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Definition

Let γ1, . . . , γn be closed piecewise continuously differentiable paths
in an open subset Ω of C. Let Γ = γ1 + . . .+ γn be the formal sum
of these closed paths defined by∫

Γ
f (z) dz =

n∑
j=1

∫
γj

f (z) dz ,

for all continuous function f on Ω. Γ will be called a cycle.
By definition the index of the cycle Γ at a point
z 6∈ ⋃n

j=1 (support γj) is

Ind(Γ, z) =
n∑

j=1

Ind(γj , z).
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The main theorem in this chapter is the following:

Theorem

Let f ∈ H(Ω) and Γ a cycle such that Ind(Γ, z) = 0, ∀ z 6∈ Ω then

1.

f (z).Ind(Γ, z) =
1

2iπ

∫
Γ

f (w)

w − z
dw , ∀ z ∈ Ω \ SuppΓ.

2.

∫
Γ
f (w) dw = 0.

3. If Γ1 and Γ2 are two cycles in Ω such that
Ind(Γ1, z) = Ind(Γ2, z); ∀ z 6∈ Ω, then∫

Γ1

f (w) dw =

∫
Γ2

f (w) dw .
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Proof
2) and 3) are deduced from 1), indeed to prove 2) with the
condition Ind(Γ, z) = 0, ∀ z ∈ C \ Ω, we consider the function F
defined on Ω by

F (w) =

{
(w − z)f (w) if w 6= z
F (z) = 0

.

1

2iπ

∫
Γ
f (w) dw =

1

2iπ

∫
Γ

F (w)

w − z
dw = F (z)Ind(Γ, z) = 0.

To prove 3) it suffices to consider the cycle Γ = Γ1 − Γ2.
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To prove

f (z).Ind(Γ, z) =
1

2iπ

∫
Γ

f (w)

w − z
dw (1)

for z ∈ Ω \ SuppΓ, it suffices to prove∫
Γ

f (w)

w − z
dw −

∫
Γ

f (z)

w − z
dw = 0.
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For the proof of the theorem 1.2, we need the following lemma:

Lemma

Let f : Ω −→ C be a holomorphic function and g : Ω −→ C the
function defined by

g(z ,w) =

{
f ′(z) if z = w

f (w)−f (z)
w−z if z 6= w

.

g is continuous and whenever w ∈ Ω, the mapping z 7−→ g(z ,w)
is holomorphic.
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Proof of lemma 1.3
The function g is continuous on Ω \ {(a, a); a ∈ C}. For
(a, a) ∈ Ω, there exists R > 0 such that D(a,R) ⊂ Ω. Let r < R,
w , z ∈ D(a, r) and the path γ defined by γ(t) = tw + (1− t)z for
t ∈ [0, 1]. If w 6= z .

∫ 1

0
f ′(γ(t)) dt =

1

w − z

∫ 1

0
f ′(γ(t))γ′(t) dt

=
1

w − z

∫ 1

0
(f ◦ γ)′(t) dt

=
f (w)− f (z)

w − z
= g(w , z).
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Thus g(w , z)− g(a, a) =

∫ 1

0
(f ′(γ(t))− f ′(a)) dt. Since f ′ is

continuous, g is continuous at (a, a).
We Recall the Fubini’s theorem.

Theorem (The Fubini’s Theorem)

Let g : [a, b]× [c, d ] −→ C be a continuous function, then∫ b

a

(∫ d

c
g(t, s) ds

)
dt =

∫ d

c

(∫ b

a
g(t, s) dt

)
ds.
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Proof of theorem 1.2

The function h : Ω −→ C defined by h(z) =
1

2iπ

∫
Γ
g(w , z) dw is

continuous on Ω. Indeed, let (zn)n be a convergent sequence in Ω
to z ∈ Ω. The function g is uniformly continuous on any compact.
We take K1 = SuppΓ and K2 a closed disc centered at z . We
deduce that lim

n→+∞
g(w , zn) = g(w , z) uniformly with respect to

w ∈ K1. The result follows. (We can use the dominated
convergence theorem since for any compact K of Ω, g is bounded
on Supp(Γ)× K .)
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To prove that h is holomorphic on Ω, we use Morera’s theorem and
Fubini theorem.
Let ∆ be a triangle in Ω.

∫
∂∆

h(z) dz =

∫
∂∆

(
1

2iπ

∫
Γ
g(w , z) dw

)
dz

=
1

2iπ

∫
Γ

(∫
∂∆

g(w , z) dz

)
dw = 0,

thus h is holomorphic.
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Rouché’s Theorem
Local Inversion Theorem and the Open Mapping Theorem

Mittag-Leffler’s Theorem
Evaluation of Some Definite Integrals

We prove now that h ≡ 0 on Ω. For this we construct an entire
function H, equal to h on Ω and lim

|z|→+∞
H(z) = 0.

Let V = {z ∈ C \ SuppΓ; Ind(Γ, z) = 0}. V is a non empty open
subset, Ωc ⊂ V . Let h1 be the function defined on V by

h1(z) =
1

2iπ

∫
Γ

f (w)

w − z
dw .

The functions h and h1 coincide on Ω ∩ V , h1 is holomorphic on
V . We define the function H on Ω ∪ V by
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Rouché’s Theorem
Local Inversion Theorem and the Open Mapping Theorem

Mittag-Leffler’s Theorem
Evaluation of Some Definite Integrals

H(z) =

{
h(z) if z ∈ Ω
h1(z) if z ∈ V

.

H is holomorphic on Ω ∪ V = C because Ωc ⊂ V .
We shall prove that lim

|z|→+∞
H(z) = 0.

Since Γ is a cycle, then for |z | large enough, Ind(Γ, z) = 0. Thus

the function H is defined by H(z) =
1

2iπ

∫
Γ

f (w)

w − z
dw .∣∣∣∣∫

Γ

f (w)

w − z
dw

∣∣∣∣ ≤ 1

|z | − R
sup

w∈SuppΓ
|f (w)|L(Γ) −→

|z|→+∞
0, with L(Γ)

the length of Γ.
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Remark

Let f be a holomorphic function on D(0,R) and f (z) =
+∞∑
n=0

anz
n

the expansion on power series of f . For all 0 < r < R, we denote
γr the closed curve defined by γr (t) = re it , for t ∈ [0, 2π]. For
0 < r1 < r2 < R, let Γ = γr2 − γr1 be the cycle and the function

g(z) =
f (z)

zn+1
defined on the punctured disc Ω = D(0,R) \ {0} for

n ∈ N0. Then Ind(Γ, z) = 0 for all z 6∈ Ω, thus

∫
Γ
g(z)dz = 0. We

deduce that

1

2iπ

∫
γr2

f (z)

zn+1
=

1

2iπ

∫
γr1

f (z)

zn+1
,

which shows that the expression of

an =
1

2iπ

∫
γr

f (z)

zn+1

is independent on r , for all 0 < r < R.
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Definition

Let γ0, γ1 : [0, 1] −→ Ω be two closed curves. The curves γ0 and
γ1 are called homotopically equivalent in Ω if there exists a
continuous function H : [0, 1]× [0, 1] −→ Ω such that
H(t, 0) = γ0(t), H(0, s) = H(1, s) and H(t, 1) = γ1(t),
∀s, t ∈ [0, 1].
We say that H is an homotopy between γ0 and γ1.
We remark that for all s ∈ [0, 1], the mapping γs(t) = H(t, s) is a
closed curve.

BLEL Mongi Global Expression of Cauchy’s Theorem



Cycles in open sets
Simply Connected Domains

Laurent Series
The Residue Theorem

Rouché’s Theorem
Local Inversion Theorem and the Open Mapping Theorem

Mittag-Leffler’s Theorem
Evaluation of Some Definite Integrals

Example

If Ω is a convex open set, all closed curve γ in Ω is homotopically
equivalent to a point. It suffices to take the mapping
H(t, s) = (1− s)γ0(t) + s.a, a ∈ Ω. The mapping H is continuous,
H(t, 0) = γ0(t), H(t, 1) = a, H(0, s) = H(1, s) because
γ0(0) = γ0(1).
We have the same result if Ω is starlike with respect to a point.
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Lemma

The homotopy’s relationship is an equivalence relationship.

• Reflexivity Any closed curve γ is homotopically equivalent to
itself. It suffices to consider H(t, s) = γ(t), ∀ s ∈ [0, 1].
• Symmetry If γ0 and γ1 are homotopically equivalent with
respect to the mapping H. Let F : [0, 1]× [0, 1] −→ Ω be the
mapping defined by F (t, s) = H(t, 1− s). Then
F (t, 0) = H(t, 1) = γ1(t), F (t, 1) = H(t, 0) = γ0(t). We deduce
that γ1 and γ0 are homotopically equivalent.
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• Transitivity If γ0 and γ1 are homotopically equivalent with
respect to the mapping H(t, s) and γ1 and γ2 are homotopically
equivalent with respect to the mapping G (t, s). The mapping

F (t, s) =

{
H(t, 2s) 0 ≤ s ≤ 1

2
G (t, 2s − 1) 1

2 ≤ s ≤ 1
. F is continuous and realizes

the homotopy between the closed curves γ0 and γ2.
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Definition

An open subset Ω of C is called a simply connected domain if

1. Ω is a domain.

2. Any closed curve in Ω is homotopically equivalent to a point.
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Examples

1. Any convex open subset of C is simply connected and more
generally any starlike open subset with respect any point is
simply connected. Indeed if Ω is starlike with respect to a
point a and γ : [0, 1] −→ Ω a closed curve. The mapping
H(t, s) = sγ(t) + (1− s)a is a homotopy between γ and a.

2. The punctured disc or the annulus are not simply connected.
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Theorem

Let Γ0 and Γ1 be two closed piecewise continuously differentiable
curves homotopically equivalent in Ω, then
Ind(Γ0, z) = Ind(Γ1, z), ∀ z 6∈ Ω.
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Remarks

1. If Ω is a simply connected domain, then for all closed
piecewise continuously differentiable curve in Ω,
Ind(γ, z) = 0, whenever z 6∈ Ω. (This remark can be taken
also as a definition of a simple connected domain).

2. If Ω is simply connected domain, there is no bounded
connected components of Ωc .
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Corollary

If Ω is a simply connected domain, then
a) for all holomorphic function f on Ω and for any closed piecewise

continuously differentiable curve γ in Ω,

∫
γ
f (z) dz = 0,

b) any holomorphic function f on Ω has a primitive in Ω.

Theorem

If Ω is a simply connected domain and f a holomorphic on Ω
without zeros, there exists a holomorphic function g on Ω such
that f = eg .
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Proof

Let h be a primitive of
f ′

f
, then (

eh

f
)′ = 0. There exists c ∈ C∗

such that eh = cf , if C is a logarithm of c ∈ C∗, the function
g = h − C answer the theorem.
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For the proof of theorem 2.6 we need the following lemma:

Lemma

Let γ0, γ1 : [0, 1] −→ C be two closed piecewise continuously
differentiable curves in C and let z0 ∈ C such that
|γ1(t)− γ0(t)| < |z0 − γ0(t)|, ∀ t ∈ [0, 1]. Then
Ind(γ0, z0) = Ind(γ1, z0).
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Proof

If γ(t) =
γ1(t)− z0

γ0(t)− z0
, then 1− γ(t) =

γ0(t)− γ1(t)

γ0(t)− z0
. The

assumption on γ0 and γ1 yields that |1− γ(t)| < 1, thus
Ind(γ, 0) = 0. (0 is in the unbounded connected component of
(C \ Suppγ)). But

Ind(γ, 0) =
1

2iπ

∫ 1

0

γ′(t)

γ(t)
dt =

1

2iπ

∫ 1

0
(

γ′1(t)

γ1(t)− z0
− γ′0(t)

γ0(t)− z0
) dt = Ind(γ1, 0)−Ind(γ0, 0).

Thus Ind(γ, 0) = Ind(γ1, z0)− Ind(γ0, z0) = 0.
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Proof of theorem 2.6
Let H : [0, 1]× [0, 1] −→ Ω be a continuous mapping such that
H(t, 0) = Γ0(t), H(t, 1) = Γ1(t) and H(0, s) = H(1, s) for all
s ∈ [0, 1]. Let K = H([0, 1]× [0, 1]) and ε > 0 such that
d(K ,Ωc) ≥ 2ε > 0. Since H is uniformly continuous on the
compact set K , there exists p ∈ N such that
|H(t, s)− H(t ′, s ′)| < ε if |t − t ′| < 1

p and |s − s ′| < 1
p .

For each 0 ≤ k ≤ p, we consider the following closed curves

γk(t) = H(
j

p
,
k

p
)(pt+1−j)+H(

j − 1

p
,
k

p
)(j−pt), for j−1 ≤ pt ≤ j and 1 ≤ j ≤ p.
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We have |γk(t)− H(t,
k

p
)| < ε for all t ∈ [0, 1] and k = 0, . . . , p.

Indeed for all j − 1 ≤ pt ≤ j ,

|γk(t)−H(t,
k

p
)| ≤ |H(

j

p
,
k

p
)−H(t,

k

p
)|(pt+1−j)+(j−pt)|H(

j − 1

p
,
k

p
)−H(t,

k

p
)| < ε.

So is for |γk(t)− γk−1(t)| < ε. We have then |γ0(t)− Γ0(t)| < ε
for all t ∈ [0, 1].
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|γp(t)− Γ1(t)| < ε for all t ∈ [0, 1].
Let proving now that |γk(t)− z0| > ε for all z0 6∈ Ω, k = 0, . . . , p
and all t ∈ [0, 1].

|γk(t)− z0| ≥ |H(t,
k

p
)− z0| − |γk(t)− H(t,

k

p
)|.

|H(t, kp )− z0| ≥ 2ε and |γk(t)− H(t, kp )| < ε⇒ |γk(t)− z0| > ε.
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Rouché’s Theorem
Local Inversion Theorem and the Open Mapping Theorem

Mittag-Leffler’s Theorem
Evaluation of Some Definite Integrals

We prove now that Ind(γk , z0) = Ind(γk−1, z0).
Ind(γ0, z0) = Ind(Γ0, z0) and Ind(γp, z0) = Ind(Γ1, z0).
We have

|γk(t)−γk−1(t)| < ε < |γk(t)−z0| ⇒ Ind(γk , z0) = Ind(γk−1, z0).

|γ0(t)− Γ0(t)| < ε < |γ0(t)− z0| ⇒ Ind(γ0, z0) = Ind(Γ0, z0).
The same result for the third equality.
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Corollary

If γ0 and γ1 are two piecewise continuously differentiable curves
and homotopically equivalent in Ω, then for all f ∈ H(Ω)∫

γ0

f (z) dz =

∫
γ1

f (z) dz .
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If Ω is a domain of C, the following properties are equivalent

1. Ω is simply connected.
2. Two closed curves in Ω are homotopically equivalent in Ω.
3. Any holomorphic function on Ω has a primitive.
4. If f ∈ H(Ω) and γ a closed piecewise continuously

differentiable curve in Ω, then

∫
γ
f (z) dz = 0.

5. For all z ∈ Ωc , and for any closed piecewise continuously
differentiable curve γ in Ω, Ind(γ, z) = 0.

6. For any holomorphic function f on Ω without zeros, there
exists a holomorphic function g on Ω such that f = eg .

7. For any holomorphic function f on Ω without zeros, there
exists a holomorphic function g on Ω such that g2 = f .

8. Ω = C or Ω is isomorphic to unit disc (Riemann’s theorem).
This theorem will be proved later.

9. If Ω 6= C, Ωc has no bounded connected components.
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Theorem

Let Ω be an open subset containing the annulus
{z ∈ C; 0 < r1 ≤ |z − z0| ≤ r2 < +∞} and let f be a holomorphic
function on Ω. Then for all z in the annulus
{z ∈ C; r1 < |z − z0| < r2},

f (z) =
1

2iπ

∫
γ2

f (w)

w − z
dw − 1

2iπ

∫
γ1

f (w)

w − z
dw ,

with γ1(t) = z0 + r1e
it and γ2(t) = z0 + r2e

it , t ∈ [0, 2π].
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Proof
The cycle Γ = γ1 − γ2 is in Ω and if |a− z0| < r1 < r2,
Ind(Γ, a) = 0.
If |a− z0| > r2 > r1, Ind(Γ, a) = 0, then Ind(Γ, a) = 0 for all
a 6∈ Ω. We derive from theorem 1.2 that

f (z)Ind(Γ, z) =
1

2iπ

∫
Γ

f (w)

w − z
dw .

But if r1 < |z − z0| < r2, Ind(Γ, z) = 1, thus

f (z) =
1

2iπ

∫
γ2

f (w)

w − z
dw − 1

2iπ

∫
γ1

f (w)

w − z
dw .
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Theorem
Let Ω be the annulus defined by
Ω = {z ∈ C; 0 ≤ s1 < |z − z0| < s2 ≤ +∞}. For any holomorphic
function f on Ω, there exist a unique sequence (an)n∈Z such that
whenever z ∈ Ω

f (z) =
+∞∑
−∞

an(z − z0)n, (2)

where

an =
1

2iπ

∫
γr

f (w)

(w − z0)n+1
dw , (3)

for all n ∈ Z. γr (t) = z0 + reit with s1 < r < s2 and t ∈ [0, 2π].
The series (2) is absolutely convergent on Ω and uniformly
convergent on any compact subset of Ω.

The term
−1∑

n=−∞
an(z − z0)n is called the singular part of f at z0 on

the annulus.
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Proof
Let r1 and r2 be two positive numbers such that s1 < r1 < r2 < s2

and let z ∈ Ω such that r1 < |z − z0| < r2. By theorem 3.1, we
have

f (z) =
1

2iπ

∫
γ2

f (w)

w − z
dw − 1

2iπ

∫
γ1

f (w)

w − z
dw .

• Consider the first integral
1

2iπ

∫
γ2

f (w)

w − z
dw .
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1

w − z
=

1

(w − z0)− (z − z0)
=

1

(w − z0)

1

1− z−z0
w−z0

. As

| z − z0

w − z0
| < 1,

1

w − z
=
∞∑
k=0

(z − z0)k

(w − z0)k+1
.

If z ∈ D(z0, r) and w ∈C(z0, r2), | (z − z0)k

(w − z0)k+1
| ≤ 1

r2
(
r

r2
)k . Thus

the series
∞∑
n≥0

(z − z0)n

(w − z0)n+1
converges uniformly with respect to w ,

for w ∈C(z0, r2) and with respect to z for |z − z0| ≤ r , r < r2.
Since the function f is continuous, it is bounded on C(z0, r) and
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1

2iπ

∫
γ2

f (w)

w − z
dw =

∞∑
k=0

(z − z0)k
1

2iπ

∫
γ2

f (w)

(w − z)k+1
dw .

• Consider the second integral
1

2iπ

∫
γ1

f (w)

w − z
dw .

1

w − z
=

1

(w − z0)− (z − z0)
=

−1

(z − z0)

1

(1− w−z0
z−z0

)
=

−1

(z − z0)

∞∑
k=0

(
w − z0

z − z0
)k .
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If r > r1, |z − z0| ≥ r and |w − z0| = r1, then the series∑
k≥0

(
w − z0

z − z0
)k converges uniformly on C(z0, r1) with respect to z

such that |z − z0| ≥ r . The integral of the previous identity yields

−1

2iπ

∫
γ1

f (w)

w − z
dw =

∞∑
k=0

1

(z − z0)k+1

1

2iπ

∫
γ1

f (w)(w − z0)k dw .

If k = −p − 1, we have
−1

2iπ

∫
γ1

f (w)

w − z
dw =

−1∑
k=−∞

(z − z0)p
1

2iπ

∫
γ1

f (w)

(w − z0)p+1
dw =

−1∑
−∞

an(z − z0)n.

The series
∑
n≥0

an(z − z0)n converges uniformly on

{z ∈ C; |z − z0| ≤ r < r2}.BLEL Mongi Global Expression of Cauchy’s Theorem
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The series
∑
n≤−1

an(z − z0)n converges uniformly on

{z ∈ C; |z − z0| ≥ r ′ > r1}. Thus if we take a compact subset K
of Ω, there exists r and r ′ such that
K ⊂ {z ∈ C; r ′ ≤ |z − z0| ≤ r} ⊂ {z ∈ C; r1 < |z − z0| < r2} and

then the series
∑
n∈Z

an(z − z0)n converges uniformly on K .
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• Uniqueness of the coefficients.

Assume that f (z) =
+∞∑

n=−∞
bn(z − z0)n and the series converges

uniformly on any compact subsets of the annulus
{z ∈ C; s1 < |z − z0| < s2}. Let s1 < r < s2 and k ∈ Z.

f (w)

(w − z0)k+1
=

+∞∑
n=−∞

bn
(w − z0)n

(w − z0)k+1
, with w = z0 + reiθ,

θ ∈ [0, 2π], then
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1

2iπ

∫
γr

f (w)

(w − z0)k+1
dw =

1

2π

∫ 2π

0

f (z0 + reiθ)

(reiθ)k
dθ = bk .

Thus the coefficients bk are uniquely determined.
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Remarks

Let f be a holomorphic function on the annulus
{z ∈ C; 0 < |z − z0| < r}.

1. z0 is an isolated singularity.

f (z) =
+∞∑
n=0

an(z − z0)n +
−1∑

n=−∞
an(z − z0)n.

The series
∑
n≥0

an(z − z0)n converges for |z − z0| < r and the

series
∑
n≤−1

an(z − z0)n converges for |z − z0| > 0.

2. In the case of a removable singularity (or regular point), the
singular part is zero indeed

an =
1

2iπ

∫
γs

f (w)

(w − z0)n+1
dw , with 0 < s < r . If n < 0,

|an| ≤
1

sn
sup

|w−z0|=s
|f (w)| −→

s→0
0, thus an = 0 if n < 0.

3. If z0 is a pole of order m, the singular part is
−1∑

n=−m
an(z − z0)n

and a−m 6= 0, because lim
z→z0

(z − z0)mf (z) = α, with α ∈ C∗.
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Definition

If z0 is an isolated singularity of a holomorphic function f on
Ω \ {z0} and if

f (z) =
+∞∑
−∞

an(z − z0)n on the annulus

{z ∈ C; 0 < |z − z0| < r} ⊂ Ω. The number a−1 is called the
residue of f at z0 and denoted by: Res(f , z0).
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Remarks

1. If f is a holomorphic function on {z ∈ C; 0 < |z − z0| < r},
for 0 < s < r ,

a−1 =
1

2iπ

∫
γs

f (w) dw = Res(f , z0).

2. (The Bessel’s functions)

Let f (z) = e
w
2

(z− 1
z

).

f (z) = e
w
2

(z− 1
z

) =
+∞∑
−∞

Jn(w)zn.

Jn(w) =
1

2iπ

∫
C(0,1)

e
w
2

(z− 1
z

) dz

zn+1
.
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Rouché’s Theorem
Local Inversion Theorem and the Open Mapping Theorem

Mittag-Leffler’s Theorem
Evaluation of Some Definite Integrals

Theorem (Residue at a simple pole)

If f has a simple pole at z0, then

Res(f , z0) = lim
z→z0

(z − z0)f (z).

In particular if f (z) =
g(z)

h(z)
, with h′(z0) 6= 0, h(z0) = 0 and

g(z0) 6= 0, then Res(f , z0) =
g(z0)

h′(z0)
.
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Examples

• If f is a holomorphic function and z0 is a zero of order k for f ,

then z0 is a simple pole for the function
f ′

f
and Res(

f ′

f
, z0) = k .

Indeed f (z) = (z − z0)kg(z), with g(z0) 6= 0, thus
f ′(z)

f (z)
=

k

(z − z0)
+

g ′(z)

g(z)
.

• If z0 is a pole of order k for f , then z0 is a simple pole for the

function
f ′

f
and Res(

f ′

f
, z0) = −k .

Indeed f (z) =
g(z)

(z − z0)k
, with g(z0) 6= 0, thus

f ′(z)

f (z)
=

−k
(z − z0)

+
g ′(z)

g(z)
.
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Theorem (Residue at a pole of order m)

If z0 is a pole of order m for f , then

Res(f , z0) =
1

(m − 1)!
lim
z→z0

dm−1

dzm−1
((z − z0)mf (z)) .
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Theorem (The Residue Theorem)

Let z1, . . . , zp in Ω and γ a cycle in Ω \ {z1, . . . , zp} such that
Ind(γ, z) = 0 for all z 6∈ Ω. If f : Ω \ {z1, . . . , zp} −→ C is a
holomorphic, then∫

γ
f (z) dz = 2iπ

p∑
j=1

Res(f , zj)Ind(γ, zj).
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Proof
Let Dj be a disc centered at zj and zk 6∈ Dj , for all k 6= j . Then for
all z ∈ Dj

f (z) =
+∞∑

n=−∞
an,j(z − zj)

n, z 6= zj .

Define the function fj by:

fj(z) =
−1∑

n=−∞
an,j(z − zj)

n.

fj is a holomorphic on C \ {zj} and the function F = f −
p∑

j=1

fj is

holomorphic on Ω \ {z1, . . . , zp} and can be extended to a
holomorphic function on Ω.
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By Cauchy’s theorem

∫
γ
F (z) dz = 0. Then

∫
γ
f (z) dz =

p∑
j=1

∫
γ
fj(z) dz = 2iπ

p∑
j=1

Res(f , zj)Ind(γ, zj).
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Corollary

Let f be a holomorphic function on an open set Ω ⊂ C and let

ϕ =
g

h
, where g and h are two holomorphic functions on Ω and h

is not the zero function. (We say that ϕ is meromorphic). Let Γ be
a simple closed piecewise continuously differentiable path in Ω and
oriented counterclockwise (i.e. the index of Γ on any interior point
to Γ is 1 and vanishes on any exterior point of Γ). Assume that ϕ
has p different zeros a1, a2, . . . , ap with multiplicity
m1,m2, . . . ,mp respectively and has q different poles
b1, b2, . . . , bq with multiplicity n1, n2, . . . , nq respectively in Ω.
Assume that these zeros and poles are not on Γ. Then

1

2iπ

∫
Γ
f (z)

ϕ′(z)

ϕ(z)
dz =

p∑
j=1

mj f (aj)−
q∑

j=1

nj f (bj).

In particular if f (z) ≡ 1, then

1

2iπ

∫
Γ

ϕ′(z)

ϕ(z)
dz =

p∑
j=1

mj −
q∑

j=1

nj = Z − P,

with Z (resp P) the number of zeros (resp of the number of poles)
of ϕ in the interior of Γ. (The zeros and poles are counted
according to their order of multiplicity.)
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Remark

If we replace ϕ by its representation in polar coordinates,
ϕ(z) = Re iψ, with R = |ϕ(z)| and ψ = Arg(ϕ((z)). We have
dϕ = d(Re iψ) = e iψ(dR + iRdψ). Thus, by Corollary 4.2, with
f = 1, we have

Z−P =
1

2iπ

∫
Γ

ϕ′(z)

ϕ(z)
dz =

1

2iπ

∫
Γ

dR

R
+

1

2π

∫
Γ
dψ =

1

2iπ
lnR

]Γ(1)

Γ(0)
+
ψ

2π

]Γ(1)

Γ(0)
,

with Γ(t) is a representation of Γ (oriented counterclockwise).
Since Γ is a closed curve, we have

Z − P =
1

2π
Argϕ(z)

]Γ(1)

Γ(0)
=

1

2π
Argϕ(Γ(1))− 1

2π
Argϕ(Γ(0)).

Since Γ(0) = Γ(1), Arg(ϕ(Γ(1))−Arg(ϕ(Γ(0)) = 2kπ, with
k ∈ Z.
We write sometimes ∆ΓArgϕ(z) = 2π(Z − P), which is called the
argument principle. Indeed Z − P is the index of the closed curve
ϕ ◦ Γ at 0 which is interpreted as the number of times that the
curve ϕ ◦ Γ turns around the origin.
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The theorem presented in this section is useful to localize the zeros
of a holomorphic function and we derive another proof of the
fundamental theorem of Algebra, (D’Alembert’s theorem).

Theorem (Rouché’s Theorem)

Let f and g be two holomorphic functions on a neighborhood of
the disc {z ∈ C; |z − a| ≤ r} and such that
|f (z)− g(z)| < |f (z)|; ∀ z ∈C(a, r) = {z ∈ C; |z − a| = r}, then
f and g have the same number of zeros inside the disc D(a, r).
(The zeros are counted according to their order of multiplicity.)
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Proof
The function h =

g

f
is holomorphic outside the zeros of f and

|1− h(z)| < 1 for all z ∈C(a, r) and
h′

h
=

g ′

g
− f ′

f
. Let γ be the

circle centered at a and of radius r and let Γ(t) = h ◦ γ(t),
Γ′(t) = γ′(t).h′(γ(t)).

∫
γ

h′(w)

h(w)
dw =

∫ 2π

0

h′(a + reit)

h(a + reit)
ireit dt =

∫ 2π

0

Γ′(t)

Γ(t)
dt

=

∫
Γ

dw

w
= 2iπInd(Γ, 0) = 0,
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because 0 is in the unbounded connected component of the
complementary of the support of Γ. Thus

1

2iπ

∫
γ

g ′(w)

g(w)
dw =

1

2iπ

∫
γ

f ′(w)

f (w)
dw .

1

2iπ

∫
γ

g ′(w)

g(w)
dw is the number of zeros of g inside the disc

D(a, r), and
1

2iπ

∫
γ

f ′(w)

f (w)
dw is the number of zeros of f inside

the disc D(a, r).
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Remark

The Rouché’s theorem remains valid if we replace the circle by a
closed curve such that any point inside the curve has an index
equal to 1.

Corollary (D’Alembert’s Theorem (Fundamental
Theorem of Algebra))

Let P be a polynomial of degree n ≥ 1, then P has n zeros in C
counted according to their order of multiplicities.
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Proof
If P(z) = anz

n + . . .+ a0, then for |z | large enough,

|P(z)− anz
n| < |an||zn|, because lim

|z|→+∞

∣∣∣P(z)− anz
n

anzn

∣∣∣ = 0. It

results that P has the same number of zeros that the polynomial
Q(z) = anz

n.
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Rouché’s Theorem
Local Inversion Theorem and the Open Mapping Theorem

Mittag-Leffler’s Theorem
Evaluation of Some Definite Integrals

Example

Let f be a holomorphic function on a neighborhood of the disc
{z ∈ C; |z | ≤ 1} and such that |f (z)| < 1 for all |z | = 1. The
equation f (z) = zn has exactly n solutions inside the unit disc. In
particular f has only one fixed point z0, (f (z0) = z0).
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We present now a generalization of the above theorem and we still
called it the Rouché’s theorem.

Theorem (Rouché’s Theorem)

Let Ω be an open subset of C and a1, . . . , am, m points in Ω. Let
Γ be a simple piecewise continuously differentiable closed curve in
Ω \ {a1, . . . , am}. If f , g : Ω \ {a1, . . . , am} −→ C are two
holomorphic functions such that |g(z)| < |f (z)| for all z ∈ Γ, then
the difference Z − P between the number of zeros and the number
of poles is the same for f and f + g inside Γ. (The number of
zeros and the number of poles are counted according to their order
of multiplicity).
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Proof
Let t be a real variable in [0, 1]. Then
|f (z) + tg(z)| ≥ | |f (z)| − t|g(z)| | > 0 for all z on Γ. Set

N(t) =
1

2iπ

∫
Γ

f ′(z) + tg ′(z)

f (z) + tg(z)
dz .

It is clear that N(t) is a continuous function and N(t) represents
the difference between the number of zeros and the number of
poles of f (z) + tg(z) inside Γ. Since N(t) is always an integer the

function N is constant. But N(0) =
1

2iπ

∫
Γ

f ′(z)

f (z)
dz is the

difference Zf − Pf inside Γ for f and

N(1) =
1

2iπ

∫
Γ

f ′(z) + g ′(z)

f (z) + g(z)
dz represents the difference Z − P

inside Γ for f + g and we have N(1) = N(0).
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Examples

1. We look for the number of zeros of the polynomial
z4 + 2z2 + 3 inside the disc D(0, 2).
Let f (z) = z4 and g(z) = z4 + 2z2 + 3.
|f (z)− g(z)| ≤ 11 < |f (z)| = 16 for |z | = 2. Thus by
Rouché’s theorem, f and g have the same number of zeros
inside the disc D(0, 2) which is equal to 4.

2. We consider the polynomial P(z) = z7 + 5z4 + z3 − z + 1.
The polynomial P has exactly 4 roots inside the unit disc D,
indeed the polynomial P1(z) = 5z4 has 4 roots inside the unit
disc D and |P(z)− P1(z)| < |P1(z)| for all |z | = 1.
The polynomial P has exactly 3 roots inside the annulus
{z ∈ C; 1 < |z | < 2}, indeed the polynomial P2(z) = z7 has
7 roots inside the disc D(0, 2) and |P(z)− P2(z)| < |P2(z)|
for all |z | = 2.

3. If 1 < a ∈ R, the equation z + e−z = a has only one solution
inside the half plane {z ∈ C; <z ≥ 0}. Indeed we consider
the closed curve defined by [−iR, iR] juxtaposed with the
semicircle |z | = R > 0 inside the half plane {z ∈ C; <z ≥ 0}.
Set f (z) = z − a and g(z) = e−z . If a > 1 then, on the
y−axis, |z − a| ≥ a > |e−iy | = 1. On the semicircle, |e−z | ≤ 1
and |z − a| ≥ ||z | − a| > 1 if R > 1 + a. Thus, if R > 1 + a,
we have |f (z)| > |g(z)| on the closed curve. Then, by
Rouchś’s theorem, z − a and z − a + e−z has the same
number of zeros inside the closed curve.

4. We consider the function f (z) = zm +
1

zm
defined on C∗. We

claim to prove that f takes each non real number exactly m
times when z is inside the unit disc. i.e. if a = a1 + ia2,
a2 6= 0, then the equation f (z)− a has m zeros inside the unit
disc.
If z = e iθ, θ ∈ [0, 2π], f (z) = e imθ + e−imθ = 2 cosmθ. Thus
g(z) = f (z)− a = 2 cosmθ − a1 − ia2 and the argument of
g(z) has a total variation 0 when θ varies between 0 and 2π
because the image of the unit circle is an interval. Thus,
∆Arg(g(z)) = 0 = Z − P, where Z is the number of zeros of
g inside the unit disc and P is the number of poles inside.
But g has m poles inside the unit disc, then
Z − P = Z −m = 0⇒ Z = m.
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Theorem
[The open mapping Theorem]
Let f be a non constant holomorphic function on a domain Ω 3 z0

and let k be the order of multiplicity of the root z0 for the function
f (z)− f (z0). Then there exists an open neighborhood U of z0, an
open neighborhood V = f (U) of f (z0) such that for all w 6= f (z0)
in V , there exist k distinct points z1, . . . , zk in U such that
f (zj) = w , for all 1 ≤ j ≤ k .
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Corollary

Any non constant holomorphic function on a domain Ω is open.

Corollary

If f : Ω −→ C is an injective holomorphic function, then f ′(z) 6= 0
for all z ∈ Ω.
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Proof of theorem 6.1
The zeros of f ′(z) and f (z)− f (z0) are isolated, thus there exists
r > 0 such that D(z0, r) ⊂ Ω and f ′(z) 6= 0,
f (z)− f (z0) 6= 0, ∀ z ∈ D(z0, r) \ {z0}. Let γ be the circle of
center z0 and radius r . We have

1

2iπ

∫
γ

f ′(z)

f (z)− f (z0)
dz = Ind(f ◦ γ, f (z0)) = k . (4)
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Let V be the connected component of C \ =f ◦ γ which contains
f (z0). V is a open subset. Let U = D(z0, r) ∩ f −1(V ), then U is
open because f is continuous and z0 ∈ U. Since the mapping
w 7−→ Ind(f ◦ γ,w) is constant on the connected component V of
C \ =f ◦ γ which contains f (z0), then by identity (4)
Ind(f ◦ γ,w) = k, ∀ w ∈ V . Thus f (z)− w has k solutions in
D(z0, r) for all w ∈ V . The solutions are different because
f ′(z) 6= 0 in D(z0, r) \ {z0} and we have f (U) = V .
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Theorem
(Local inversion Theorem)
Let f be a holomorphic function on a domain Ω. Let z0 ∈ Ω and
w0 = f (z0). If f ′(z0) 6= 0, then there exist an open neighborhood
U of z0 and an open neighborhood V of w0 such that f is bijective
from U into V . The inverse function f −1 is holomorphic.
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Proof
The existence of U, V , f −1 results by theorem 6.1, the function
f −1 is continuous because f is open. Furthermore f ′ never
vanishes by Corollary 6.3. Thus f −1 is holomorphic.

Corollary

Let f be an injective holomorphic function on an open subset Ω,
then f (Ω) is an open subset of C and f is an analytic isomorphism
from Ω onto f (Ω).
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Remark

The function f (z) = ez is non injective on C and f ′(z) 6= 0 for all
z ∈ C. This example shows that we can not replace in the above
corollary the assumption f injective by f ′(z) 6= 0; ∀ z ∈ Ω.
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Remark

We consider U and V respectively the neighborhood of z0 and of
w0 = f (z0) as in theorem 6.1 and assume that k = 1 (i.e.
f ′(z0) 6= 0). By residue theorem, the unique solution z = g(w) of
the equation w = f (z) for w ∈ V is given by:

g(w) =
1

2iπ

∫
γ

zf ′(z)

f (z)− w
dz , (5)

where γ is the circle C(z0, r) of center z0 and radius r . More
generally for any holomorphic function h on Ω, we have

h ◦ g(w) =
1

2iπ

∫
γ

h(z)f ′(z)

f (z)− w
dz . (6)

It follows from the explicit formula of g(w) that g is holomorphic.BLEL Mongi Global Expression of Cauchy’s Theorem
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Theorem (Mittag-Leffler’s Theorem)

Let (an)n be a sequence of complex numbers such that the
sequence (|an|)n is increasing and |a1| > 0. If
f : C \ {an; n ∈ N} −→ C is a holomorphic function such that an
is a simple poles of f , whenever n ∈ N, (thus lim

n→+∞
|an| = +∞).

We assume that there exists a sequence of circles (CN)N centered
at the origin such that the sequence (RN)N of their radius is
increasing and limN→∞ RN = +∞ and the poles of f are not on
CN for all N ∈ N. We assume also that there exists M such that
|f | < M < +∞ on the circles CN , whenever N ∈ N. Then

f (z) = f (0) +
+∞∑
n=1

Res(f , an)
[ 1

z − an
+

1

an

]
. (7)
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Proof

For w ∈ C which is not a pole of f , the function g(z) =
f (z)

z − w
has w and aj as poles, whenever j ∈ N. We have

Res(g , an) = lim
z→an

(z − an)
f (z)

z − w
=

Res(f , an)

an − w
and

Res(g ,w) = lim
z→an

(z − w)
f (z)

z − w
= f (w).

Then,

1

2iπ

∫
CN

f (z)

z − w
dz = f (w) +

∑
|an|<RN

Res(f , an)

an − w
.
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We take this formula at 0, we find

1

2iπ

∫
CN

f (z)

z
dz = f (0) +

∑
|an|<RN

Res(f , an)

an
.

We deduce from the last formulas that

f (w)− f (0) =
∑
|an|<RN

[(Resf , an)

an
− Res(f , an)

an − w

]
+

1

2iπ

∫
CN

f (z)(
1

z − w
− 1

z
)dz

=
∑
|an|<RN

[(Resf , an)

an
− Res(f , an)

an − w

]
+

w

2iπ

∫
CN

f (z)

z(z − w)
dz .
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If z ∈ CN , |z − w | ≥ |z | − |w | = RN − |w | and∣∣∣∣∫
CN

f (z)

z(z − w)
dz

∣∣∣∣ ≤ 2πMRN

RN(RN − |w |)
−→

n→+∞
0.

Then

f (z) = f (0) +
+∞∑
n=1

Resf (an)
[ 1

z − an
+

1

an

]
.
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Remark

The sequence (CN)N of circles can be replaced by a sequence of
closed simple curves such that limN→∞ RN = +∞, with
RN = infz∈CN

|z |.
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Example

In use of Mittag-Leffler’s theorem, we prove that

tan z = 2z
+∞∑
n=0

1(
(2n+1)π

2

)2
− z2

.

Indeed, we consider the function g(z) = tan z . The poles of g are
zk = π

2 + kπ, k ∈ Z and the correspondent residue is

Res(g , zk) = lim
z→π

2
+kπ

(z−π
2
−kπ) tan z = lim

z→π
2

+kπ

(z − π
2 − kπ) sin z

cos z
= −1.

We show that |g | is bounded on all the circles
CN = {z ∈ C; |z | = Nπ}. Recall that if z = x + iy , then
| cos z |2 = cos2 x + sinh2 y and | sin z |2 = sin2 x + sinh2 y .

If |=(z)| > 1, | tan z |2 =
sin2 x + sinh2 y

cos2 x + sinh2 y
≤ cotanh(1).

However if |=(z)| ≤ 1, x = <(z) is in one of the intervals
[−Nπ,−Nπ + 1] and [Nπ − 1,Nπ]. We remark that

| cos z | > | cos x | ≥ cos(1) and consequently | tan z |2 ≤ cosh2 1

cos2 1
.

The function |g(z)| is bounded on CN by a constant independent
of N. Then by Mittag-Leffler’s theorem

tan z = −
+∞∑
n=1

( 1

z − (nπ + π
2 )

+
1

z + (nπ + π
2 )

)
=

+∞∑
n=1

2z

(nπ + π
2 )2 − z2

.
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Example

In use of Mittag-Leffler’s theorem, we prove that

1

sin z
=

1

z
+

+∞∑
n=1

2(−1)nz

z2 − n2π2
.

The function f (z) =
1

sin z
− 1

z
has 0 as a removable singularity.

Each point z = kπ, (k ∈ Z∗) is a simple pole of f because

lim
z→kπ

(z − kπ)f (z) = lim
z→kπ

(z − kπ)(z − sin z)

z sin z
= (−1)k . (We

leave to the reader to show that on the sequence of circles (CN)N

of center 0 and radius respective RN = Nπ +
π

2
, f is uniformly

bounded.)
Take the sequence (an = nπ)n∈Z∗ . By Mittag-Leffler’s theorem,
We have

f (z) = f (0) +
+∞∑
k=1

(−1)k
( 1

z − kπ
+

1

kπ
+

1

z + kπ
− 1

kπ

)
=

+∞∑
k=1

2(−1)kz

z2 − k2π2
.
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where R is a rational function without poles on the unit circle. We
take z = eit , t ∈ [0, 2π] and γ(t) = eit , t ∈ [0, 2π].

I =

∫
γ

1

iz
R(

1

2i
(z − 1

z
),

1

2
(z +

1

z
)) dz

= 2π
∑

Res
(1

z
R(

1

2i
(z − 1

z
),

1

2
(z +

1

z
))
)
.

The summation is extended to the poles of the function(1

z
R(

1

2i
(z − 1

z
),

1

2
(z +

1

z
))
)

in the unit disc.
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Example

I =

∫ 2π

0

dt

a + sin t
, a > 1.

I = 2πRes(
2i

z2 + 2iaz − 1
, z0), where z0 the only pole of the

function (
2i

z2 + 2iaz − 1
) in the unit disc. z0 = −ia + i

√
a2 − 1.

The residue is
i

z0 + ia
, and thus∫ 2π

0

dt

a + sin t
=

2π√
a2 − 1

.
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where P and Q are two polynomials such that degQ ≥ degP + 2
and Q(x) 6= 0, ∀x ∈ R.

We consider the function f (z) =
P(z)

Q(z)
and the closed curve γR

defined by the semicircle of radius R and centered at 0 situated
inside the upper half plane H+ = {z = x + iy ; y > 0}. Let ΓR be
the oriented closed curve obtained by the juxtaposition of γR and
the interval [−R,R]. (figure 1). We choose R large enough such
that the poles of f are situated inside the disc
D(0,R) = {z ∈ C ; |z | < R}.
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∫
ΓR

f (z) dz =

∫
γR

f (z) dz +

∫ R

−R
f (x) dx = 2iπ

∑
=zj>0

Res(f , zj).

The summation is extended to the poles of the function f situated
inside the upper half plane H+ = {z = x + iy ; y > 0}. 1

R−R 0

γR

Figure: Figure 1-4
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Lemma (First Jordan’s Lemma)

Let f be a continuous function defined on a sector θ0 ≤ θ ≤ θ1.
We assume that

lim
R→+∞

R sup
z∈AR

|f (z)| = 0,

then lim
R→+∞

∫
AR

f (z) dz = 0, where AR is the curve defined by the

arc θ0 ≤ θ ≤ θ1 and |z | = R.
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The lemma results by dominated convergence theorem.

In use of the first Jordan’s lemma,∫ +∞

−∞
f (x) dx = 2iπ

∑
=zj>0

Res(f , zj).
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Example

I =

∫ +∞

0

dx

1 + x6
=

1

2

∫ +∞

−∞

dx

1 + x6
.

The poles of f inside the upper half plane

H+ = {z = x + iy ; y > 0} are z1 = e
iπ
6 , z2 = e

iπ
2 = i and

z3 = e
i5π

6 . Thus I = π
3 .
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First case P and Q are two polynomials such that
degQ ≥ degP + 2, Q(x) 6= 0, ∀x ∈ R and λ a real number. Let

f (z) =
P(z)

Q(z)
eiλz .

If λ ≥ 0, we integrate the function f on the curve γR ∪ [−R,R],
figure 1 and we find∣∣∣∫

γR

f (z) dz
∣∣∣ ≤ ∫ π

0
|f (Reiθ)|R dθ −→

R→+∞
0.
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This yields that

∫ +∞

−∞

P(x)

Q(x)
eiλx dx = 2iπ

∑
=zj>0

Res(f , zj).

If λ ≤ 0, we remark that I (−λ) = I (λ), or we can integrate the
function f on the closed curve defined by the juxtaposition of the
interval [−R,R] and of the semicircle of radius R and centered at
0, situated inside the lower half plane H− = {z = x + iy ; y < 0},
we find,

∫ +∞

−∞

P(x)

Q(x)
eiλx dx = −2iπ

∑
=z<0

Res(f , z), the summation

is extended to the poles of f situated inside the lower half plane
H− = {z = x + iy ; y < 0}.
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Second case λ ∈ R∗, P and Q are two polynomials such that
degQ = degP + 1 and Q(x) 6= 0, ∀x ∈ R. We set

f (z) =
P(z)

Q(z)
eiλz and g(z) =

P(z)

Q(z)
.

The integral is convergent but not absolutely convergent. We can
make an integration by parts and we return to the above case. To
evaluate the integral, it suffices to evaluate the integral for λ > 0.
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|
∫
γR

f (z) dz | ≤
∫ π

0
|g(Reiθ)|Re−λR sin θ dθ ≤ M

∫ π

0
e−λR sin θ dθ

≤ 2M

∫ π/2

0
e−λR sin θ dθ ≤ 2M

∫ π/2

0
e

−2λRθ
π dθ =

2M

2λR
(1− e−λR) −→

R→+∞
0,

M = sup
R≥0

R|g(Reiθ)|. (We can deduce that

lim
R→+∞

∫ π

0
e−λR sin θ dθ = 0 by dominated convergence theorem).
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Thus for λ > 0,∫ +∞

−∞

P(x)

Q(x)
eiλx dx = 2iπ

∑
=zj>0

Res(f , zj).
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Example

a > 0, I (λ) =

∫ +∞

−∞

eiλx

x − ia
dx .

If λ > 0, I (λ) = 2iπe−λa.

If λ < 0, I (λ) = 2iπ
∑

Res(f , zj), zj the poles of f inside the

lower half plane, but f don’t have poles in this half plane, thus
I (λ) = 0.

I =

∫ +∞

−∞

sin x

x
. We set f (z) =

eiz

z
. We integrate the function f

on the following closed path (figure 2).
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−R −ε Rε

γr

γR

Figure: Figure 2-4
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To compute this integral, we need the following lemma

Lemma (Second Jordan’s Lemma)

If f (z) =
A

z
+
∑
n≥0

anz
n, f defined on a sector θ0 ≤ θ ≤ θ1. Then∫

γr

f (z) dz −→
r→0

i(θ1 − θ0)A.
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Proof

∫
γr

f (z) dz =

∫ θ1

θ0

f (reiθ)ireiθ dθ = iA

∫ θ1

θ0

dθ+i

∫ θ1

θ0

g(reiθ)ireiθ dθ,

g is a holomorphic function, thus lim
r−→0

∫ θ1

θ0

g(reiθ)ireiθ dθ = 0.
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We come back to the computation of the following integral

I =

∫ +∞

−∞

sin x

x
dx . By residue theorem,

∫ −r
−R

f (x) dx −
∫
γr

f (z) dz +

∫ R

r
f (x) dx +

∫
γR

f (z) dz = 0.

|
∫
γR

f (z) dz | = |
∫ π

0
eiReiθ i dθ| ≤

∫ π

0
e−R sin θ dθ −→

R→+∞
0.

By second Jordan’s lemma

∫
γr

f (z) dz −→
r→0

iπ, thus I = π.
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Example

I = 2

∫ +∞

−∞

x sin ax cos bx

x2 + c2
dx , with a, b ∈ R and c > 0.

We has the following identity
2 sin ax cos bx = sin(a + b)x + sin(a− b)x . Thus
I = =(I1) + =(I2), with

I1 =

∫ +∞

−∞

xe i(a−b)x

x2 + c2
dx , and

∫ +∞

−∞

xe i(a+b)x

x2 + c2
dx .

We remark that if a = b or a = −b, the computation of I turns to
the computation of I1 or I2. We assume that a 6= b and a 6= −b.
I1 = iπe−(a−b)c if a > b and I1 = −iπe(a−b)c if a < b.
Furthermore I2 = iπe−(a+b)c if a > −b and I2 = −iπe(a+b)c if
a < −b. Thus

I = π
(
sign(a− b)e−|a−b|c + sign(a + b)e−|a+b|c

)
.

(sign(x) = 1, if x > 0 and sign(x) = −1, if x < 0.)
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Example

We deduce from the above example that the Fourier Plancherel

transform of the function f (x) =
x

x2 + c2
is the function

g(x) =

∫ ∞
−∞

f (t)e−2iπxtdt = −iπsign(x)e−2π|x |c , ∀ x 6= 0.

The function f is in L2(R) but not in L1(R). The same for its
Fourier Plancherel transform g .
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where Q(x) 6= 0, ∀ x ≥ 0, degQ − degP ≥ 2. We consider the

closed following curve and f (z) =
P(z)

Q(z)
(log z)2. (log z is the

determination (branch) of log z such that log z = ln |z |+ iθ,
0 < θ < 2π.) 1

γR
γr

R

Figure: Figure 3-4
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∫ R

r

P(x)

Q(x)
(ln x)2 dx+

∫
γR

f (z) dz+

∫ r

R

P(x)

Q(x)
(ln x +2iπ)2 dx+

∫
γr

f (z) dz = 2iπ
∑

Res(f ).

The summation is extended to the poles of the function f in C.

According to the hypothese on f ,

∫
γR

f (z) dz −→
R→+∞

0 and∫
γr

f (z) dz −→
r→0

0, thus

2iπ
∑
z∈C

Res(f , z) = 4π2

∫ +∞

0

P(x)

Q(x)
dx − 4iπ

∫ +∞

0
ln x

P(x)

Q(x)
dx .
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Example

I =

∫ +∞

0

ln x

(x + 1)(x2 + 1)
dx .

Res(f , i) = π2(1+i)
16 , Res(f ,−i) = 9π2(1−i)

16 , Res(f ,−1) = −π2

2 .

Thus I = −π2

16 .
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with Q(x) 6= 0 ∀ x ≥ 0, 0 < α < degQ − degP. We set

f (z) =
P(z)

Q(z)
zα−1, with zα−1 = e(α−1) log z , log z is the

determination (branch) of log z such that log z = ln |z |+ iθ,
0 < θ < 2π. We take the closed curve defined by the figure (3).
For R large enough and r small enough,
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∫ R

r

P(x)

Q(x)
xα−1 dx+

∫
γR

f (z) dz+

∫ r

R

P(x)

Q(x)
e2iπ(α−1)xα−1 dx+

∫
γr

f (z) dz = 2iπ
∑
z∈C

Res(f , z).

The summation is extended to the poles of the function f in C.

According to the assumption on f ,

∫
γR

f (z) dz −→
R→+∞

0 and∫
γr

f (z) dz −→
r→0

0.

Then (1− e2iπα)I (α) = 2iπ
∑

z∈CRes(f , z).
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Example

I (α) =

∫ +∞

0

xα−1

x + 1
dx with 0 < α < 1.

Res(f ,−1) = −eiπα, thus I (α) =
π

sinπα
.
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