F∗ = {g = ψ ◦ f ; f ∈ F}.
For all g ∈ F∗, g : D −→ D and g(0) = 0. Thus by Schwarz’s
lemma, |g(z)| ≤ |z |. Then for all 0 < r < 1,

sup
|w |≤r

|ϕ(w)| ≤
(1 + r

1− r

)2
and sup

|z|≤r
|f (z)| ≤

(1 + r

1− r

)2
.

(f = ϕ ◦ ψ ◦ f ). Thus the family F2 is locally bounded and then it
is a normal family.
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Theorem (Vitali’s Theorem)

Let (fn)n be a sequence of locally bounded holomorphic functions
on a domain Ω. We assume that the sequence (fn(z))n is pointwise
convergent on E and E has a cluster point (accumulation point) in
Ω, then the sequence (fn)n converges uniformly on compact
subsets to a holomorphic function.
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Proof
The sequence (fn)n is locally bounded, then it is normal. Let f and
g be two limits of the sequence (fn)n. The functions f and g
coincide on E , thus f ≡ g on Ω. Thus the sequence has only one
limit. Let f this limit.
If the sequence (fn)n is not convergent to f in H(Ω), there exists
ε > 0, a compact K ⊂ Ω and a sequence (zn)n in K such that
|fnk (zk)− f (zk)| ≥ ε, for all k ≥ 1. We can extract from the
sequence (fnk )k a convergent subsequence. This subsequence must
converges to f , which is absurd.
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Lemma

Let K be a compact subset of Ω. The mapping MK : H(Ω) −→ R
defined by MK (f ) = supz∈K |f (z)|, is continuous.

Proof
Let f , g ∈ H(Ω), g = f + g − f , thus
|g(z)| ≤ |f (z)|+ |g(z)− f (z)|. Then
|MK (g)−MK (f )| ≤ MK (f − g).
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Theorem

Let F be a family of H(Ω). F is a compact subset of H(Ω) if and
only if F is closed and locally bounded.

Proof
CN If F is a compact subset of H(Ω), then F closed and locally
bounded on Ω by lemma 3.8.
CS Let (fn)n be a sequence of F , by Montel’s theorem, (fn)n is
normal, then we can extract a convergent subsequence. The limit
of this subsequence is holomorphic and in F since F is closed.
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Theorem

Let F be a compact subset of H(Ω) and z0 ∈ Ω, then there exists
g ∈ F such that |g ′(z0)| ≥ |f ′(z0)|; ∀f ∈ F .

Proof
The mapping f 7−→ |f ′(z0)| is continuous on H(Ω) indeed if (fn)n
is a convergent sequence and f is its limit in H(Ω). The sequence
(f ′n)n converges also uniformly on compact subsets to f ′, thus

lim
n→+∞

|f ′n(z0)| = |f ′(z0)|.
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Theorem

Let Ω be an open subset of C, z0 ∈ Ω. The set

F = {f ∈ H(Ω), f injective, f (Ω) ⊂ D and |f ′(z0)| ≥ 1}.

is compact in H(Ω).

Proof
If F = ∅, there is nothing to prove. If not the family F is bounded.
Let (fn)n be a convergent sequence of F and f its limit.
|f (z)| ≤ 1, ∀z ∈ Ω and |f ′(z0)| ≥ 1. Thus f is not constant. By
theorem 2.5, f is injective, thus f ∈ F and F is closed and
compact.
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