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Area of Plane Region

If f : [a, b] −→ R+ be a non negative continuous function, then∫ b

a
f (x)dx is the area of the region Rx under the graph of f from

a to b.

Theorem

If f and g are two continuous functions on [a, b] and

f (x) ≥ g(x), ∀x ∈ [a, b].

Then the area A of the region bounded by the graphs of f and g;
x = a and x = b is

A =

∫ b

a
f (x)− g(x)dx .
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Example 1 :
let f (x) = x2 + 1 and g(x) = x − 1. Set up an integral that can be
used to find the area of the shaded region.

1
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Solution: We have
The upper graph: y = x2 + 1
The lower graph: y = x − 1
Then, the area A is given by

A =

∫ b

a
(x2 + 1)− (x − 1)dx .
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Remark

If f and g are two continuous functions on [a, b]. Then the area A
of the region bounded by the graphs of f and g is

A =

∫ b

a
|f (x)− g(x)|dx .

For example if there is c ∈]a, b[ such that
f (x) ≥ g(x), ∀x ∈ [a, c],∀x ∈ [a, c] and f (x) ≤ g(x), ∀x ∈ [c , b],
then

A =

∫ c

a
f (x)− g(x)dx +

∫ b

c
g(x)− f (x)dx .
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Example 2 :
f (x) = x2 − 4.7, g(x) = sin x , [−3, π]

A =

∫ π

−3
|x2 − 4.7− sin x |dx .
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Example 3 :
Find the area A of the region R bounded by the graphs of

y − x = 6, y = x3 and 2y + x = 0.

Solution.
Let f (x) = x + 6, g(x) = x3 and h(x) = −1

2x . The points of
intersection: f (x) = h(x) ⇐⇒ x = −4, g(x) = h(x) ⇐⇒ x = 0,
f (x) = g(x) ⇐⇒ x3 − x − 6 = 0. We remak that x = 2 is the
only solution of this equation and f (x) = g(x) ⇐⇒ x = 2.

Mongi BLEL Applications of Integration



Area of Plane Region
Solid of Revolution

Arc Length and Surfaces of Revolution

And we have f (−4) = h(−4) = 2, g(0) = h(0) = 0 and
f (2) = g(2) = 8.
Clearly, if A1 and A2 are the area of the region R1 and R2

respectively, then

A = A1 + A2 =

∫ 0

−4
f (x)− h(x)dx +

∫ 2

0
f (x)− g(x)dx .
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Therefore

A =

∫ 0

−4
(x + 6) +

1

2
xdx +

∫ 2

0
(x + 6)− x3dx

=

∫ 0

−4

3

2
x + 6dx +

∫ 2

0
x + 6− x3dx

=
[3

4
x2 + 6x

]0
−4

+
[1

2
x2 + 6x − 1

4
x4
]2
0

=
[3

4
x2 + 6x

]0
−4

+
[1

2
x2 + 6x − 1

4
x4
]2
0

= 22.
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Example 4 :
Find the area of the region between the graphs

f (x) = x2 − 4; g(x) = x + 2

if x is restricted to the interval [1, 4].
Solution: The points of intersection:

f (x) = g(x) ⇐⇒ x2 − 4 = x + 2 ⇐⇒ x2 − x − 6 = 0.

The only solution of this equation on the interval [1, 4] is x = 3
and we have f (3) = g(3) = 5.
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We have f ≤ g on the interval [1, 3] and g ≤ f on the interval
[3, 4]. Then

A =

∫ 3

1
g(x)− f (x)dx +

∫ 4

3
f (x)− g(x)dx

=

∫ 3

1
(x + 2)− (x2 − 4)dx +

∫ 4

3
(x2 − 4)− (x + 2)dx

=
17

3
.
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Solid of Revolution
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The Disk Method

If a region Rx is revolved around the x-axis, the resulting solid is
called: the solid of revolution generated by the region Rx .
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Example 5 :
If f : [a, b] −→ R is a constant f = c > 0, then the region under
the graph of f on the interval [a, b] is rectangle.
The solid generated after revolving this region around the x-axis is
a right cylinder.

Example 6 :
Consider the region under the graph of the function
f (x) =

√
4− x2 for x ∈ [−2, 2]. If we revolve the region Rx around

the x-axis, the solid generated is a ball of radius r = 2.
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Theorem

Let f : [a, b] −→ R+ be a continuous function. The volume V of
the solid of revolution generated by revolving the region bounded
by the graphs of f , y = 0 x = a and x = b is given by

V =

∫ b

a
πf 2(x)dx .
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Example 7 :
Let f the function defined on the interval [−1, 2] by f (x) = x2 + 1.
Find the volume of the solid obtained by revolving the region under
the graph of f around the x-axis
Solution.

The volume is equal to π

∫ 2

−1
(x2 + 1)2dx = π

78

5
.
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Remark

If x = g(y) where g is continuous and positive on [c , d ]
If we revolve the region Ry around the y-axis, we obtain a solid of
revolution which volume equal to

V = π

∫ d

c
g2(y)dy .

Example 8 :
If g(y) = y2 − 4 on the interval [0, 2]. The volume of the solid
obtained by revolving the region under the graph of g around the
y -axis.

V =

∫ 2

0
π(y2 − 4)2dy .
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The Washer Method

Let f , g : [a, b] −→ R+ be two continuous functions such that
f (x) ≥ g(x) ≥ 0, ∀x ∈ [a, b].
Let R is the region between the graph of f and the graph of g .
The volume of the solid obtained by revolving the region R around
the x-axis is equal to

π

∫ b

a
f 2(x)− g2(x)dx .

This formula can interpreted as

V = π

∫ b

a
(outer radius)2 − (inner radius)2dx .
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Example 9 :
If f (x) = cos(x) and g(x) = sin(x) on the interval [0, π4 ]. Find the
volume of the solid of revolution of the R betwen the graph of f
and g around the x-axis.

V = π

∫ π/4

0
cos2(x)− sin2(x)dx

= π

∫ π/4

0
cos(2x)dx =

π

2
.
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Example 10 :
Let f (x) =

√
x defined on the interval [0, 4]. If R is the region

under the graph of f and S the solid of revolution of R around the
axis y = 2. The volume of S is given by

V = π

∫ 4

0
22 − (2−

√
x)2dx =

8π

3
.

Here the outer radius is 2, the inner radius is 2− y = 2−
√
x . .
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Volume by Method of Cylindrical Shell

Theorem

Let f : [a, b] ≤ R+ be a continuous function and R the region
under the graph of f on the interval [a, b].
The volume V of the solid of revolution generated by revolving the
region R around the y-axis is given by

V = 2π

∫ b

a
xf (x)dx .
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Example 11 :
Let f : [2, 11] −→ R+ the function defined by

√
x − 2. The volume

of the solid of revolution generated by revolving the region under
the graph of f around the y -axis is

V =

∫ 11

2
2πxf (x)dx = 2π

∫ 11

2
x
√
x − 2dx

t=x−2
=

∫ 9

0
(t

3
2 + 2t

1
2 )

= 4(
243

5
+ 9).
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Arc Length and Surfaces of Revolution

Definition

Let f : I −→ R be a function. We say that f is continuously
differentiable if f ′(x) exists for all x ∈ I and f ′ is itself continuous
on I .
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Theorem

Let f : [a, b] −→ R+ be a continuously differentiable function.
Then the length of the curve of f denoted by Lba is given by:

Lba =

∫ b

a

√
1 + (f ′(x))2dx .
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Remark

Let g : [c, d ] −→ R+, y 7→ g(y), be a continuously differentiable
function.
Then the length of the curve of g from the point (g(c), c) to the
point (g(d), d) is

Ldc =

∫ d

c

√
1 + (g ′(y))2dy .
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Example 12 :
If f (x) = ln(cos(x)) defined on the interval on [0, π4 ]. The length is
given by

L =

∫ π
4

0

√
1 + tan2(x)dx =

∫ π
4

0
sec(x)dx = ln(

√
2 + 1).
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Definition

Let f : [a, b] −→ R+ be a continuously differentiable function.
Then the arc length function “s” for the graph of f on [a, b] is
defined by

s(x) =

∫ x

a

√
1 + (f ′(t))2dt, x ∈ [a, b].

We have

ds =
√

(dx)2 + (dy)2 =
√

1 + (f ′(x))2dx .
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Area of Surface of Revolution

Theorem

Let f : [a, b] −→ R+ be a continuously differentiable function.
Then the area of the surface generated by revolving the curve
y = f (x) around the x-axis denoted SA is given by

SA =

∫ b

a
2π|f (x)|

√
1 + (f ′(x))2 dx .
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Example 13 :

f (x) =
x3

3
defined on the interval [0, 1]. The surface of revolution

of the graph of f around the x−axis is

S = 2π

∫ 1

0

x3

3

√
1 + x2dx

t2=1+x2
=

2π

3

∫ √2
1

t4 − t2dt

=
2π

3

(
4
√

2− 1

5
− 2
√

2− 1

3

)
.

Mongi BLEL Applications of Integration



Area of Plane Region
Solid of Revolution

Arc Length and Surfaces of Revolution

Remark

In the case x = g(y), y ∈ [c , d ], the surface area generated by
revolving the curve of g around the y-axis is given by

SA =

∫ d

c
2π|x |ds

=

∫ d

c
2π|g(y)|ds

=

∫ d

c
2π|g(y)|

√
1 + (g ′(y))2dy .
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