Parametric Equations and Polar Coordinates

Mongi BLEL

Department of Mathematics King Saud University

2016-2017

Table of contents

- 1 Parametric Equations of Plane Curve
 - Parametric Equations
 - Arc Length and Surface Area
 - Length of Arc
- 2 The Polar Coordinates System
 - Integrals in Polar Coordinates
 - ullet Arc Length in Polar Coordinates of a Curve ${\mathcal C}$
 - Surface of Revolution in Polar Coordinates

Parametric Equations and Polar Coordinates

Definition (Definition of a Plane Curve)

If f and g are continuous functions on an interval I, then the set of ordered pairs (f(t), g(t)) is called a plane curve C. The equations x = f(t) and y = g(t) are called parametric equations for C, and t is called the parameter.

Remark

- If $C = \{(x = f(t), y = g(t)); t \in I\}$ is a curve an the function $f: I \longrightarrow J$ is bijective, then $t = f^{-1}(x)$ and the curve is represented by the equation $y = g(t) = g \circ f^{-1}(x)$ and the curve is the graph of the function $y = g \circ f^{-1}(x)$, for $x \in J$.
- ② If $C = \{(x = f(t), y = g(t)); t \in I\}$ is a curve an the function $g: I \longrightarrow J$ is bijective, then $t = g^{-1}(y)$ and the curve is represented by the equation $x = f(t) = f \circ g^{-1}(x)$ and the curve is the graph of the function $x = f \circ g^{-1}(y)$, for $y \in J$.

Definition

- A curve C represented by $\{(x = f(t), y = g(t)); t \in I\}$ is called smooth if f' and g' are continuous on I and not simultaneously zero, except possibly at the endpoints of I.
- ② If y = f(x) for $x \in I$ is the equation of the plane curve and f' continuous on I, the curve C is smooth.
- **3** If x = f(y) for $x \in I$ is the equation of the plane curve and f' continuous on I, the curve C is smooth.
- The Orientation of the curve of parametric equations is the direction of movement along the graph relative to the order of the values of the parameter.

Example 1:

Consider the plane curve \mathcal{C} given by the parametric equations

$$\begin{cases} x &= 4t^2 - 5 \\ y &= 2t + 3 \end{cases} \quad t \in \mathbb{R}.$$

- a) Find an equation in x and y whose graph contains the points of \mathcal{C} .
- b) Sketch the graph of C.
- c) Indicate the orientation: the growing sense of t.

Solution.

a)
$$y = 2t + 3 \Rightarrow t = \frac{y-3}{2}$$
. As $x = 4t^2 - 5$, then

$$x = 4\left(\frac{y-3}{2}\right)^2 - 5 = (y-3)^2 - 5 = y^2 - 6y + 4.$$

The graph of the following equation

$$x = y^2 - 6y + 4, \ y \in \mathbb{R}$$

contains the points of C.

b) We remark that when the variable t described \mathbb{R} , the variable y described \mathbb{R} . Then, the graph of

$$x = y^2 - 6y + 4, \quad y \in \mathbb{R}$$

is exactly the set of the points of C.

c) We have

$$x(0) = -5, y(0) = 3$$

$$x(1) = -1, y(1) = 5.$$

Then the orientation of t is from the point A(-5,3) to the point B(-1,5).

Theorem

If a smooth curve $\mathcal C$ is given by the parametric equations

$$\begin{array}{rcl} x & = & f(t) \\ y & = & g(t) \end{array}, t \in I.$$

Then the slope of tangent line to C at a point $P(x_0, y_0) = (f(t_0), g(t_0))$ is given by

$$m = \frac{\frac{dy}{dt}(t_0)}{\frac{dx}{dt}(t_0)} = \frac{g'(t_0)}{f'(t_0)}, \quad \text{if} \quad f'(t_0) \neq 0.$$

Example 2:

Let $\mathcal C$ be the curve with the parametrization

$$\begin{array}{rcl}
x & = & t^2 + t \\
y & = & 5t^2 - 3
\end{array}, t \in \mathbb{R}.$$

Find the points on C at which the slope m of the tangent line is given by m=4.

Solution.

$$x(t) = t^2 + t \implies \frac{dx}{dt}(t) = 2t + 1$$

 $y(t) = 5t^2 - 3 \implies \frac{dy}{dt}(t) = 10t.$

Then

$$m = 4 \Longrightarrow \frac{\frac{dy}{dt}(t)}{\frac{dx}{dt}(t)} = 4 \Longrightarrow t = 2.$$

We check $\frac{dx}{dt}(2) = 5 \neq 0$. Then the required point is P(x(2), y(2)) = (6, 17).

Remark

If m is the slope of the tangent line of a curve, then

The tangent line is horizontal $\iff m = 0$.

The tangent line is vertical
$$\iff \frac{1}{m} = 0$$
.

Theorem

Let \mathcal{C} be a smooth curve given by the parametric equations $(x(t), y(t)), t \in [\alpha; \beta]$. We assume that the function $t \longmapsto (x(t), y(t))$ is an injection from $[\alpha; \beta]$ to \mathbb{R}^2 . Then a) The length of the arc \mathcal{C} is given by

$$L_{\alpha}^{\beta} = \int_{\alpha}^{\beta} \sqrt{x'^2(t) + y'^2(t)} dt.$$

b) The area of the surface generated by revolving the curve C around the x-axis is

$$SA = 2\pi \int_{0}^{\beta} |y(t)| \sqrt{x'^{2}(t) + y'^{2}(t)} dt.$$

c) The area of the surface generated by revolving the curve ${\cal C}$ around the y-axis is

$$SA = 2\pi \int_{\alpha}^{\beta} |x(t)| \sqrt{x'^2(t) + y'^2(t)} dt.$$

Example 3:

Find the area of the surface generated by revolving the curve $\mathcal C$ given by $(t^2,t-\frac13t^3),\qquad t\in[0,1]$ around the x-axis.

Solution. The area of given surface is

$$SA = 2\pi \int_0^1 (t - \frac{1}{3}t^3) \sqrt{4t^2 + 1 - 2t^2 + t^4} dt$$

$$= 2\pi \int_0^1 (t - \frac{1}{3}t^3) (1 + t^2) dt,$$

$$= 2\pi (\frac{1}{2} + \frac{1}{6} - \frac{1}{18}),$$

$$= \frac{11\pi}{9}.$$

The Polar Coordinates System

Definition

If M is a point in the plane \mathbb{R}^2 and (x,y) its cartesian coordinates. A polar coordinates of M is a couple $(r,\theta) \in \mathbb{R}^2$ such that

$$\begin{cases} x = r\cos(\theta) \\ y = r\sin(\theta). \end{cases}$$

Clearly $r = \pm \sqrt{x^2 + y^2}$. And θ is not unique because we can replace θ by $\theta + 2n\pi$ for any $n \in \mathbb{Z}$.

Example 4:

The cartesian coordinates of the point $A(r, \theta) = (2, \frac{\pi}{4})$ are $(\sqrt{2}, \sqrt{2})$.

The cartesian coordinates of the point $B(r, \theta) = (-2, \frac{5\pi}{4})$ are $(\sqrt{2}, \sqrt{2})$.

The cartesian coordinates of the point $C(r, \theta) = (1, \frac{\pi}{2})$ are (0, 1).

The cartesian coordinates of the point $D(r, \theta) = (0, \bar{\theta})$ are (0, 0).

Definition

A polar equation is an equation of type

$$r = f(\theta), \ \theta \in I,$$

where I is an interval.

Example 5:

Sketch the curves of the following polar equations

$$(E_1): r = 2\cos(\theta),$$

 $(E_2): r = \theta,$
 $(E_3): r = a,$
 $(E_4): r = 2 + 2\cos(\theta),$
 $(E_5): r = 2 + 4\cos(\theta),$

Example 6:

a) Sketch the curves of the following equations

$$\theta = \frac{\pi}{4}$$
.

a) Let $\alpha \in \mathbb{R}$. Transforms the following equation in Cartesian coordinates equations

$$\theta = \alpha$$
.

And deduce her nature.

Example 7:

Let $a \in \mathbb{R} \setminus \{0\}$. Prove that the curve of the following polar equation

$$(C)$$
 $r = a\cos(\theta),$

is the equation of a circle.

Sketch the graph of (C) if a = 2 and a = -3.

Example 8:

Let $a \in \mathbb{R} \setminus \{0\}$. Prove that the curve of the following polar equation

$$(C)$$
 $r = a\sin(\theta),$

is the equation of a circle.

Sketch the graph of (C) if a = 2 and a = -3.

Definition

Let C be a curve whose polar equation is

$$r = f(\theta), \ \theta \in I$$

where I is an interval.

We assume that f is smooth, then the slope of the tangent line at the point $(r_0 = f(\theta_0), \theta_0)$ is given by

$$m = \frac{\frac{d(f(\theta)\sin(\theta))}{d\theta}(\theta_0)}{\frac{d(f(\theta)\cos(\theta))}{d\theta}(\theta_0)},$$

provided
$$\frac{d(f(\theta)\cos(\theta))}{d\theta}(\theta_0) \neq 0$$
.

Particularly $\mathcal C$ has an horizontal tangent line if and only if

$$\frac{d(f(\theta)\sin(\theta))}{d\theta}(\theta_0) = 0$$
 and $\frac{d(f(\theta)\cos(\theta))}{d\theta}(\theta_0) \neq 0$.

 ${\cal C}$ has a vertical tangent line if and only if

$$\frac{d(f(\theta)\cos(\theta))}{d\theta}(\theta_0) = 0$$
 and $\frac{d(f(\theta)\sin(\theta))}{d\theta}(\theta_0) \neq 0$.

Theorem

Let $f: [\alpha, \beta] \to \mathbb{R}^+$ be a continuous function, where $0 \le \alpha < \beta \le 2\pi$ (generally $0 < \beta - \alpha \le 2\pi$). Then the area of the region bounded by the graphs of

$$r = f(\theta), \ \theta = \alpha, \ \theta = \beta,$$

is equal to

$$A = \int_{\alpha}^{\beta} \frac{1}{2} [f(\theta)]^2 d\theta.$$

Example 9:

The area of region bounded by the graph of the polar equation

$$r = 6 - 6\sin(\theta).$$

 $r = 6(1 - \sin(\theta)) \ge 0$ then the required interval is $[0, 2\pi]$. Therefore the area of this region is

$$A = \int_0^{2\pi} \frac{1}{2} [f(\theta)]^2 d\theta$$

$$= 18 \int_0^{2\pi} (1 - \sin(\theta))^2 d\theta$$

$$= 18 \int_0^{2\pi} 1 - 2\sin(\theta) + \frac{1 - \cos(2\theta)}{2} d\theta$$

$$= 54\pi.$$

Example 10:

The area of region that is outside the graph of r=2 and inside the graph of $r=4\cos(\theta)$.

We denote $f_1(\theta) = 2$ and $f_2(\theta) = 4\cos(\theta)$.

r=2 is the equation of the circle with center is (0,0) and radius 2.

 $r = 4\cos(\theta)$ is the equation of the circle with center (2,0) and radius 2.

The points of intersection

$$2 = 4\cos(\theta) \iff \cos(\theta) = \frac{1}{2} \iff \theta = \pm \frac{\pi}{3} + 2n\pi, \ n \in \mathbb{Z}.$$

We can choose the interval $[-\pi, \pi]$, then the solutions are $\theta = \pm \frac{\pi}{3}$ and the points of intersection are

$$(r,\theta) = (2,\frac{\pi}{3}) \text{ and } (r,\theta) = (2,-\frac{\pi}{3}).$$

Then

$$A = \frac{1}{2} \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \left[f_2(\theta) \right]^2 - \left[f_1(\theta) \right]^2 d\theta$$
$$= 4 \int_{0}^{\frac{\pi}{3}} (2\cos(2\theta) + 1)\theta$$
$$= 2 + 2\sqrt{3}.$$

Theorem

The arc length of a continuously differentiable polar curve

$$r = f(\theta) \ge 0$$

from the point (r_1, θ_1) to the point (r_2, θ_2) , such that $0 < \theta_2 - \theta_1 < 2\pi$, is given by

$$\textit{Arc length} = \int_{\theta_1}^{\theta_2} \sqrt{r^2 + (\frac{dr}{d\theta})^2} \ d\theta = \int_{\theta_1}^{\theta_2} \sqrt{(f(\theta))^2 + (f'(\theta))^2} \ d\theta.$$

Example 11:

Find the length of the curve $r = 2 - 2\cos(\theta)$. We have

$$r = f(\theta) = 2 - 2\cos(\theta) = 2(1 - \cos(\theta)) \ge 0 \Longrightarrow [\theta_1, \theta_2] = [0, 2\pi].$$

Therefore

Arc length =
$$\int_0^{2\pi} \sqrt{(2 - 2\cos(\theta))^2 + (2\sin(\theta))^2} d\theta$$
=
$$\int_0^{2\pi} \sqrt{8 - 8\cos(\theta)} d\theta$$
=
$$4 \int_0^{2\pi} \sin(\frac{\theta}{2}) d\theta$$
=
$$16.$$

Theorem

Let $\mathcal C$ be the graph of a continuously differentiable polar equation

$$r = f(\theta) \ge 0, \ \theta \in [\alpha, \beta] \subset [0, \pi] \ \text{or} \ \subset [-\pi, 0].$$

Then the surface of revolution generated by revolving $\mathcal C$ around the x-axis is

$$(SA)_1 = 2\pi \int_0^\beta f(\theta) |\sin(\theta)| \sqrt{(f(\theta))^2 + (f'(\theta))^2} \ d\theta.$$

Theorem

Let $\mathcal C$ be the graph of a continuously differentiable polar equation

$$r = f(\theta) \ge 0, \ \theta \in [\alpha, \beta] \subset [-\frac{\pi}{2}, \frac{\pi}{2}] \text{ or } \subset [\frac{\pi}{2}, 3\frac{\pi}{2}].$$

Then the surface of revolution generated by revolving $\mathcal C$ around the y-axis(or $\theta=\frac{\pi}{2}$) is

$$(SA)_2 = 2\pi \int_{\alpha}^{\beta} f(\theta) |\cos(\theta)| \sqrt{(f(\theta))^2 + (f'(\theta))^2} d\theta.$$

Remark

Polar axis :
$$|\sin(\theta)| = \sin(\theta) \Longrightarrow \theta \in [0, \pi]$$
.
Line $\theta = \frac{\pi}{2}$: $|\cos(\theta)| = \cos(\theta) \Longrightarrow \theta \in [-\frac{\pi}{2}, \frac{\pi}{2}]$.

Example 12:

Find the area of the surface of revolution generated by revolving the graph of

$$r=2\sin(\theta),\ \theta\in[0,\frac{\pi}{2}]$$

around the

- a) polar axis.
- b) line $\theta = \frac{\pi}{2}$.

a) The required area is

$$(SA) = 2\pi \int_0^{\frac{\pi}{2}} 2\sin(\theta) \cdot \sin(\theta) \sqrt{(2\sin(\theta))^2 + (2\cos(\theta))^2} d\theta$$

$$= 8\pi \int_0^{\frac{\pi}{2}} \sin^2(\theta) d\theta$$

$$= 4\pi \int_0^{\frac{\pi}{2}} 1 - \cos(2\theta) d\theta$$

$$= 4\pi \left[\theta - \frac{\sin(2\theta)}{2}\right]_0^{\frac{\pi}{2}}$$

$$= 2\pi^2.$$

b) The required area is

$$(SA) = 2\pi \int_0^{\frac{\pi}{2}} 2\sin(\theta) \cdot \cos(\theta) \sqrt{(2\sin(\theta))^2 + (2\cos(\theta))^2} d\theta$$

$$= 4\pi \int_0^{\frac{\pi}{2}} 2\sin(\theta) \cos(\theta) d\theta$$

$$= 4\pi \int_0^{\frac{\pi}{2}} \sin(2\theta) d\theta$$

$$= 4\pi \left[-\frac{\cos(2\theta)}{2} \right]_0^{\frac{\pi}{2}}$$

$$= 4\pi.$$