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Definition (Definition of a Plane Curve)

If f and g are continuous functions on an interval I , then the set
of ordered pairs (f (t), g(t)) is called a plane curve C.
The equations x = f (t) and y = g(t) are called parametric
equations for C, and t is called the parameter.
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Remark

1 If C = {(x = f (t), y = g(t)); t ∈ I} is a curve an the function
f : I −→ J is bijective, then t = f −1(x) and the curve is
represented by the equation y = g(t) = g ◦ f −1(x) and the
curve is the graph of the function y = g ◦ f −1(x), for x ∈ J.

2 If C = {(x = f (t), y = g(t)); t ∈ I} is a curve an the function
g : I −→ J is bijective, then t = g−1(y) and the curve is
represented by the equation x = f (t) = f ◦ g−1(x) and the
curve is the graph of the function x = f ◦ g−1(y), for y ∈ J.
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Definition

1 A curve C represented by {(x = f (t), y = g(t)); t ∈ I} is
called smooth if f ′ and g ′ are continuous on I and not
simultaneously zero, except possibly at the endpoints of I .

2 If y = f (x) for x ∈ I is the equation of the plane curve and f ′

continuous on I , the curve C is smooth.

3 If x = f (y) for x ∈ I is the equation of the plane curve and f ′

continuous on I , the curve C is smooth.

4 The Orientation of the curve of parametric equations is the
direction of movement along the graph relative to the order of
the values of the parameter.
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Example 1 :
Consider the plane curve C given by the parametric equations{

x = 4t2 − 5
y = 2t + 3

t ∈ R.

a) Find an equation in x and y whose graph contains the points of
C.
b) Sketch the graph of C.
c) Indicate the orientation : the growing sense of t.
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Solution.
a) y = 2t + 3⇒ t = y−3

2 . As x = 4t2 − 5, then

x = 4
(y − 3

2

)2 − 5 = (y − 3)2 − 5 = y2 − 6y + 4.

The graph of the following equation

x = y2 − 6y + 4, y ∈ R

contains the points of C.
b) We remark that when the variable t described R, the variable y
described R. Then, the graph of

x = y2 − 6y + 4, y ∈ R

is exactly the set of the points of C.
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c) We have
x(0) = −5, y(0) = 3

x(1) = −1, y(1) = 5.

Then the orientation of t is from the point A(−5, 3) to the point
B(−1, 5).
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Theorem

If a smooth curve C is given by the parametric equations

x = f (t)
y = g(t)

, t ∈ I .

Then the slope of tangent line to C at a point
P(x0, y0) = (f (t0), g(t0)) is given by

m =

dy

dt
(t0)

dx

dt
(t0)

=
g ′(t0)

f ′(t0)
, if f ′(t0) 6= 0.
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Example 2 :
Let C be the curve with the parametrization

x = t2 + t
y = 5t2 − 3

, t ∈ R.

Find the points on C at which the slope m of the tangent line is
given by m = 4.
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Solution.

x(t) = t2 + t =⇒ dx

dt
(t) = 2t + 1

y(t) = 5t2 − 3 =⇒ dy

dt
(t) = 10t.

Then

m = 4 =⇒

dy

dt
(t)

dx

dt
(t)

= 4 =⇒ t = 2.

We check
dx

dt
(2) = 5 6= 0. Then the required point is

P(x(2), y(2)) = (6, 17).
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Remark

If m is the slope of the tangent line of a curve, then

The tangent line is horizontal ⇐⇒ m = 0.

The tangent line is vertical ⇐⇒ 1

m
= 0.
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Theorem

Let C be a smooth curve given by the parametric equations
(x(t), y(t)), t ∈ [α;β]. We assume that the function
t 7−→ (x(t), y(t)) is an injection from [α;β] to R2. Then
a) The length of the arc C is given by

Lβα =

∫ β

α

√
x ′2(t) + y ′2(t)dt.

b) The area of the surface generated by revolving the curve C
around the x-axis is

SA = 2π

∫ β

α
|y(t)|

√
x ′2(t) + y ′2(t)dt.
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c) The area of the surface generated by revolving the curve C
around the y -axis is

SA = 2π

∫ β

α
|x(t)|

√
x ′2(t) + y ′2(t)dt.
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Example 3 :
Find the area of the surface generated by revolving the curve C
given by (t2, t − 1

3 t
3), t ∈ [0, 1] around the x-axis.

Solution. The area of given surface is

SA = 2π

∫ 1

0
(t − 1

3
t3)
√

4t2 + 1− 2t2 + t4dt

= 2π

∫ 1

0
(t − 1

3
t3)(1 + t2) dt,

= 2π(
1

2
+

1

6
− 1

18
),

=
11π

9
.
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The Polar Coordinates System

Definition

If M is a point in the plane R2 and (x , y) its cartesian coordinates.
A polar coordinates of M is a couple (r , θ) ∈ R2 such that{

x = r cos(θ)
y = r sin(θ).

Clearly r = ±
√
x2 + y2. And θ is not unique because we can

replace θ by θ + 2nπ for any n ∈ Z.
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Example 4 :
The cartesian coordinates of the point A(r , θ) = (2, π4 ) are

(
√
2,
√
2).

The cartesian coordinates of the point B(r , θ) = (−2, 5π4 ) are

(
√
2,
√
2).

The cartesian coordinates of the point C (r , θ) = (1, π2 ) are (0, 1).
The cartesian coordinates of the point D(r , θ) = (0, θ) are (0, 0).
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Definition

A polar equation is an equation of type

r = f (θ), θ ∈ I ,

where I is an interval.

Example 5 :
Sketch the curves of the following polar equations

(E1) : r = 2 cos(θ),

(E2) : r = θ,

(E3) : r = a,

(E4) : r = 2 + 2 cos(θ),

(E5) : r = 2 + 4 cos(θ),
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Example 6 :
a) Sketch the curves of the following equations

θ =
π

4
.

a) Let α ∈ R. Transforms the following equation in Cartesian
coordinates equations

θ = α.

And deduce her nature.
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Example 7 :
Let a ∈ R \ {0}. Prove that the curve of the following polar
equation

(C) r = a cos(θ),

is the equation of a circle.
Sketch the graph of (C) if a = 2 and a = −3.
Example 8 :
Let a ∈ R \ {0}. Prove that the curve of the following polar
equation

(C) r = a sin(θ),

is the equation of a circle.
Sketch the graph of (C) if a = 2 and a = −3.
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Definition

Let C be a curve whose polar equation is

r = f (θ), θ ∈ I ,

where I is an interval.
We assume that f is smooth, then the slope of the tangent line at
the point (r0 = f (θ0), θ0) is given by

m =

d(f (θ) sin(θ))

dθ
(θ0)

d(f (θ) cos(θ))

dθ
(θ0)

,

provided
d(f (θ) cos(θ))

dθ
(θ0) 6= 0.
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Particularly C has an horizontal tangent line if and only if

d(f (θ) sin(θ))

dθ
(θ0) = 0 and

d(f (θ) cos(θ))

dθ
(θ0) 6= 0.

C has a vertical tangent line if and only if

d(f (θ) cos(θ))

dθ
(θ0) = 0 and

d(f (θ) sin(θ))

dθ
(θ0) 6= 0.
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Theorem

Let f : [α, β]→ R+ be a continuous function, where
0 ≤ α < β ≤ 2π(generally 0 < β − α ≤ 2π). Then the area of the
region bounded by the graphs of

r = f (θ), θ = α, θ = β,

is equal to

A =

∫ β

α

1

2

[
f (θ)

]2
dθ.
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Example 9 :
The area of region bounded by the graph of the polar equation

r = 6− 6 sin(θ).

r = 6(1− sin(θ)) ≥ 0 then the required interval is [0, 2π].
Therefore the area of this region is

A =

∫ 2π

0

1

2

[
f (θ)

]2
dθ

= 18

∫ 2π

0
(1− sin(θ))2dθ

= 18

∫ 2π

0
1− 2 sin(θ) +

1− cos(2θ)

2
dθ

= 54π.
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Example 10 :
The area of region that is outside the graph of r = 2 and inside the
graph of r = 4 cos(θ).
We denote f1(θ) = 2 and f2(θ) = 4 cos(θ).
r = 2 is the equation of the circle with center is (0, 0) and radius 2.
r = 4 cos(θ) is the equation of the circle with center (2, 0) and
radius 2.
The points of intersection
2 = 4 cos(θ) ⇐⇒ cos(θ) = 1

2 ⇐⇒ θ = ±π
3 + 2nπ, n ∈ Z.
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We can choose the interval [−π, π], then the solutions are θ = ±π
3

and the points of intersection are

(r , θ) = (2,
π

3
) and (r , θ) = (2,−π

3
).

Then

A =
1

2

∫ π
3

−π
3

[
f2(θ)

]2 − [f1(θ)]2dθ
= 4

∫ π
3

0
(2 cos(2θ) + 1)θ

= 2 + 2
√
3.
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Theorem

The arc length of a continuously differentiable polar curve

r = f (θ) ≥ 0

from the point (r1, θ1) to the point (r2, θ2), such that
0 ≤ θ2 − θ1 ≤ 2π, is given by

Arc length =

∫ θ2

θ1

√
r2 + (

dr

dθ
)2 dθ =

∫ θ2

θ1

√
(f (θ))2 + (f ′(θ))2 dθ.
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Example 11 :
Find the length of the curve r = 2− 2 cos(θ).
We have

r = f (θ) = 2− 2 cos(θ) = 2(1− cos(θ)) ≥ 0 =⇒ [θ1, θ2] = [0, 2π].

Therefore

Arc length =

∫ 2π

0

√
(2− 2 cos(θ))2 + (2 sin(θ))2 dθ

=

∫ 2π

0

√
8− 8 cos(θ) dθ

= 4

∫ 2π

0
sin(

θ

2
) dθ

= 16.
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Theorem

Let C be the graph of a continuously differentiable polar equation

r = f (θ) ≥ 0, θ ∈ [α, β] ⊂ [0, π] or ⊂ [−π, 0].

Then the surface of revolution generated by revolving C around the
x-axis is

(SA)1 = 2π

∫ β

α
f (θ)| sin(θ)|

√
(f (θ))2 + (f ′(θ))2 dθ.
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Theorem

Let C be the graph of a continuously differentiable polar equation

r = f (θ) ≥ 0, θ ∈ [α, β] ⊂ [−π
2
,
π

2
] or ⊂ [

π

2
, 3
π

2
].

Then the surface of revolution generated by revolving C around the
y-axis(or θ = π

2 ) is

(SA)2 = 2π

∫ β

α
f (θ)| cos(θ)|

√
(f (θ))2 + (f ′(θ))2 dθ.

Remark

Polar axis : | sin(θ)| = sin(θ) =⇒ θ ∈ [0, π].
Line θ = π

2 : | cos(θ)| = cos(θ) =⇒ θ ∈ [−π
2 ,

π
2 ].
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Example 12 :
Find the area of the surface of revolution generated by revolving
the graph of

r = 2 sin(θ), θ ∈ [0,
π

2
]

around the
a) polar axis.
b) line θ = π

2 .
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a) The required area is

(SA) = 2π

∫ π
2

0
2 sin(θ). sin(θ)

√
(2 sin(θ))2 + (2 cos(θ))2 dθ

= 8π

∫ π
2

0
sin2(θ) dθ

= 4π

∫ π
2

0
1− cos(2θ) dθ

= 4π
[
θ − sin(2θ)

2

]π
2

0
= 2π2.
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b) The required area is

(SA) = 2π

∫ π
2

0
2 sin(θ). cos(θ)

√
(2 sin(θ))2 + (2 cos(θ))2 dθ

= 4π

∫ π
2

0
2 sin(θ) cos(θ) dθ

= 4π

∫ π
2

0
sin(2θ) dθ

= 4π
[
− cos(2θ)

2

]π
2

0
= 4π.
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