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Cycles in open sets

Definition

Let v1,...,7vn be closed piecewise continuously differentiable paths
in an open subset Q2 of C. Letl =~1 + ...+, be the formal sum
of these closed paths defined by

n

/ f(z) dz=> / f(z) dz,

r j=1"7

for all continuous function f on . I will be called a cycle.
By definition the index of the cycle I at a point

z ¢ |7y (support ;) is

Ind(T, 2) E Ind( 'yj,



Cycles in open sets

The main theorem in this chapter is the following:

Theorem

Let f € H(QQ) and T a cycle such that Ind(I',z) =0,V z & Q then
1.

1 f
f(z).Ind(l',z) = / (w) dw, VY ze€Q\Suppl.
r

2im w—2z

2. /f(w) dw = 0.

r
3. IfT1 and Iy are two cycles in €2 such that

Ind(T1,z) = Ind(T2,2); V z € Q, then
f(w)dw= | f(w) dw.

BLEL Mongi Global Expression of Cauchy’s Theorem



Cycles in open sets

Proof
2) and 3) are deduced from 1), indeed to prove 2) with the
condition Ind(l",z) =0, V z € C\ Q, we consider the function F

defined on Q by

Jw=2)f(w) if w#z
F(W)—{ F(z) =0 '

1 1 F(w)
2 |- w) dw 2im w2z dw (z)Ind(l,z) =0

To prove 3) it suffices to consider the cycle I =T — 5.
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Cycles in open sets

To prove

£(2).Ind(T, 7) = zi /r W) (1)

17T w—Zz

for z € Q \ Suppl, it suffices to prove

/ fw) dw—/f(z) dw = 0.
rw-—z rw-—z
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Cycles in open sets

For the proof of the theorem 1.2, we need the following lemma:

Lemma

Let f: Q — C be a holomorphic function and g: Q@ — C the
function defined by

fllz) if z=w
g(z,w) = 4 f(w)—f(2)

o if z4£w’

g is continuous and whenever w € Q, the mapping z — g(z, w)
is holomorphic.
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Cycles in open sets

Proof of lemma 1.3

The function g is continuous on Q\ {(a, a); a € C}. For

(a,a) € Q, there exists R > 0 such that D(a, R) C Q. Let r < R,
w,z € D(a, r) and the path -y defined by ~(t) = tw + (1 — t)z for
te[0,1]. If w#z.

1 1
[ roma = 2 [ rampo
0 0

w—Zz

1 1 )
_ W_Z/O(foy)(t) dt
_ f(W) — f(z) :g(W,Z)-

w—2z
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Cycles in open sets

1
Thus g(w,z) — g(a,a) = / (f'(7(t)) — f'(a)) dt. Since f'is

0
continuous, g is continuous at (a, a).
We Recall the Fubini's theorem.

Theorem (The Fubini’s Theorem)

Let g: [a, b] x [c,d] — C be a continuous function, then

/ab </Cdg(t,s) ds> dt:/cd </abg(t,s) dt) ds.
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Cycles in open sets

Proof of theorem 1.2 )
The function h: Q — C defined by h(z) = 5 /g(w,z) dw is
™Jr

continuous on Q. Indeed, let (z,), be a convergent sequence in
to z € Q. The function g is uniformly continuous on any compact.
We take K1 = Suppl and K5 a closed disc centered at z. We
deduce that lim g(w,z,) = g(w, z) uniformly with respect to
n——+00

w € Ki. The result follows. (We can use the dominated
convergence theorem since for any compact K of €2, g is bounded

on Supp(l) x K.)
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Cycles in open sets

To prove that h is holomorphic on 2, we use Morera's theorem and
Fubini theorem.
Let A be a triangle in €.

/aAh(z) dz = /aA <2:il7r/rg(w,z) dw> dz

1
2im Jr (/6A g(w.z) Z) S

thus h is holomorphic.
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Cycles in open sets

We prove now that h = 0 on . For this we construct an entire
function H, equal to hon Q and lim H(z)=0.

|z|]—+o0
Let V = {z € C\ Suppl; Ind(l',z) = 0}. V is a non empty open
subset, Q¢ C V. Let h; be the function defined on V by

ha(z) = 1 f(w)

2 Jrw—2z

dw.

The functions h and h; coincide on Q NV, hy is holomorphic on
V. We define the function H on QU V by

BLEL Mongi Global Expression of Cauchy’s Theorem



Cycles in open sets

[ h(z) if zeQ
H(z) = {hl(z) if zeV’
H is holomorphic on Q U V = C because Q¢ C V.
We shall prove that lim H(z) =0.

|z|]—+o0

Since I is a cycle, then for |z| large enough, Ind(I', z) = 0. Thus
1 f
the function H is defined by H(z) = —— / RiCO R
r

2imw w—z
f 1
/(W) dW’ < sup  |F(W)|L(T) —> 0, with L(T)
rw-—=z ‘Z’ - R wéeSuppl |z| =400

the length of T.

O
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Cycles in open sets

Remark

Let f be a holomorphic function on D(0, R) and f(z Z anz"

the expansion on power series of f. For all 0 < r < R, We denote
7, the closed curve defined by ~,(t) = re't, for t € [0,2x]. For
0<n<n<R,letl =, — v, be the cycle and the function

f
g(z) = % defined on the punctured disc Q = D(0, R) \ {0} for
z

n € Ng. Then Ind(l',z) =0 for all z ¢ Q, thus /g(z)dz =0. We
r

L[ gL
i zntl o 2ir zntl’

I I
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Simply Connected Domains

Definition

Let vo,71: [0,1] — Q be two closed curves. The curves 7y and
~1 are called homotopically equivalent in S if there exists a
continuous function H: [0,1] x [0,1] — Q such that

H(t,0) = vo(t), H(0,s) = H(1,s) and H(t,1) = v1(t),

Vs, t € [0,1].

We say that H is an homotopy between o and ;.

We remark that for all s € [0, 1], the mapping vs(t) = H(t,s) is a
closed curve.
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Simply Connected Domains

Example

If Q is a convex open set, all closed curve vy in Q0 is homotopically
equivalent to a point. It suffices to take the mapping

H(t,s) = (1 —s)v(t) +s.a, a€ Q. The mapping H is continuous,
H(t,0) = o(t), H(t,1) = a, H(0,s) = H(1,s) because

70(0) = 70(1).

We have the same result if Q0 is starlike with respect to a point.
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Simply Connected Domains

Lemma

The homotopy's relationship is an equivalence relationship.

o Reflexivity Any closed curve 7y is homotopically equivalent to
itself. It suffices to consider H(t,s) = ~(t), V s € [0,1].

e Symmetry If 79 and ~; are homotopically equivalent with
respect to the mapping H. Let F: [0,1] x [0,1] — Q be the
mapping defined by F(t,s) = H(t,1—s). Then

F(t,0) = H(t,1) = y1(t), F(t,1) = H(t,0) = vo(t). We deduce
that 41 and 7 are homotopically equivalent.
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Simply Connected Domains

e Transitivity If 79 and ~; are homotopically equivalent with
respect to the mapping H(t,s) and - and 72 are homotopically
equivalent with respect to the mapping G(t,s). The mapping
H(t,2s) 0<s<1
F = ’ -~ =2,
(t) {G(t,25— 1) l<s<1
the homotopy between the closed curves o and ».

F is continuous and realizes
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Simply Connected Domains

Definition

An open subset Q of C is called a simply connected domain if

1. Q is a domain.

2. Any closed curve in €0 is homotopically equivalent to a point.
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Simply Connected Domains

Examples

1. Any convex open subset of C is simply connected and more
generally any starlike open subset with respect any point is
simply connected. Indeed if Q2 is starlike with respect to a
point a and ~y: [0,1] — Q a closed curve. The mapping
H(t,s) = sy(t) + (1 — s)a is a homotopy between ~ and a.

2. The punctured disc or the annulus are not simply connected.
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Simply Connected Domains

Theorem

Let Tg and 1 be two closed piecewise continuously differentiable
curves homotopically equivalent in QQ, then
Ind(Fo,z) =Ind(l1,2), ¥V z € Q.
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Simply Connected Domains

Remarks

1. IfQ is a simply connected domain, then for all closed
piecewise continuously differentiable curve in €,
Ind(7,z) = 0, whenever z € Q2. (This remark can be taken
also as a definition of a simple connected domain).

2. If Q is simply connected domain, there is no bounded
connected components of €.
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Simply Connected Domains

Corollary

If Q is a simply connected domain, then
a) for all holomorphic function f on Q and for any closed piecewise

continuously differentiable curve ~y in €, / f(z) dz =0,
¥

b) any holomorphic function f on Q has a primitive in .

Theorem
If Q is a simply connected domain and f a holomorphic on Q2
without zeros, there exists a holomorphic function g on Q such

that f = 8.
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Simply Connected Domains

Proof
/ eh

f
Let h be a primitive of a then (7)’ = 0. There exists c € C*

such that e" = ¢f, if Cis a logarithm of ¢ € C*, the function
g = h — C answer the theorem.
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Simply Connected Domains

For the proof of theorem 2.6 we need the following lemma:

Lemma

Let 4o, 71 : [0,1] — C be two closed piecewise continuously
differentiable curves in C and let zy € C such that

1(t) —20(D)] < 120 —20(D)], ¥ £ € [0.1]. Then
Ind(v0, 20) = Ind(v1, 20)-
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Simply Connected Domains

Proof
t t) — t
If 7(t) = n(t) — 2 ,then 1 — ~(t) = n0(t) —7n(t) The
Yo(t) — 20’ Y0(t) — 20
assumption on -y and 7 yields that |1 — ~(t)| < 1, thus
Ind(y,0) = 0. (0 is in the unbounded connected component of

(C\ Suppy)). But

1 [14(b) 1 [t () Y0(t)
Ind(~,0 dt = — dt =1
0.0 = [ = |G e ez =
Thus Ind(7,0) = Ind(y1, 20) — Ind(y0, 20) = O. .
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Simply Connected Domains

Proof of theorem 2.6

Let H: [0,1] x [0,1] — € be a continuous mapping such that
H(t,0) =To(t), H(t,1) = T'1(t) and H(0,s) = H(1,s) for all
s €[0,1]. Let K = H([0,1] x [0,1]) and € > O such that
d(K,Q°) > 2e > 0. Since H is uniformly continuous on the
compact set K, there exists p € N such that

|H(t,s) — H(t',s")| <eif [t —t/| < % and s — §'| < %.

For each 0 < k < p, we consider the following closed curves

ik . i—1 k.. . .
Yk(t) = H(J;, ;)(pt+1—1)+H(JT, ;)(J—pt), for j—1 < pt < jan
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Simply Connected Domains

k
We have |y(t) — H(t,—)| <eforall t €[0,1] and k =0,...,p.

Indeed for all j — 1 < pt <,

R

u(e)=H(E ) < M )= (e e+ G-pol HC— 2 )

So is for |yk(t) — vk—1(t)| < €. We have then |yo(t) — To(t)| < e
for all t € [0,1].
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Simply Connected Domains

[vp(t) — F1(t)] < € for all t € [0,1].
Let proving now that |yx(t) — z| > e forall 20 ¢ Q, k=0,...,p

and all ¢t € [0,1].

e(t) — 20 > |H(r,,ﬁ) 20— t) — H(t. ).

~ TIx

|H(t, %) — 2| > 2¢ and |y (t) — H(t, £)| <e=|w(t) — zo| > e.
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Simply Connected Domains

We prove now that Ind(~k, zp) = Ind(yk—1, 20)-

Ind(v0, 20) = Ind(lo, z0) and Ind(vp, z0) = Ind(I1, 20).
We have

vk (t) = vk—1(t)] < & < |vk(t) — 20| = Ind(vk, 20) = Ind(yk—1, 20)-

[70(t) — Fo(t)| < e < |v(t) — 20| = Ind(v0,20) = Ind(lo, 2o).
The same result for the third equality. d
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Simply Connected Domains

Corollary

If vo and 1 are two piecewise continuously differentiable curves
and homotopically equivalent in Q, then for all f € H(Q)

/7 0 f(z) dz = A 1 f(z) dz.
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Simply Connected Domains

If Q is a domain of C, the following properties are equivalent

1. Q is simply connected.

2. Two closed curves in € are homotopically equivalent in €.
3. Any holomorphic function on Q has a primitive.

4. If f € H(Q) and 7 a closed piecewise continuously

differentiable curve in Q, then /f(z) dz = 0.
gl

5. For all z € QF, and for any closed piecewise continuously
differentiable curve v in Q, Ind(y, z) = 0.

6. For any holomorphic function f on Q without zeros, there
exists a holomorphic function g on Q such that f = 8.

7. For any holomorphic function f on £ without zeros, there
exists a holomorphic function g on Q such that g2 = f.

8. Q= C or Q is isomorphic to unit disc (Riemann’s theorem).
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Laurent Series

Theorem

Let Q be an open subset containing the annulus

{zeC; 0<n <|z—2z| < rn<+oo0} and let f be a holomorphic
function on Q. Then for all z in the annulus

{z€eC;, n<|z—2|<n}

[ 1) g 1 ),
2ir ), w—z 2ir ), w—z ’

with y1(t) = zo + rie't and v2(t) = zo + relt, t € [0,27].
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Laurent Series

Proof

Thecycle T =741 —ypisin Qand if |a— z0| < < 1,
Ind(T, a) = 0.

If |a— 2| > ro > 1, Ind(T", a) = 0, then Ind(l", a) = 0 for all
a ¢ Q. We derive from theorem 1.2 that

F(2)Ind(T, 2) = —— /r W) .

2imw w—Zz

Butif n < |z —z| < rp, Ind(l", z) =1, thus

f(z)::,l/ f(w) dW—:,l/ de.
2im W=z 21w ww-—z
O
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Laurent Series

Theorem

Let Q be the annulus defined by

Q={ze€C; 0<s <|z— 2| < s2 <+o0}. For any holomorphic
function f on S, there exist a unique sequence (an)ncz such that
whenever z € Q)

+o0
f(z2) =) _an(z—2)", (2)

where

L fw
= Din /% (w — zg)+1 oW, 3

for all n € Z. ~,(t) = zo + re't with s; < r < s and t € [0, 27].

o oo oo o () o o f oo
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Laurent Series

Proof
Let r; and r» be two positive numbers such that s < < rn < s
and let z € Q such that n < |z — z| < rp. By theorem 3.1, we

have
1 f 1 f
2im W=z 21w ww-—z

f(w)

w—2z

1
e Consider the first integral / dw
27

72
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Laurent Series

1 > z— z)k

k=0
- — )k 1
Ifze D % =) Lo,
z € D(z0,r) and w € Az, 1), |(w )| S r2(r2) us
the series Z z__ZOO converges uniformly with respect to w,
n>0

for w € Az, r) and with respect to z for |z — z9| < r, r < ro.
Since the function f is continuous, it is bounded on “(z, r) and
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Laurent Series

k=0

)

) ) 1
e Consider the second integral /
ir J, w—z

1 1 ~1

1
w—z (w—2z2)—(z—2) (z—2) (1 -2 3)

-1 & w—z
(z — z20) Z(z—zs)k'

k=0
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Laurent Series

If r > r,|z— 2| >rand|w — z| = r, then the series

W — Z : .

Z(io)k converges uniformly on Az, r1) with respect to z
z— 2z

k>0

such that |z — zp| > r. The integral of the previous identity yields

o

-1 1
— f — 20)% dw.
2 W —Z kz: Z_Zo)k+1 21#[}/ (W)(W ZO) w
-1 f
If k=—p—1, we have — (w) dw =
2imw ww-—z
-1
1 f(w)
S e = S
k=—00 mn
The series Z an(z — z9)" converges umformly on

n>0
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Laurent Series

The series Z an(z — zp)" converges uniformly on
n<-—1
{ze€C; |z—zy| > r' > n}. Thus if we take a compact subset K
of Q, there exists r and r’ such that
Kc{zeC;, r<|z—z|<r}c{zeC, n<|z—2z|<nr}and
then the series Z an(z — zp)" converges uniformly on K.
neZ
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Laurent Series

e Uniqueness of the coefficients.
—+00

Assume that f(z) = Z bn(z — z0)" and the series converges

n=—o00
uniformly on any compact subsets of the annulus

{zeC; si<|z—2z| <s}. Let sy <r<syand k € Z.

) 3 bn((w—zO)"

(w — zg)k+1 w — z9)k+1’

0 € [0, 27], then

with w = zy + rel?,

n=—oo
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Laurent Series

1 f(w) 1 /27r f(zo + relf)
2ir /Yr (W _ Zo)k+1 dw o Jy (rele)k k

Thus the coefficients by are uniquely determined.
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Laurent Series

Remarks

Let f be a holomorphic function on the annulus
{zeC;, 0< |z— 2| < r}.

1. zy is an isolated singularity.

+00 -1
f(2) =) an(z—2)"+ > an(z—2)".
n=0 n=—o0

The series g an(z — z0)" converges for |z — zp| < r and the
n>0
series g an(z — z9)" converges for |z — zg| > 0.
n<-—1

2. In the case of a removable singularity (or regular point); the
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Laurent Series

Definition

If zy is an isolated singularity of a holomorphic function f on
Q\ {z} and if
“+oo

f(z) = Z an(z — z9)" on the annulus

{zeC; 0<|z—2z| < r} CQ. The number a_; is called the
residue of f at zy and denoted by: Res(f, zp).
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Laurent Series

Remarks

1. If f is a holomorphic function on {z € C; 0 < |z — zo| < r},
for0<s<r,

1
a1 = 2171'/ f(w) dw = Res(f, z).

s

2. (The Bessel’s functions)
Let f(z) = e2(=2),

—+00
flz) =2 =3 Jp(w)z".
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Laurent Series

Theorem (Residue at a simple pole)

If f has a simple pole at zy, then

Res(f, zp) = lim (z — z9)f(2).

zZ— 2y
In particular if f(z) = "j’:gi with W (z9) # 0, h(zp) = 0 and
g(2)

g(z0) # 0, then Res(f, zp) = H(z0)"
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Laurent Series

Examples

e If f is a holomorphic function and zy is a zero of order k for f,
/ !

then zy is a simple pole for the function a and Res(?, z9) = k.

Indeed f(z) = (z — z0)*g(z), with g(z0) # 0, thus
o)k &)

f(z) (z—-2) g(2) o
e If zy is a pole of order k for f, then zy is a simple pole for the
/ !

function a and Res(—, zp) = —k.

f
Indeed f(z) = (g(z))k with g(z9) # 0, thus
Z — 20
o)k &)

f2)  (z—2) &)



Laurent Series

Theorem (Residue at a pole of order m)

If zy is a pole of order m for f, then

1 ) dmfl

Res(f 20) = 7 —qy1 i, g1 (2= 20)7F(2)).
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The Residue Theorem

Theorem (The Residue Theorem)

Let z,...,2z, in Q and v a cycle in Q\ {z1,...,zp} such that
Ind(v,z)=0forall z¢ Q. If f: Q\{z1,...,2,} — Cisa
holomorphic, then

p
/ f(z) dz =2ir Z Res(f, zj)Ind(v, z;).
g

j=t
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The Residue Theorem

Proof
Let D; be a disc centered at z; and z, € D;, for all k # j. Then for
all z € D;
“+00
f(z) = Z anj(z —z)", z # z.

n=—oo

Define the function f; by:

-1
)= 3 anilz - a)"
P
f; is a holomorphic on C \ {z;} and the function F = f — fi is
j=1
holomorphic on 2\ {z1,...,2,} and can be extended to a

holomorphic function on €.
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The Residue Theorem

By Cauchy's theorem / F(z) dz=0. Then
gl

/f(z) dz = Z/ fi(z) dz = ZiWZRes(f,zj)Ind(’y,zj).

j=1
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The Residue Theorem

Corollary

Let f be a holomorphic function on an open set Q C C and let
= % where g and h are two holomorphic functions on €2 and h

is not the zero function. (We say that ¢ is meromorphic). Let [ be
a simple closed piecewise continuously differentiable path in Q and
oriented counterclockwise (i.e. the index of ' on any interior point
to I' is 1 and vanishes on any exterior point of I'). Assume that ¢
has p different zeros a1, az, ... ,ap with multiplicity

my, my, ..., mp respectively and has q different poles

b1, by, ..., by with multiplicity n1, na, ..., ng respectively in €.
Assume that these zeros and poles are not on I'. Then

1 ¢'(z) - !
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The Residue Theorem

Remark

If we replace ¢ by its representation in polar coordinates,

©(z) = R, with R = |¢(z)| and ¢ = Arg(¢((2)). We have
dp = d(Rel¥) = e¥(dR + iRd1)). Thus, by Corollary 4.2, with
f =1, we have

1 ¢'(2) 1 (1) 9 qrC
Z-P=_—— dz = — =
2 Jr o(2) 27 2in r R 27T/ = 217T ] )+27T}r((

with ['(t) is a representation of I (oriented counterclockwise).
Since I is a closed curve, we have

(1
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Rouché’s Theorem

The theorem presented in this section is useful to localize the zeros
of a holomorphic function and we derive another proof of the
fundamental theorem of Algebra, (D’Alembert’s theorem).

Theorem (Rouché’s Theorem)

Let f and g be two holomorphic functions on a neighborhood of
the disc {z € C; |z — a|] < r} and such that

If(z) —g(2)| < |f(2)|; Vz€ Ha,r)={z€C; |z—a| =r}, then
f and g have the same number of zeros inside the disc D(a, r).
(The zeros are counted according to their order of multiplicity.)
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Rouché’s Theorem

Proof
The function h = g is holomorphic outside the zeros of f and
f h/ g/ f‘/
|1 — h(z)| < 1forall ze “a,r) and G Let v be the

circle centered at a and of radius r and let ['(t) = ho~(t),

M(t) = 7/(2)-H (7(1)).

! 2w ! it . 27
/h(W) dw = / Matrel), e dt:/ () 4
o 0 0

h(a + reit) r(t)

= /dw = 2irInd(l,0) =0,
r w
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Rouché’s Theorem

because 0 is in the unbounded connected component of the
complementary of the support of I'. Thus

Lofgwm) 1 [fw)
2ir /., g(w) d 2i7r/7 f(w) aw.

/
'i / g'(w) dw is the number of zeros of g inside the disc
2ir /., g(w)

L[ f'(w)

D(a,r), and ——
(2.r). and 5 L F(w)

the disc D(a, r).

dw is the number of zeros of f inside
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Rouché’s Theorem

Remark

The Rouché’s theorem remains valid if we replace the circle by a
closed curve such that any point inside the curve has an index
equal to 1.

Corollary (D’Alembert’s Theorem (Fundamental
Theorem of Algebra))

Let P be a polynomial of degree n > 1, then P has n zeros in C
counted according to their order of multiplicities.
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Rouché’s Theorem

Proof
If P(z) = apz" + ...+ ap, then for |z| large enough,
n
|P(z) — anz"| < |an||z"|, because lim P(z) = anz" =0. It
|z| =400 apz"
results that P has the same number of zeros that the polynomial
Q(z) = anz". O
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Rouché’s Theorem

Example

Let f be a holomorphic function on a neighborhood of the disc
{z € C; |z| <1} and such that |f(z)| < 1 for all |z| = 1. The
equation f(z) = z" has exactly n solutions inside the unit disc. In
particular f has only one fixed point zy, (f(z0) = zp).
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Rouché’s Theorem

We present now a generalization of the above theorem and we still
called it the Rouché’s theorem.

Theorem (Rouché’s Theorem)

Let Q be an open subset of C and a1, ... ,am, m points in €. Let
I be a simple piecewise continuously differentiable closed curve in
Q\{a1, ...,am}. Iff,g: Q\{a1,...,am} — C are two
holomorphic functions such that |g(z)| < |f(z)| for all z € T, then
the difference Z — P between the number of zeros and the number
of poles is the same for f and f + g inside I'. (The number of
zeros and the number of poles are counted according to their order
of multiplicity).
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Rouché’s Theorem

Proof
Let t be a real variable in [0,1]. Then
|f(z) + tg(z)| > | |f(z)| — t|g(z)| | > O for all zon I'. Set

1 f! !

N(t) = ,/(Z)Hg @),
2ir Jr f(z2) + tg(z)

It is clear that N(t) is a continuous function and N(t) represents

the difference between the number of zeros and the number of

poles of f(z) + tg(z) inside I'. Since N(t) is always an integer the
1

function N is constant. But N(0) = / (2)
2w Jr f(2)

difference Zr — Py inside [ for f and

1 f/ /

N(1) = — / Mdz represents the difference Z — P
2im Jr f(z2) + g(z)

inside I' for f + g and we have N(1) = N(0). O
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Rouché’s Theorem

Examples

1. We look for the number of zeros of the polynomial

z* + 222 + 3 inside the disc D(0,?2).

Let f(z) = z* and g(z) = z* + 22% + 3.

If(z) — g(2)| <11 < |f(2)| = 16 for |z| = 2. Thus by
Rouché’s theorem, f and g have the same number of zeros
inside the disc D(0,2) which is equal to 4.

2. We consider the polynomial P(z) = z" +5z% + 23 — z + 1.
The polynomial P has exactly 4 roots inside the unit disc D,
indeed the polynomial Pi(z) = 5z* has 4 roots inside the unit
disc D and |P(z) — P1(z)| < |P1(2)| for all |z| = 1.

The polynomial P has exactly 3 roots inside the annulus

{z € C; 1< |z| <2}, indeed the polynomial Py(z) = z' has
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Local Inversion Theorem and the Open Mapping Theorem

Theorem

[The open mapping Theorem]

Let f be a non constant holomorphic function on a domain Q0 5 zy
and let k be the order of multiplicity of the root zy for the function
f(z) — f(z0). Then there exists an open neighborhood U of zy, an
open neighborhood V' = f(U) of f(zy) such that for all w # f(zp)
in V, there exist k distinct points zi, ...,z in U such that
f(zj)=w, forall1 <j <k.
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Local Inversion Theorem and the Open Mapping Theorem

Corollary

Any non constant holomorphic function on a domain § is open.

Corollary

If f: Q — C is an injective holomorphic function, then f'(z) # 0
for all z € Q.
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Local Inversion Theorem and the Open Mapping Theorem

Proof of theorem 6.1

The zeros of f'(z) and f(z) — f(zp) are isolated, thus there exists
r > 0 such that D(zp,r) C Q and f'(z) # 0,

f(z) — f(z) #0, V ze€ D(z,r) \ {z0}. Let v be the circle of

center zy and radius r. We have

1 f'(2) — Ind(f o ) =
mLMdz_Id(f wf(2) =k  (4)
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Local Inversion Theorem and the Open Mapping Theorem

Let V be the connected component of C \ &f o which contains
f(z0). V is a open subset. Let U = D(z,r) N f~(V), then U is
open because f is continuous and zp € U. Since the mapping

w — Ind(f oy, w) is constant on the connected component V of
C \ Sf o which contains f(z), then by identity (4)

Ind(f oy,w) =k, V w € V. Thus f(z) — w has k solutions in
D(zp, r) for all w € V. The solutions are different because

f'(z) #0in D(zo,r) \ {20} and we have f(U) = V. O
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Local Inversion Theorem and the Open Mapping Theorem

Theorem

(Local inversion Theorem)

Let f be a holomorphic function on a domain . Let zy € 2 and
wo = f(z9). If f'(z9) # 0, then there exist an open neighborhood
U of zy and an open neighborhood V' of wy such that f is bijective
from U into V. The inverse function f~ is holomorphic.

BLEL Mongi Global Expression of Cauchy’s Theorem



Local Inversion Theorem and the Open Mapping Theorem

Proof

The existence of U, V, f~1 results by theorem 6.1, the function
f~1 is continuous because f is open. Furthermore f’ never
vanishes by Corollary 6.3. Thus f~1 is holomorphic. d

Corollary

Let f be an injective holomorphic function on an open subset 2,
then () is an open subset of C and f is an analytic isomorphism
from Q onto f(2).
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Local Inversion Theorem and the Open Mapping Theorem

Remark
The function f(z) = e is non injective on C and f'(z) # 0 for all

z € C. This example shows that we can not replace in the above
corollary the assumption f injective by f'(z) #0; V z € Q.
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Local Inversion Theorem and the Open Mapping Theorem

Remark

We consider U and V respectively the neighborhood of zy and of
wo = f(zp) as in theorem 6.1 and assume that k =1 (i.e.

f'(z0) # 0). By residue theorem, the unique solution z = g(w) of
the equation w = f(z) for w € V is given by:

80 = 5= [ A 4 )

where +y is the circle A zy,r) of center zy and radius r. More
generally for any holomorphic function h on €, we have

hOg(W):;T/vm dz. (6)
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Mittag-Leffler's Theorem

Theorem (Mittag-Leffler’'s Theorem)

Let (an)n be a sequence of complex numbers such that the
sequence (|ap|)n is increasing and |a1| > 0. If

f: C\{an; ne€ N} — C is a holomorphic function such that a,
is a simple poles of f, whenever n € N, (thus nﬂrpoo |an| = +00).

We assume that there exists a sequence of circles (Cy)y centered
at the origin such that the sequence (Ry)yn of their radius is
increasing and limpy_, o, Ry = +00 and the poles of f are not on
Cy for all N € N. We assume also that there exists M such that
|f| < M < +o00 on the circles Cy, whenever N € N. Then

<2 1 1
f(z) = £(0 Res(f, [ —]. 7
(2) = £(0) + > Res(f,a0) .= + = ™)
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Mittag-Leffler's Theorem

Proof
For w € C which is not a pole of f, the function g(z) =

has w and a; as poles, whenever j € N. We have

Res(g, an) = lim (z — an) f(z) _ Res(f,ap)

z—ap zZ—w a, — w

and

Res(g,w) = lim (z — w) = f(w).

Z—anp zZ— W

Then,

1 flz) " Res(f, ap)
/C dz=f(w)+ > —"

2im zZ—Ww an — w
N |3n|<RN n
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Mittag-Leffler's Theorem

We take this formula at 0, we find

2im z a
Cn |an|<Rn n

We deduce from the last formulas that

fw)—f(0) = 3 [(ReSf""")—ReS(f"’")}+.1/C F(2)(—

o <R an an—w 2im Z— |

an N

B Z [(Resf, an)  Res(f, a,,)} N W/ f(2) (
o 1<Ru an ap—w 2t J¢, z(z —w)
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Mittag-Leffler's Theorem

If ze Cyn, |z—w| > |z| — |w| = Ry — |w]| and

/ f(2) dz‘ __2MRy
cy 2(z—w) Rn(Ry — [w|) n—+oo

Then

ZResf an [ E—— —1—31,)].
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Mittag-Leffler's Theorem

Remark
The sequence (Cy)n of circles can be replaced by a sequence of

closed simple curves such that limpy_.oo Ry = +00, with
RN = infzeCN |Z‘
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Mittag-Leffler's Theorem

Example

In use of Mittag-Leffler's theorem, we prove that
+oo 1

tanz =2z .

nz—;) ((2n;1)7r>2 _ 2

Indeed, we consider the function g(z) = tanz. The poles of g are
zx = 5 + km, k € Z and the correspondent residue is

(z— 75 — km)sinz

. T .
Res(g,zx) = lim (z—z—km)tanz=lim = —
z— 3 +km z—Z+km Cos z
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Mittag-Leffler's Theorem

Example

In use of Mittag-Leffler's theorem, we prove that

11, *f 2(—1)"z
sinz  z & z2—nPr?

1 1
The function f(z) = —— — — has 0 as a removable singularity.

y4

Each point z = kr, (k € Z*) is a simple pole of f because
K s

lim (2 — kr)f(z) = lim G KOE=SN2) e e

z—km z—km zsinz

leave to the reader to show that on the sequence of circles (Cy)n
. . T ..

of center O and radius respective Ry = Nm + 5 f is uniformly

bounded.
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Evaluation of Some Definite Integrals

where R is a rational function without poles on the unit circle. We
take z = ¢'t, t € [0,27] and y(t) = €', t € [0, 27].

I = /1R(2li(z—i),;(z+i)) dz

iz

= 2WZR€S<%R(%(Z - %), %(z + 1)))

V4

The summation is extended to the poles of the function
1 1 1.1 1 ) -
(;R(E(Z — )52+ ;))) in the unit disc.

BLEL Mongi Global Expression of Cauchy’s Theorem



Evaluation of Some Definite Integrals

Example

2w

dt
= / s

o a-tsint

I = 27 Res( 21 ), wh the only pole of th
= - ere e only pole of the
mRes 22+22iaz—1’20'w 0 y p

function (T;z—l) in the unit disc. zy = —ia+iva® — 1.

The residue is : —, and thus
Zp +1a
/2” d 2«
o a+tsint a2_-1
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Evaluation of Some Definite Integrals

where P and @ are two polynomials such that deg @ > deg P + 2
and Q(x) #0, Vx € R.
P(z)

We consider the function f(z) = @)
z

defined by the semicircle of radius R and centered at 0 situated
inside the upper half plane Ht = {z = x +iy; y > 0}. Let ['g be
the oriented closed curve obtained by the juxtaposition of vz and
the interval [—R, R]. (figure 1). We choose R large enough such
that the poles of f are situated inside the disc

D(0,R)={ze€C; |z| < R}.

and the closed curve vg
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Evaluation of Some Definite Integrals

R
. f(z) dz:[m f(z) dz+/R f(x) dx = 2ir Z Res(f, z;).

$z>0
The summation is extended to the poles of the function f situated
inside the upper half plane H* = {z = x +iy; y > 0}.
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Evaluation of Some Definite Integrals

Lemma (First Jordan’s Lemma)

Let f be a continuous function defined on a sector 0y < 6 < 0.
We assume that

lim R sup |f(z)| =0,

R—4o00 z€AR

R—+o00
arc 0y < 0 <6 and |z| = R.

then lim / f(z) dz =0, where Ag is the curve defined by the
A
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Evaluation of Some Definite Integrals

The lemma results by dominated convergence theorem.

In use of the first Jordan's lemma,

+oo
/ f(x) dx = 2im Z Res(f, zj).

o0 3>0
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Evaluation of Some Definite Integrals

Example

I—/+OO dx _1/+°° dx
o 14x0 2 ) 0 14x5

The poles of f inside the upper half plane '
H*:_{z:x—i—iy; y >0} arezi —es,z—=e2 =1iand

i5m
zz=es . Thus| = 3.
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Evaluation of Some Definite Integrals

First case P and @ are two polynomials such that
deg @ > deg P+ 2, Q(x) # 0, Vx € R and X a real number. Let
P(z) ix
f(z) = e
)= 2@
If A > 0, we integrate the function f on the curve yg U[—R, R],
figure 1 and we find

[ @) dz’ﬁ/ F(RED)R d) — 0.
YR 0 R—+o00
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Evaluation of Some Definite Integrals

+o0

This yields that/ ) e dx = 2ir Z Res(f, z;).

P(x)

Q( ) Sz;>0

If A <0, we remark that /(=) = I()\), or we can integrate the

function f on the closed curve defined by the juxtaposition of the

interval [—R, R] and of the semicircle of radius R and centered at

0, situated inside the lower half plane H~ = {z = x +iy; y < 0},
—+00

we find, / mei)‘x dx = —2im Z Res(f, z), the summation
o Q(X) $z<0

is extended to the poles of f situated inside the lower half plane

“={z=x+1iy; y <0}
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Evaluation of Some Definite Integrals

Second case A € R*, P and @ are two polynomials such that
deg Q =deg P+ 1 and Q(x) # 0, Vx € R. We set

Z) iz 'D(Z)
f(z) = Q(z)e and g(z) = @)
The integral is convergent but not absolutely convergent. We can
make an integration by parts and we return to the above case. To
evaluate the integral, it suffices to evaluate the integral for A > 0.
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Evaluation of Some Definite Integrals

‘/ f(z) dz\ < / ’ (R619)|R —ARsin6 do < M/ —ARsin6 do
TR

2M
ARsin @ < Z;‘Re
2/\/1/ do <2M de_TAR(

IN

M = sup R|g(Re'’)|. (We can deduce that
R>0

™
lim / e MRsin g9 — 0 by dominated convergence theorem).
R—+o0 0
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Evaluation of Some Definite Integrals

Thus for A > 0,

PO = 2im es(f, z;
/_OO 209° dx =2im > Res(f, z).

(\}Zj>0
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Evaluation of Some Definite Integrals

Example

+o00 ei)\x
2>0, /(A):/ dx.

Ceo X —la
IFX >0, I(\) = 2ire .
IfX<0,I(\)= 2i7rZRes(f,2j), zj the poles of f inside the
lower half plane, but f don't have poles in this half plane, thus

I(\) =0.
+00 o iz

| = / NX We set f(z) = . We integrate the function f
0o X z

on the following closed path (figure 2).
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Evaluation of Some Definite Integrals

TR

BLEL Mongi
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Evaluation of Some Definite Integrals

To compute this integral, we need the following lemma

Lemma (Second Jordan’s Lemma)

A
Iff(z)=—+ Z anz", f defined on a sector 8 < 6 < 61. Then
z n>0

/ f(Z) dz H—O> 1(01 — Ho)A

r
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Evaluation of Some Definite Integrals

Proof

01 . . 01 01 . .
/ f(z) dz = / f(re%)ire do = iA / do+i / g(rel?)irel? do,
Yr 0 0,

o o o
01

g is a holomorphic function, thus lim g(re%)ire’’ do = 0.
r—0 0o
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Evaluation of Some Definite Integrals

We come back to the computation of the following integral

+00 o
| = / ydx. By residue theorem,
X

— 00

/er(x) dx—[y f(z) dz—l—/er(x) dx—i-/wf(z) dz — 0.

\/ f(z) dz|:|/ ciRe’ d9|§/ e Rsinf g — 0.
YR 0 0 R—+o00

By second Jordan’s lemma / f(z) dz 2 im, thus | = 7.
r—

r
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Evaluation of Some Definite Integrals

Example

+o00 ; b
/:2/ de,witha,beﬂ%andc>0.

o X2+ c?
We has the following identity
2sin ax cos bx = sin(a + b)x + sin(a — b)x. Thus
| = %(/1) + S(/z), with

400 qi(a—b)x 400  qi(a+b)x
/1:/ X dx, and/ X dx.

o X2 + C2 o X2 + C2
We remark that if a = b or a = —b, the computation of | turns to
the computation of Iy or I,. We assume that a % b and a # —b.
L =ire (@D ifa> band I, = —irel® D)< jf 3 < b,

Furthermore I = ire=(@tP) if 3 > —p and b = —izel@th)c jf
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Evaluation of Some Definite Integrals

Example

We deduce from the above example that the Fourier Plancherel

transform of the function f(x) = is the function

X
x2 + ¢?
g(x) = / f(t)e 2™t dt = —imsign(x)e 2"¥lc, v x £ 0.

The function f is in L>(R) but not in L*(R). The same for its
Fourier Plancherel transform g.
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Evaluation of Some Definite Integrals

where Q(x) #0, V x > 0, deg Q — deg P > 2. We consider the
P(z)
Q(2)
determination (branch) of log z such that logz = In |z| + i6,
0<6<2r)

closed following curve and f(z) = (log z)?. (log z is the
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Evaluation of Some Definite Integrals

/rR gig(lnxy dx~|—/w f(2) dz+/Rr

The summation is extended to the poles of the function f in C.

According to the hypothese on f, /
R

P(x) L2 _
) (Inx +2i) dx—l—/% f(z)dz =

f(z) dz — 0and
R—+o00

/ f(z) dz — 0, thus

r—0

im es(f,z) = 4r? +00@ Ix — 4imw o nxP(X) Ix
2226(;1% (f,2) 4/0 260 © 4/0 Inx 569 &
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Evaluation of Some Definite Integrals

Example

Foo In x
| = —  _dx.
/o x+D)2+1)

Res(f,i) = (1+1) , Res(f, —1) = 7%2{;_1), Res(f,—1) = =5~
Thus | = T;.
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Evaluation of Some Definite Integrals

with Q(x) #0V x>0, 0 < a < deg Q — deg P. We set
P(z) a1 . -1 -1 .
f(z) = 2971 with 2971 = el@= Doz |50 7 is the
(2) @) g
determination (branch) of log z such that log z = In |z| + i6,
0 < 0 < 27. We take the closed curve defined by the figure (3).
For R large enough and r small enough,
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Evaluation of Some Definite Integrals

The summation is extended to the poles of the function 7 in C.

According to the assumption on f, / f(z) dz _— 0and

YR R—+o00
/f( ) dz —0.

Then (1 62”0‘) (a) =2im Y, Res(f, 2).
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Evaluation of Some Definite Integrals

Example

+oo La—1
/(a):/ x dx with0<a<1.
0 +1

Res(f, —1) = —el™, thus I(a) = u

sinTa’
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