Cauchy's Inequalities and Applications Mean Property and Maximum Principle Convergence Theorem Singularities of Holomorphic Functions Meromorphic Functions

Fundamental Properties of Holomorphic Functions

BLEL Mongi

Department of Mathematics King Saud University

2016-2017

Theorem

Let f be a holomorphic function on an open subset Ω of \mathbb{C} . For $z_0 \in \Omega$ and r > 0 such that $\overline{D(z_0,r)} \subset \Omega$, there exists a power series $\sum_{k \geq 0} a_k (z-z_0)^k$ which converges to f on $D(z_0,r)$ and if $M_f(z_0,r) = \sup_{z \in \overline{D(z_0,r)}} |f(z)|$, we have

$$|a_n| \leq \frac{M_f(z_0, r)}{r^n}, \quad \forall n \in \mathbb{N}_0.$$
 (1)

These inequalities are called the Cauchy's inequalities.

Proof

By theorem ?? (chapter IV)

$$a_n = \frac{1}{2\mathrm{i}\pi} \int_{\gamma} \frac{f(w)}{(w-z_0)^{n+1}} dw = \frac{1}{2\pi r^n} \int_0^{2\pi} f(z_0 + r\mathrm{e}^{\mathrm{i}\theta}) e^{-\mathrm{i}n\theta} d\theta.$$

Thus
$$|a_n| \leq \frac{M_f(z_0, r)}{r^n}$$
, with $\gamma(t) = z_0 + r e^{i\theta}$, $\theta \in [0, 2\pi]$.

Corollary

Any bounded holomorphic function on \mathbb{C} is constant.

Proof

Let f be a bounded holomorphic function on $\mathbb C$ and let

$$M = \sup_{z \in \mathbb{C}} |f(z)|$$
. If $f(z) = \sum_{n=0}^{+\infty} a_n z^n$, then by Cauchy's

inequalities $|a_n| \le \frac{M}{r^n}$ for all r > 0 and all $n \ge 1$. Since for $n \ge 1$,

 $\lim_{r\to+\infty}\frac{M}{r^n}=0$, then $a_n=0$ for all $n\geq 1$ and f is constant.

Theorem (The fundamental Theorem of algebra, or D'Alembert's Theorem)

Every non constant polynomial has at least one zero.

This theorem is rephrased as " \mathbb{C} is algebraically closed". For the proof, we need the following lemma:

Lemma (Growth Lemma)

Let P be a polynomial of degree $n \ge 1$, $P(z) = a_0 + a_1 z + \ldots + a_n z^n$, then there exists R large enough such that

$$\frac{|a_n||z|^n}{2} \le |P(z)| \le \frac{3|a_n||z|^n}{2}, \quad \forall \ z \in \mathbb{C} \text{ and } |z| \ge R.$$
 (2)

Proof

For
$$z \neq 0$$
, $P(z) = z^n \left(\sum_{k=0}^n \frac{a_k}{z^{n-k}} \right)$. In use of the triangle inequality, we have

$$|z|^n\left(|a_n|-\left|\sum_{k=0}^{n-1}\frac{a_k}{z^{n-k}}\right|\right)\leq |P(z)|\leq |z|^n\left(|a_n|+\left|\sum_{k=0}^{n-1}\frac{a_k}{z^{n-k}}\right|\right).$$

So $\lim_{|z|\to+\infty}\sum_{k=0}^{n-1}\frac{a_k}{z^{n-k}}=0$, then there exists R large enough such that for $|z|\geq R$,

$$\left|\sum_{k=0}^{n-1} \frac{a_k}{z^{n-k}}\right| \leq \frac{|a_n|}{2}$$
, the result now follows.

Proof of theorem 1.3

Let $P\in\mathbb{C}[X]$ be a non constant polynomial. If P never vanishes, then the function $f(z)=\frac{1}{P(z)}$ is holomorphic on \mathbb{C} and is bounded because $\lim_{|z|\to+\infty}|P(z)|=+\infty$, thus f is constant and P is constant, this contradicting our assumption.

Corollary

Every polynomial of degree n has exactly n (not necessarily distinct) zeros.

Proof

The proof is given by induction on the degree of the polynomial.

Corollary

Every polynomial of degree n takes every complex number exactly n times.

Proof

If P is a polynomial of degree n and $a \in \mathbb{C}$, then the polynomial Q = P - a is also a polynomial of degree n. By Corollary 1.5, Q has n zeros.

Definition

We say that a continuous function f on an open set Ω fulfills the Mean Property on Ω , if for all $a \in \Omega$ and all r > 0 such that $\overline{D(a,r)} \subset \Omega$

$$f(a) = \frac{1}{2\pi} \int_0^{2\pi} f(a + re^{i\theta}) d\theta.$$

Remark

If f satisfies the Mean Property, then $\Re f$ and $\Im f$ also satisfies the Mean Property.

Proposition

Any holomorphic function on an open set Ω satisfies the Mean Property.

Proof

Let $f \in \mathcal{H}(\Omega)$, $a \in \Omega$ and r > 0 such that $\overline{D(a,r)} \subset \Omega$, the Cauchy formula on a circle yields

$$f(a) = rac{1}{2\mathrm{i}\pi}\int_{\gamma}rac{f(w)}{w-a}dw = rac{1}{2\pi}\int_{0}^{2\pi}f(a+r\mathrm{e}^{\mathrm{i} heta})d heta.$$

where
$$\gamma(\theta) = a + re^{i\theta}$$
, $\theta \in [0, 2\pi]$.

Definition

- 1. Let f be a continuous function on an open set Ω . We say that f has a relative maximum at a point $a \in \Omega$ if there exists a neighborhood $V \subset \Omega$ of a such that $|f(z)| \leq |f(a)|$ for all $z \in V$.
- 2. We say that f satisfies the Maximum Modulus Principle on Ω if for any relative maximum a of f, f is constant in a neighborhood of a.

Theorem

Any function which satisfies the Mean Property on Ω (in particular $f \in \mathcal{H}(\Omega)$) satisfies the Maximum Modulus Principle.

Proof

Let a be a relative maximum of f and let r > 0 such that $|f(z)| \le |f(a)|$ for all $z \in D(a, r)$.

- If f(a) = 0, the result is trivial.
- If $f(a) \neq 0$, we can suppose that f(a) > 0 (it suffices to take the

function
$$g(z) = f(z) \frac{f(a)}{|f(a)|^2}$$
). For all $s < r$,

$$f(a) = \frac{1}{2\pi} \int_0^{2\pi} f(a+se^{i\theta}) d\theta \Rightarrow \frac{1}{2\pi} \int_0^{2\pi} f(a) - \Re f(a+se^{i\theta}) d\theta = 0.$$

Since $\theta \longmapsto f(a) - \Re f(a + s \mathrm{e}^{\mathrm{i} \theta})$ is a non negative continuous function and s is arbitrary, then $f(a) = \Re f(z)$, for all $z \in D(a,r)$. And since $|f(a)| \geq |f(z)|$ on the disc D(a,r), then $\Im f = 0$ on the disc D(a,r), which proves that f is constant on the disc D(a,r). Therefore, |f| cannot reaches a relative maximum at a point of Ω unless f is constant.

Theorem

[Maximum Modulus Principle (second form)] Let Ω be a bounded domain and let $f:\overline{\Omega}\longrightarrow \mathbb{C}$ be a continuous function on $\overline{\Omega}$ and holomorphic on Ω . If $M=\sup_{z\in\overline{\Omega}\setminus\Omega}|f(z)|$, then

 $|f(z)| \le M$ for every $z \in \Omega$, and if there exists $a \in \Omega$ such that |f(a)| = M, then f is constant on Ω . (Furthermore, |f| does not attains a maximum at an interior point unless f is constant.)

Proof

Let $M' = \sup_{z \in \overline{\Omega}} |f(z)|$. Since f is continuous on the compact $\overline{\Omega}$,

there exists $a \in \overline{\Omega}$ such that |f(a)| = M'.

- If $a \in \Omega$, f is constant in a neighborhood of a, thus f is constant on Ω .
- If $a \notin \Omega$ and $|f(z)| < M' \ \forall z \in \Omega$. M' is reached on $\overline{\Omega} \setminus \Omega$, then M' = M and |f(z)| < M, $\forall z \in \Omega$.

Remarks

- 1. If f is holomorphic on the annulus $\Omega = \{z \in \mathbb{C}; \ \frac{1}{r} < |z| < R\}$ and continuous on $\overline{\Omega}$, then f reaches its maximum on the boundary $\mathscr{C}(0,r) \cup \mathscr{C}(0,R)$. For example the function f(z) = z reaches its maximum on the outer boundary $\mathscr{C}(0,R)$, whereas the function $g(z) = \frac{1}{z}$ reaches its maximum on the inner boundary $\mathscr{C}(0,r)$.
- 2. Theorem 2.6 is not true if Ω is not bounded. For example, if $f(z) = e^z$ and $\Omega = \{z \in \mathbb{C}; \Re z > 0\}$, then $|f(iy)| = |e^{iy}| = 1$, i.e., $f(\partial \Omega) \subset \mathcal{C}(0,1)$. But f(x) > 1 along the positive real axis. Thus, the hypothesis that Ω is bounded is essential in theorem 2.6.

Theorem (The Open Mapping Theorem)

Any non constant holomorphic function on a domain of $\mathbb C$ is open.

Proof

Let f be a non constant holomorphic function on a domain Ω .

Assume that $0 \in \Omega$ and f(0) = 0. (If $a \in \Omega$ and $f(a) = \alpha$, we take the function $g(z) = f(a+z) - \alpha$). It suffices to prove that $f(\Omega)$ is a neighborhood of 0.

Let r>0 be such that $D(0,r)\subset\Omega$ and $f(z)\neq0$ for all z such that |z|=r. (A such r exists if not 0 will be a cluster point (accumulation point) of the set of zeros of f, and then f is constant.) Let $m=\inf_{|z|=r}|f(z)|>0$.

If $D(0,m)\subset f(\Omega)$ this yields the result, if not let $w\in\mathbb{C}$ such that |w|< m and $w\not\in f(\Omega)$. The function $\psi(z)=\frac{1}{f(z)-w}$ is holomorphic on Ω and

$$|\psi(0)| = \frac{1}{|w|} \le \sup_{|z|=r} |\psi(z)| \le \frac{1}{m-|w|}.$$

Thus $|w| \geq \frac{m}{2}$. Then if $|w| < \frac{m}{2}$, $w \in f(\Omega)$ and $D(0, \frac{m}{2}) \subset f(\Omega)$.

Theorem (Schwarz's Lemma)

Let f be a holomorphic function on the unit disc D with f(0) = 0 and $|f(z)| \le 1$ for all $z \in D$. Then

$$|f(z)| \le |z|, \ \forall z \in D \ \mathrm{and} \ |f'(0)| \le 1.$$

Furthermore if there exists $z \in D \setminus \{0\}$ such that |f(z)| = |z| or if |f'(0)| = 1, then f is a rotation, i.e. there exists some unimodular complex number ($|\lambda| = 1$) such that $f(z) = \lambda z$ for all $z \in D$.

Proof

The function g defined on D by: $\begin{cases} g(z) = \frac{f(z)}{z} & \text{if} \quad z \neq 0 \\ g(0) = f'(0) \end{cases}$ is

holomorphic on $D\setminus\{0\}$ and continuous on D, thus g is holomorphic on the disc D. By maximum modulus principle, for $|z|\leq r<1,\ |g(z)|\leq \sup_{|w|=r}|g(w)|=\frac{1}{r}\sup_{|w|=r}|f(w)|\leq \frac{1}{r}.$ This is for

all positive real number r < 1. Now, since r can come arbitrarily close to 1, we have

$$|g(z)| \le \lim_{r \to 1} \frac{1}{r} = 1, \ \forall z \in D.$$

This proves that $|f(z)| \le |z|$ and therefore, $|f'(0)| \le 1$. In case either |f'(0)| = 1 or |f(a)| = |a| for some $a \in D \setminus \{0\}$, we get |g(a)| = 1 or |g(0)| = 1, so |g| reaches its maximum in an interior point of D, then g is a constant function by the Maximum Modulus Principle and the result follows.

Corollary

Let $f: \mathcal{D}(0,R) \longrightarrow \mathbb{C}$ be a holomorphic function with $f^{(k)}(0) = 0$ for all $0 \le k \le n-1$. If $|f(z)| \le M$ for $z \in D(0,R)$, then

$$|f(z)| \leq M \left(\frac{|z|}{R}\right)^n, \ \forall z \in D(0,R)$$

Furthermore, if there exists $a \in D(0,R) \setminus \{0\}$ such that $|f(a)| = M\left(\frac{|a|}{R}\right)^n$, there exists $\alpha \in \mathbb{R}$ such that $f(z) = M\mathrm{e}^{\mathrm{i}\alpha}\left(\frac{z}{R}\right)^n$, for all $z \in D(0,R)$.

Proof

There exists a holomorphic function g on D(0,R) such that $f(z) = z^n g(z)$. The result is deduced by maximum modulus principle for the function $h(z) = \frac{g(Rz)R^n}{M}$.

Corollary

Let f be an automorphism of the unit disc D (i.e. a biholomorphic function of the unit disc), such that f(0)=0, then there exists $\alpha\in\mathbb{R}$ such that $f(z)=\mathrm{e}^{\mathrm{i}\alpha}z$, for all $z\in D$.

Proof

Let $g=f^{-1}$, then g(0)=0, g'(0)f'(0)=1 and by Schwarz's lemma $|g'(0)|\leq 1$ and $|f'(0)|\leq 1$, thus |g'(0)|=|f'(0)|=1, this yields that $f(z)=\mathrm{e}^{\mathrm{i}\alpha}z$, with $\alpha\in\mathbb{R}$.

Remark

For all $a \in D$, we set $h_a(z) = \frac{a-z}{1-\overline{a}z}$. $h_a(a) = 0$, $h_a(0) = a$ and $|h_a(\mathrm{e}^{\mathrm{i} heta})| = \left|rac{\mathsf{a} - \mathrm{e}^{\mathrm{i} heta}}{1 - ar{\mathsf{a}}\mathrm{e}^{\mathrm{i} heta}}
ight| = \left|rac{\mathsf{a} - \mathrm{e}^{\mathrm{i} heta}}{\mathrm{e}^{-\mathrm{i} heta} - ar{\mathsf{a}}}
ight| = 1$. Then h_a is an automorphism of the unit disc. The function $h_a \circ h_a$ is an automorphism of the unit disc and $h_a \circ h_a(0) = 0$, $h_a \circ h_a(a) = a$, then $h_a \circ h_a = \mathrm{Id}$. Furthermore if g is an automorphism of the unit disc with g(a) = 0, for some $a \in D$, the function $f = g \circ h_a$ is so an automorphism of the unit disc with f(0) = 0. Thus $g(z) = e^{i\alpha} h_a(z)$. This characterizes the group of automorphisms of the unit disc.

Lemma

Let Ω be an open subset of $\mathbb C$ and K a compact subset of Ω . If $r < \delta(K, \Omega^c)$, then for any holomorphic function f on Ω

$$\sup_{z \in K} |f'(z)| \le \frac{1}{r} \sup_{z \in K_r} |f(z)|,$$

with
$$K_r = \{z \in \Omega; \ \delta(z, K) \leq r\}.$$

This lemma is deduced by Cauchy's integral formula.

Theorem

Let $(f_n)_n$ be a sequence of holomorphic functions on Ω which converges uniformly on compact subsets of Ω to a function f, then f is holomorphic on Ω . The sequence $(f'_n)_n$ converges uniformly on compact subsets of Ω to f'.

Corollary

Under the same hypotheses, for all $k \in \mathbb{N}$, the sequence $(f_n^{(k)})$ converges uniformly on compact subsets of Ω to $f^{(k)}$.

Proof of theorem 3.2

The uniform convergence theorem yields that f is continuous. To prove f is holomorphic, we use Morera's theorem. For any closed triangle Δ in Ω , $\int_{\partial \Delta} f_n(z) dz = 0$ and by the uniform convergence $\lim_{n \longrightarrow +\infty} \int_{\partial \Delta} f_n(z) dz = \int_{\partial \Delta} f(z) dz, \text{ then } \int_{\partial \Delta} f(z) dz = 0.$

$$\lim_{n \to +\infty} \int_{\partial \Delta} f_n(z) \ dz = \int_{\partial \Delta} f(z) \ dz, \text{ then } \int_{\partial \Delta} f(z) dz = 0.$$

From the previous lemma 3.1, the sequence $(f'_n)_n$ converges uniformly on compact subsets K of Ω to f'.

In this section, we are interesting to study the isolated singularities of holomorphic functions.

Definition

Let Ω be an open subset of $\mathbb C$ and $z_0 \in \Omega$. If $f \in \mathcal H(\Omega \setminus \{z_0\})$, we say that z_0 is an isolated singularity of f.

Theorem

Let Ω be an open subset of $\mathbb C$ and f a holomorphic function on $\Omega\setminus\{z_0\}$, $z_0\in\Omega$. Assume that f is bounded in some deleted neighborhood of z_0 , then f can be extended on Ω to a holomorphic function.

Proof

Let g be the function defined on Ω by

$$g(z) = \begin{cases} (z-z_0)f(z) & z \neq z_0 \\ 0 & z=z_0 \end{cases}$$
. Since f is bounded on some deleted neighborhood of z_0 , g is continuous. Thus g is holomorphic on Ω . There exists a neighborhood V of z_0 such that

$$g(z) = \sum_{n=1}^{+\infty} a_n (z-z_0)^n$$
, for all $z \in V$. Thus f can be extended on

V by
$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^{n-1}$$
, $a_1 = g'(z_0)$.

BLEL Mongi Fundamental Properties of Holomorphic Functions

Corollary

Let f be a holomorphic function on $\Omega \setminus \{z_0\}$. If f has an isolated singularity at z_0 and bounded in some deleted neighborhood of z_0 , then $\lim_{z \to z_0} f(z)$ exists.

Definition

Let f be a holomorphic function on $\Omega \setminus \{z_0\}$. If f can be extended to a holomorphic function on a neighborhood of z_0 , we say that z_0 is a removable singularity of f.

Theorem (Classification of Isolated Singularities of Holomorphic Functions)

Let f be a holomorphic function on $\Omega \setminus \{z_0\}$, $(z_0 \in \Omega)$. Then f satisfies one of the following properties

- 1. z_0 is a removable singularity of f.
- 2. There exist a_{-1}, \ldots, a_{-m} in \mathbb{C} , with $a_{-m} \neq 0$ such that z_0 is a removable singularity of the function $f(z) \sum_{j=1}^m \frac{a_{-j}}{(z-z_0)^j}$.
- 3. f comes arbitrarily close to every complex value in each deleted neighborhood of z_0 . In other words, for all r > 0 such that $D(z_0, r) \subset \Omega$, $f(D(z_0, r) \setminus \{z_0\})$ is dense in \mathbb{C} .

Remark

In the second case we say that z_0 is a pole of order m of f. The polynomial of $\frac{1}{z-z_0}$, $\sum_{j=1}^m \frac{a_{-j}}{(z-z_0)^j}$ is called the principal part of f at z_0 . In this case $\lim_{z\to z_0} |f(z)| = +\infty$.

In a neighborhood of z_0 , the function $f(z) - \sum_{j=1}^{m} \frac{a_{-j}}{(z - z_0)^j}$ has a power series representation.

$$f(z) - \sum_{i=1}^{m} \frac{a_{-j}}{(z - z_0)^j} = \sum_{k=0}^{\infty} a_k (z - z_0)^k.$$

The series $\sum a_k(z-z_0)^k$ is called the Laurent series expansion

Proof of theorem 4.5

by g.

Let $D^*(z_0,r)=D(z_0,r)\setminus\{z_0\}\subset\Omega$ and assume that the property (3) is not valid. There exists $b\in\mathbb{C}$ and $\varepsilon>0$ such that $f(D^*(z_0,r))\cap D(b,\varepsilon)=\emptyset$, which is equivalent to $|f(z)-b|\geq \varepsilon$, $\forall z\in D^*(z_0,r)$. The function $g(z)=\frac{1}{f(z)-b}$ is holomorphic on $D^*(z_0,r)$ and bounded by $\frac{1}{\varepsilon}$, thus it can be extended to a holomorphic function on $D(z_0,r)$. We denote this extension also

If $g(z_0) \neq 0$, then z_0 is a removable singularity of the function $f(z) = b + \frac{1}{g(z)}$.

If z_0 is a zero of g of multiplicity m, then $g(z)=(z-z_0)^mg_1(z)$, with g_1 a holomorphic function on $D(z_0,r)$ and $g_1(z_0)\neq 0$. Then $f(z)=b+\frac{h(z)}{(z-z_0)^m}$, with h holomorphic on $D(z_0,r)$. Let $h(z)=\sum_{k=0}^{\infty}b_k(z-z_0)^k$, the power series expansion of h. Thus $f(z)=b+\frac{b_0}{(z-z_0)^m}+\ldots+\frac{b_m}{z-z_0}+\sum_{i=0}^{+\infty}b_{m+k}(z-z_0)^k$. \square

Corollary

Suppose f has an essential singularity at z_0 , then for any complex number a, there exists a sequence $(z_n)_n$ such that $\lim_{n \to +\infty} z_n = z_0$ and $\lim_{n \to +\infty} f(z_n) = a$.

Remarks

We conclude that if f is a holomorphic function on the open set $\Omega \setminus \{z_0\}$, $z_0 \in \Omega$, then

- 1. z_0 is a removable singularity if and only if f is bounded in a deleted neighborhood of z_0 .
- 2. z_0 is a pole of f if and only if $\lim_{z \to z_0} |f(z)| = +\infty$.
- 3. z_0 is a pole of f of order m if and only if $\lim_{z \to z_0} |(z z_0)^m f(z)| = c$, with $c \in \mathbb{C}^*$.
- 4. z_0 is an essential singularity of f, if and only if, f is not bounded in any neighborhood of z_0 and $\lim_{z \to z_0} |f(z)|$ does not exists on $\mathbb{C} \cup \{+\infty\}$.

Definition

A mapping f is called a meromorphic function on an open subset Ω , if there exists a closed subset $A \subset \Omega$, such that f is holomorphic on $\Omega \setminus A$ and each point $a \in A$ is a pole of f.

If $A = \emptyset$, f is holomorphic on Ω .

The set A is at most countable without cluster points (accumulation points) in Ω .

Example

Let $f: \Omega \longrightarrow \mathbb{C}$ be a holomorphic function on a domain Ω and f is not the zero function, then $\frac{1}{f}$ is a meromorphic function on Ω . $(A = f^{-1}\{0\}).$

Exercise

Prove that the set $\mathcal{M}(\Omega)$ of the meromorphic functions on Ω is a field.

Proposition

Let f be a meromorphic function on an open subset Ω , then f' is also a meromorphic function, and f and f' have the same set of poles in Ω .

If a is a pole of order m for f, then a is a pole of order (m+1) for f'.

Exercise

If f is a meromorphic on Ω , then $\frac{f'}{f}$ is meromorphic and its poles are simple.