Applications of Integration

Mongi BLEL

Department of Mathematics King Saud University

2016-2017

Table of contents

- 1 Area of Plane Region
- 2 Solid of Revolution
- 3 Arc Length and Surfaces of Revolution

Area of Plane Region

If $f: [a, b] \longrightarrow \mathbb{R}^+$ be a non negative continuous function, then $\int_a^b f(x)dx$ is the area of the region R_x under the graph of f from a to b.

Theorem

If f and g are two continuous functions on [a, b] and

$$f(x) \ge g(x), \ \forall x \in [a, b].$$

Then the area A of the region bounded by the graphs of f and g; x = a and x = b is

$$A = \int_a^b f(x) - g(x) dx.$$

Example 1:

let $f(x) = x^2 + 1$ and g(x) = x - 1. Set up an integral that can be used to find the area of the shaded region.

Solution: We have

The upper graph: $y = x^2 + 1$ The lower graph: y = x - 1Then, the area A is given by

$$A = \int_{a}^{b} (x^{2} + 1) - (x - 1) dx.$$

Remark

If f and g are two continuous functions on [a,b]. Then the area A of the region bounded by the graphs of f and g is

$$A = \int_a^b |f(x) - g(x)| dx.$$

For example if there is $c \in]a, b[$ such that $f(x) \geq g(x), \forall x \in [a, c], \forall x \in [a, c]$ and $f(x) \leq g(x), \forall x \in [c, b],$ then

$$A = \int_a^c f(x) - g(x)dx + \int_a^b g(x) - f(x)dx.$$

Example 2:

$$f(x) = x^2 - 4.7$$
, $g(x) = \sin x$, $[-3, \pi]$

$$A = \int_{-3}^{\pi} |x^2 - 4.7 - \sin x| dx.$$

Example 3:

Find the area A of the region R bounded by the graphs of

$$y - x = 6$$
, $y = x^3$ and $2y + x = 0$.

Solution.

Let
$$f(x) = x + 6$$
, $g(x) = x^3$ and $h(x) = -\frac{1}{2}x$. The points of intersection: $f(x) = h(x) \iff x = -4$, $g(x) = h(x) \iff x = 0$, $f(x) = g(x) \iff x^3 - x - 6 = 0$. We remak that $x = 2$ is the only solution of this equation and $f(x) = g(x) \iff x = 2$.

And we have
$$f(-4) = h(-4) = 2$$
, $g(0) = h(0) = 0$ and $f(2) = g(2) = 8$.

Clearly, if A_1 and A_2 are the area of the region R_1 and R_2 respectively, then

$$A = A_1 + A_2 = \int_{-4}^{0} f(x) - h(x) dx + \int_{0}^{2} f(x) - g(x) dx.$$

Therefore

$$A = \int_{-4}^{0} (x+6) + \frac{1}{2}xdx + \int_{0}^{2} (x+6) - x^{3}dx$$

$$= \int_{-4}^{0} \frac{3}{2}x + 6dx + \int_{0}^{2} x + 6 - x^{3}dx$$

$$= \left[\frac{3}{4}x^{2} + 6x\right]_{-4}^{0} + \left[\frac{1}{2}x^{2} + 6x - \frac{1}{4}x^{4}\right]_{0}^{2}$$

$$= \left[\frac{3}{4}x^{2} + 6x\right]_{-4}^{0} + \left[\frac{1}{2}x^{2} + 6x - \frac{1}{4}x^{4}\right]_{0}^{2}$$

$$= 22.$$

Example 4:

Find the area of the region between the graphs

$$f(x) = x^2 - 4$$
; $g(x) = x + 2$

if x is restricted to the interval [1,4].

Solution: The points of intersection:

$$f(x) = g(x) \iff x^2 - 4 = x + 2 \iff x^2 - x - 6 = 0.$$

The only solution of this equation on the interval [1,4] is x=3 and we have f(3)=g(3)=5.

We have $f \leq g$ on the interval [1,3] and $g \leq f$ on the interval [3,4]. Then

$$A = \int_{1}^{3} g(x) - f(x)dx + \int_{3}^{4} f(x) - g(x)dx$$

$$= \int_{1}^{3} (x+2) - (x^{2}-4)dx + \int_{3}^{4} (x^{2}-4) - (x+2)dx$$

$$= \frac{17}{3}.$$

Solid of Revolution

The Disk Method

If a region R_x is revolved around the x-axis, the resulting solid is called: the solid of revolution generated by the region R_x .

Example 5:

If $f: [a, b] \longrightarrow \mathbb{R}$ is a constant f = c > 0, then the region under the graph of f on the interval [a, b] is rectangle.

The solid generated after revolving this region around the *x*-axis is a right cylinder.

Example 6:

Consider the region under the graph of the function $f(x) = \sqrt{4 - x^2}$ for $x \in [-2, 2]$. If we revolve the region R_x around the x-axis, the solid generated is a ball of radius r = 2.

Theorem

Let $f:[a,b] \longrightarrow \mathbb{R}^+$ be a continuous function. The volume V of the solid of revolution generated by revolving the region bounded by the graphs of f, y=0 x=a and x=b is given by

$$V = \int_a^b \pi f^2(x) dx.$$

Example 7:

Let f the function defined on the interval [-1,2] by $f(x)=x^2+1$. Find the volume of the solid obtained by revolving the region under the graph of f around the x-axis

Solution.

The volume is equal to
$$\pi \int_{-1}^{2} (x^2 + 1)^2 dx = \pi \frac{78}{5}$$
.

Remark

If x = g(y) where g is continuous and positive on [c,d]If we revolve the region R_y around the y-axis, we obtain a solid of revolution which volume equal to

$$V = \pi \int_{C}^{d} g^{2}(y) dy.$$

Example 8:

If $g(y) = y^2 - 4$ on the interval [0,2]. The volume of the solid obtained by revolving the region under the graph of g around the y-axis.

$$V = \int_0^2 \pi (y^2 - 4)^2 dy.$$

The Washer Method

Let $f, g: [a, b] \longrightarrow \mathbb{R}^+$ be two continuous functions such that $f(x) \ge g(x) \ge 0, \ \forall x \in [a, b].$

Let R is the region between the graph of f and the graph of g.

The volume of the solid obtained by revolving the region R around the x-axis is equal to

$$\pi \int_a^b f^2(x) - g^2(x) dx.$$

This formula can interpreted as

$$V = \pi \int_{a}^{b} (outer\ radius)^2 - (inner\ radius)^2 dx.$$

Example 9:

If $f(x) = \cos(x)$ and $g(x) = \sin(x)$ on the interval $[0, \frac{\pi}{4}]$. Find the volume of the solid of revolution of the R betwen the graph of f and g around the x-axis.

$$V = \pi \int_0^{\pi/4} \cos^2(x) - \sin^2(x) dx$$
$$= \pi \int_0^{\pi/4} \cos(2x) dx = \frac{\pi}{2}.$$

Example 10:

Let $f(x) = \sqrt{x}$ defined on the interval [0,4]. If R is the region under the graph of f and S the solid of revolution of R around the axis y = 2. The volume of S is given by

$$V = \pi \int_0^4 2^2 - (2 - \sqrt{x})^2 dx = \frac{8\pi}{3}.$$

Here the outer radius is 2, the inner radius is $2 - y = 2 - \sqrt{x}$.

Volume by Method of Cylindrical Shell

Theorem

Let $f: [a, b] \leq \mathbb{R}^+$ be a continuous function and R the region under the graph of f on the interval [a, b].

The volume V of the solid of revolution generated by revolving the region R around the y-axis is given by

$$V=2\pi\int_a^b x f(x)dx.$$

Example 11:

Let $f: [2,11] \longrightarrow \mathbb{R}^+$ the function defined by $\sqrt{x-2}$. The volume of the solid of revolution generated by revolving the region under the graph of f around the y-axis is

$$V = \int_{2}^{11} 2\pi x f(x) dx = 2\pi \int_{2}^{11} x \sqrt{x - 2} dx$$
$$\stackrel{t = x - 2}{=} \int_{0}^{9} (t^{\frac{3}{2}} + 2t^{\frac{1}{2}})$$
$$= 4(\frac{243}{5} + 9).$$

Arc Length and Surfaces of Revolution

Definition

Let $f: I \longrightarrow \mathbb{R}$ be a function. We say that f is continuously differentiable if f'(x) exists for all $x \in I$ and f' is itself continuous on I.

Theorem

Let $f: [a,b] \longrightarrow \mathbb{R}^+$ be a continuously differentiable function. Then the length of the curve of f denoted by L_a^b is given by:

$$L_a^b = \int_a^b \sqrt{1 + (f'(x))^2} dx.$$

Remark

Let $g: [c,d] \longrightarrow \mathbb{R}^+$, $y \mapsto g(y)$, be a continuously differentiable function.

Then the length of the curve of g from the point (g(c), c) to the point (g(d), d) is

$$L_c^d = \int_c^d \sqrt{1 + (g'(y))^2} dy.$$

Example 12:

If $f(x) = \ln(\cos(x))$ defined on the interval on $[0, \frac{\pi}{4}]$. The length is given by

$$L = \int_0^{\frac{\pi}{4}} \sqrt{1 + \tan^2(x)} dx = \int_0^{\frac{\pi}{4}} \sec(x) dx = \ln(\sqrt{2} + 1).$$

Definition

Let $f: [a,b] \longrightarrow \mathbb{R}^+$ be a continuously differentiable function. Then the arc length function "s" for the graph of f on [a,b] is defined by

$$s(x) = \int_a^x \sqrt{1 + (f'(t))^2} dt, \ x \in [a, b].$$

We have

$$ds = \sqrt{(dx)^2 + (dy)^2} = \sqrt{1 + (f'(x))^2} dx.$$

Area of Surface of Revolution

Theorem

Let $f: [a, b] \longrightarrow \mathbb{R}^+$ be a continuously differentiable function. Then the area of the surface generated by revolving the curve y = f(x) around the x-axis denoted SA is given by

$$SA = \int_a^b 2\pi |f(x)| \sqrt{1 + (f'(x))^2} dx.$$

Example 13:

 $f(x) = \frac{x^3}{3}$ defined on the interval [0,1]. The surface of revolution of the graph of f around the x-axis is

$$S = 2\pi \int_0^1 \frac{x^3}{3} \sqrt{1 + x^2} dx$$
$$t^2 = \frac{1 + x^2}{3} \int_1^{\sqrt{2}} t^4 - t^2 dt$$
$$= \frac{2\pi}{3} \left(\frac{4\sqrt{2} - 1}{5} - \frac{2\sqrt{2} - 1}{3} \right).$$

Remark

In the case x = g(y), $y \in [c, d]$, the surface area generated by revolving the curve of g around the y-axis is given by

$$SA = \int_{c}^{d} 2\pi |x| ds$$

$$= \int_{c}^{d} 2\pi |g(y)| ds$$

$$= \int_{c}^{d} 2\pi |g(y)| \sqrt{1 + (g'(y))^{2}} dy.$$