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Definition

Let Ω be an open subset of C and I a closed interval in R.

1. A continuous function γ : I −→ Ω is called a curve or a path
in Ω.

2. A continuously differentiable function γ : [a, b] −→ Ω is called
a differentiable path or a differentiable curve in Ω, and we say
that γ is parameterized by the interval [a, b].

3. A curve γ : [a, b] −→ Ω is called closed if γ(a) = γ(b).

4. We say that the curve γ : [a, b] −→ Ω is piecewise
continuously differentiable path if there exists a partition
σ = {t0 = a < t1 < . . . < tn = b} of the interval [a, b] such
that the restriction of γ on each interval ]tj , tj+1[ can be
extended to a continuously differentiable function on [tj , tj+1]
for all j = 0, ..., n − 1.

5. A closed curve γ : [a, b] −→ Ω is called simple curve or
Jordan curve if γ is one-to-one except at the endpoints of the
interval. (γ(a) can be equal to γ(b)).
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Remarks

1. Since for any closed interval [a, b] there exists a bijective and
differentiable function h : [0, 1] −→ [a, b], we can always
assume that a given path γ is parameterized by [0, 1]. (We
can take h(t) = a + (b − a)t).

2. Let γ1 and γ2 be the two curves defined on the interval
[0, 2π] −→ C by γ1(t) = eit and γ2(t) = e2it , these two
curves are different but they have by the same range. But
nevertheless for the convenience of lecture, if the curve is
simple, we identify the curve and its image.
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Definition (Opposite of a Curve)

Let γ : [a, b] −→ C be a curve. The opposite curve (or the reverse
curve) of γ denoted by γ− defined by γ−(t) = γ(a + b− t), for all
t ∈ [a, b]. γ and γ− have the same range or trajectory but they are
traveled in the opposite sense.
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Definition (Juxtaposition (or concatenation) of Curves)

Let γ1 : [a, b] −→ C and γ2 : [c , d ] −→ C be two curves such that
γ1(b) = γ2(c). The juxtaposition (or the concatenation) of the
curves γ1 and γ2 is the curve γ denoted by γ1 ∨ γ2 defined on the
interval [a, b + d − c] by

γ(t) = γ1(t) if t ∈ [a, b]

γ(t) = γ2(t − b + c) if t ∈ [b, b + d − c]

Remark

γ1(a) is the origin of the curve γ1 ∨ γ2 and γ2(d) is the end. In
particular if γ1(a) = γ2(d), the curve γ is closed, this is the case if
γ1 = γ−2
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Definition (Equivalent Curves)

Let I1 and I2 be two closed and bounded intervals of R.
Two curves γ1 : I1 −→ C and γ2 : I2 −→ C are called equivalents if
there exists an increasing bijective and piecewise continuously
differentiable function h : : I1 −→ I2 such that γ1 = γ2 ◦ h.

Remark

Any curve γ : [a, b] −→ C is equivalent to a curve on [0, 1]. It

suffices to take the function h(t) =
t − a

b − a
.
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Definition (Integration on a curve)

Let f be a continuous function defined on the image of a piecewise
continuously differentiable curve γ. The integral of f on the curve

γ denoted by

∫
γ
f (z)dz is defined by∫
γ
f (z)dz =

∫ b

a
f (γ(t))γ′(t)dt. (1)
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Proposition

Let γ1 and γ2 be two piecewise continuously differentiable paths on
[a, b] and [c, d ] respectively. If γ1 and γ2 are equivalents, then∫
γ1

f (z)dz =

∫
γ2

f (z)dz, for any continuous function on he image

of γ1.

Proof
Let h : [a, b] −→ [c , d ] be a bijective piecewise continuously
differentiable function such that γ2 ◦ h = γ1.

∫ d

c
f ◦ γ2(s)γ′2(s)ds =

∫ b

a
f ◦ γ2 ◦ h(t)γ′2(h(t))h′(t)dt

=

∫ b

a
f ◦ γ1(s)γ′1(s)ds.
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Proposition

Let γ be a piecewise continuously differentiable path defined on
the interval [a, b] and γ− its opposite path, then∫

γ−
f (z)dz = −

∫
γ
f (z)dz .

Proof∫
γ−

f (z)dz = −
∫ b

a
f (γ(a + b − t))γ′(a + b − t)dt =

−
∫ b

a
f (γ(s))γ′(s)ds = −

∫
γ
f (z)dz .
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Proposition

If γ1 and γ2 are two piecewise continuously differentiable paths
juxtaposed, then∫

γ1∨γ2

f (z)dz =

∫
γ1

f (z)dz +

∫
γ2

f (z)dz .

Corollary

If γ is a closed piecewise continuously differentiable path, then the

integral

∫
γ
f (z)dz does not depend on the origin.
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Definition

Let γ : [a, b] −→ C be a piecewise continuously differentiable path.
The length of γ denoted by L(γ) is defined by

L(γ) =

∫ b

a
|γ′(t)|dt.
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Consequence

It follows by definition of the integral of function on a curve that
for any continuous function f on the range of γ,

|
∫
γ
f (z)dz | ≤ ML(γ), (2)

with M = sup
z∈ range(γ)

|f (z)| = sup
t∈[a,b]

|f ◦ γ(t)|.
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Example

Let a ∈ C and r > 0. The closed curve γ : [0, 2π] −→ C defined by
γ(θ) = a + reiθ is called the circle of radius r , centered at a and
oriented counterclockwise.∫

γ
f (z)dz = ir

∫ 2π

0
f (a + reiθ)eiθdθ.

If f (z) = zn,

∫
γ
f (z)dz = 0 for every n ∈ Z \ {−1}.

BLEL Mongi Local Cauchy’s Theory



Complex Integration
Local Cauchy’s Theory

The Cauchy Theorem
Cauchy’s Formula for the Circle

Example

Let z1 and z2 be two complex numbers, the curve γ defined by
γ(t) = tz2 + (1− t)z1, t ∈ [0, 1] is called the interval [z1, z2].

If f (z) = zn,

∫
[z1,z2]

f (z)dz =
1

n + 1
(zn+1

2 − zn+1
1 ) for all

n ∈ Z \ {−1}. (In the case n ≤ −1, we assume that 0 6∈ =Γ)
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Let z1, z2 and z3 be three different complex numbers.
Let ∆ be the triangle of vertices z1, z2 and z3. We denote ∂∆ the
boundary of ∆ oriented counterclockwise. We define the closed
curve γ by the juxtaposition of the intervals oriented
[z1, z2], [z2, z3] and [z3, z1]. 1

•
z1

•
z2

• z3

Figure: Figure 1-2
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This is the curve γ : [0, 3] −→ C defined by
γ(t) = tz2 + (1− t)z1 0 ≤ t ≤ 1
γ(t) = (t − 1)z3 + (2− t)z2 1 ≤ t ≤ 2
γ(t) = (t − 2)z1 + (3− t)z3 2 ≤ t ≤ 3

We denote γ by ∂∆.∫
∂∆

f (z)dz =

∫
[z1,z2]

f (z)dz +

∫
[z2,z3]

f (z)dz +

∫
[z3,z1]

f (z)dz .

We remark that if f (z) = zn, then

∫
∂∆

f (z)dz = 0, for every n ∈ N

and also

∫
∂∆

f (z)dz = 0, for every n ∈ Z, n ≤ −2 and 0 6∈ ∂∆.
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Consequence

If f is analytic on a neighborhood of ∆, then

∫
∂∆

f (z)dz = 0.

(We say that the triangle ∆ is in the open subset Ω if its boundary
and its interior are in Ω.)
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Theorem (Index of a closed curve )

Let γ be a closed piecewise continuously differentiable path in C
and Ω the complement of the range of γ in C. For every z ∈ Ω we
define the index or the winding number of γ at z by

I (γ, z) =
1

2iπ

∫ b

a

γ′(t)

γ(t)− z
dt. (3)

I (γ, z) is a function with values in Z, constant on each connected
component of Ω and equal to zero on the unbounded connected
component of Ω.
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Proof
If γ : [a, b] −→ C and σ = {a0 = a, . . . , an = b} the partition
associated to σ, (i.e. γj = γ�]aj−1,aj [

is differentiable), then

Ind(γ, z) =
1

2iπ

∫ b

a

γ′(t)

γ(t)− z
dt.

We define the function ψ on the interval [a, b] by

ψ(s) = exp

∫ s

a

γ′(t)

γ(t)− z
dt.

To prove that Ind(γ, z) ∈ Z, it suffices to show that ψ(b) = 1
because expw = 1⇔ w ∈ 2iπZ.
For every s such that γ′(s) is defined, we have

ψ′(s)

ψ(s)
=

γ′(s)

γ(s)− z
⇔ ψ′(s)(γ(s)− z) = ψ(s)γ′(s).
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It follows that the derivative of
ψ(s)

γ(s)− z
is zero on each interval

]aj , aj+1[ and then it is a constant on each interval [aj , aj+1] on
which γ is continuously differentiable, thus it is constant on [a, b].

It follows that
ψ(a)

γ(a)− z
=

ψ(b)

γ(b)− z
and as γ(a) = γ(b), we

deduce that ψ(b) = ψ(a) = 1, (ψ(a) = e0 = 1).
γ′(t)

γ(t)− z
is a continuous function on [a, b] which is deduced from

theorem of continuity of integral which depends on a parameter.
Furthermore, the function z 7−→ Ind(γ, z) is continuous on Ω, with
entire values, it is then constant on each connected component of
Ω.
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Furthermore, lim|z|→+∞ Ind(γ, z) = 0, thus the map
z 7−→ Ind(γ, z) is zero on the unbounded connected component of
Ω.

Remark

If γ is a closed piecewise continuously differentiable path. The
index of γ at a point z 6∈ range(γ) is intuitively equal to the
number of turns described by γ around z when t describes the
interval [a, b].
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Proposition

If γ is the circle of radius r and centered at a with positive
orientation, then Ind(γ, z) = 1 if |z − a| < r and Ind(γ, z) = 0 if
|z − a| > r .

Proof
From the previous theorem, it suffices to find Ind(γ, a)

Ind(γ, a) =
1

2iπ

∫
γ

dz

z − a
=

1

2iπ

∫ 2π

0

ireiθ

reiθ
dθ = 1.

BLEL Mongi Local Cauchy’s Theory



Complex Integration
Local Cauchy’s Theory

The Cauchy Theorem
Cauchy’s Formula for the Circle

Theorem

Let f : Ω −→ C be a continuous function on an open subset Ω of
C. The function f has a primitive on Ω, if and only if, for any
closed piecewise continuously differentiable path γ in Ω∫
γ
f (z)dz = 0.

Proof
Let F be a primitive of f (i.e. F ′ = f on Ω) and let γ : [a, b] −→ Ω
be a closed piecewise continuously differentiable path, we have

∫
γ
f (z)dz =

∫ b

a
F ′(γ(t))γ′(t)dt = F (γ(b))− F (γ(a)) = 0,

(because γ(a) = γ(b)).
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Conversely: Assume that

∫
γ
f (z)dz = 0 for any closed piecewise

continuously differentiable path γ. It suffices to construct a
primitive on each connected component of Ω. We can then assume
that Ω is connected, then any two points in Ω can be joined by a
piecewise continuously differentiable path in Ω. Let z0 ∈ Ω, for
every z ∈ Ω, there exists a piecewise continuously differentiable
path of origin z0 and of end z . Let γ1 and γ2 be two such curves,
one has ∫

γ
f (z)dz =

∫
γ1

f (z)dz −
∫
γ2

f (z)dz = 0,
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with γ the closed curve obtained by juxtaposition of the curve γ1

and of the opposite curve of γ2. We set F the function defined on
Ω by

F (z) =

∫
γz0,z

f (w)dw ,

with γz0,z be a piecewise continuously differentiable path of origin
z0 and of end z . The function F is well defined and it F is
independent of the choice of γz0,z .
Let us prove that F is a primitive of f .
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1

z

z + h

z0
γz0,z

γz0,z+h

Figure: Figure 2-2
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Let r > 0 be such that D(z , r) ⊂ Ω and let h be small enough
such that |h| < r . We consider the integral of f on the closed
curve γ obtained by juxtaposing the curves γz0,z , [z , z + h] and the
opposite curve of any γz0,z+h.∫
γ
f (w)dw =

∫
γz0,z

f (w)dw+

∫
[z,z+h]

f (w)dw−
∫
γz0,z+h

f (w)dw = 0.

Thus

F (z + h)− F (z)

h
− f (z) =

1

h

∫
[z,z+h]

(f (w)− f (z))dw .

It follows that

lim
h→0
|F (z + h)− F (z)

h
− f (z)| ≤ lim

h→0
sup

w∈[z,z+h]
|f (w)− f (z)| = 0.

Thus F is differentiable and F ′(z) = f (z).
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Corollary

Since
zn+1

n + 1
is a primitive of zn, for n ∈ Z \ {−1}, then∫

γ
zndz = 0 for any closed piecewise continuously differentiable

path γ, whenever n ∈ Z \ {−1}, with 0 6∈ range(γ) if n ≤ −2.

Definition

• A set E ⊂ C is convex if for each pair of points a, b ∈ E, we
have [a, b] ⊂ E.
• E is starlike with respect to a ∈ E (a called a star center of E) if
[a, z ] ⊂ E for each z ∈ E. Note that any non-empty convex set is
starlike with respect any of its points and the starlike sets are
polygonally connected.
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Theorem
(Cauchy 1825)
Let f be a continuous function on a convex open set Ω such that∫

∂∆
f (z)dz = 0,

for any triangle ∆ in Ω, then f has a primitive on Ω.
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(The result is still true if Ω is starlike).
Proof
Let z0 ∈ Ω be fixed and z ∈ Ω, the interval [z0, z ] ⊂ Ω. We set

F (z) =

∫
[z0,z]

f (w)dw .

If λ ∈ C∗ is such that z + λ ∈ Ω, the integral of f on the boundary
of the triangle ∆(z0, z , z + λ) is zero thus we have

F (z + λ)− F (z)

λ
− f (z) =

1

λ

∫
[z,z+λ]

f (w)dw − 1

λ

∫
[z,z+λ]

f (z)dw .

The proof can be completed as in theorem 2.1, thus F ′(z) = f (z).
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Lemma
(Topology Lemma)
Let (Kn)n be a decreasing sequence of non-empty compacts sets of
C such that the sequence (δ(Kn))n tends to 0 when n tends to
+∞, (δ(Kn) is the diameter of Kn). Then

⋂
n Kn is reduced to a

point.

Theorem
(Cauchy’s Theorem for a triangle)
Let Ω be an open subset of C and f : Ω −→ C be a holomorphic

function on Ω. Then for any triangle ∆ in Ω,

∫
∂∆

f (w)dw = 0.
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Proof
Let ∆(a, b, c) be an oriented triangle ∆ and a′, b′, c ′ the middle
points of the intervals [b, c], [c , a] and respectively [a, b]. We
consider the four triangles ∆j (1 ≤ j ≤ 4) positively oriented,
respectively (a, c ′, b′), (b, a′, c ′), (c, b′, a′) and (a′, b′, c ′). We set

J =

∫
∂∆

f (z)dz =
4∑

j=1

∫
∂∆j

f (z)dz .
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a c′ b

a′

c

b′

Figure: Figure 3-2
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There exist 1 ≤ j ≤ 4 such that |
∫
∂∆j

f (z)dz | ≥ |J|
4

. We denote

this triangle by ∆1. We apply to ∆1 the same method and we
construct a triangle ∆2 ⊂ ∆1 such that

|
∫
∂∆2

f (z)dz | ≥ 1

4
|
∫
∂∆1

f (z)dz | ≥ |J|
42
.

By induction, we construct a decreasing sequence of triangles
(∆n)n∈N such that ∀n ∈ N,

|
∫
∂∆n

f (z)dz | ≥ 1

4
|
∫
∂∆n−1

f (z)dz | ≥ |J|
4n

(4)
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By construction L(∂∆n) = 1
2n L(∂∆). (L(∂∆) is the length of ∂∆).

We denote by {z0} =
⋂

n ∆n. Since f is differentiable at z0, then
∀ ε > 0, ∃ r > 0 such that

|f (z)− f (z0)− (z − z0)f ′(z0)| ≤ ε|z − z0| for |z − z0| ≤ r .

Since δ(∆n) −→
n→+∞

0, there exists N ∈ N such that for all n ≥ N

and for all z ∈ ∆n, |z − z0| ≤ r . We deduce that

BLEL Mongi Local Cauchy’s Theory



Complex Integration
Local Cauchy’s Theory

The Cauchy Theorem
Cauchy’s Formula for the Circle

|
∫
∂∆n

f (z)dz | = |
∫
∂∆n

(f (z)− f (z0)− (z − z0)f ′(z0))dz | ≤ ε sup
z∈∆n

|z − z0|L(∂∆n)

≤ ε(L(∂∆n))2 ≤ ε(
L(∂∆)

2n
)2.

We deduce by inequality (4) that ∀n ∈ N,
|J|
4n
≤ ε

4n
(L(∂∆))2,

which yields that |J| ≤ ε(L(∂∆))2, ∀ε > 0, thus J = 0.
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Remark

Theorem 3.2 remains valid for a rectangle. It suffices to divide the
rectangle to 4 isometrics rectangles and repeat the same proof as
before.

Theorem

Let f : Ω −→ C be a continuous function and z0 ∈ Ω. Assume
that f is holomorphic on Ω \ {z0}. Then for any triangle ∆ ⊂ Ω,∫
∂∆

f (z)dz = 0.
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Proof
Let ∆(a, b, c) be a triangle in Ω.
• If z0 6∈ ∆, then f is holomorphic on Ω \ {z0} and ∆ ⊂ Ω \ {z0}.
Then

∫
∂∆

f (z)dz = 0.

If z0 = a is a vertex of ∆.
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z0

x y

b c

Figure: Figure 4-2
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Let x and y be two points situated respectively on ]a, b] and ]a, c]
and close to a.

∫
∂∆

f (z)dz =

∫
[a,x ,y ]

f (z)dz +

∫
[x ,b,y ]

f (z)dz +

∫
[y ,b,c]

f (z)dz .

Then from the previous case

∫
[x ,b,y ]

f (z)dz =

∫
[y ,b,c]

f (z)dz = 0,

thus ∣∣∣∫
∂∆

f (z)dz
∣∣∣ =

∣∣∣∫
[a,x ,y ]

f (z)dz
∣∣∣ ≤ sup

z∈∆
|f (z)|L([a, x , y ]),

x and y being arbitrary, it follows that L([a, x , y ]) −→
x ,y−→a

0, thus∫
∂∆

f (z)dz = 0.
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• If z0 is in ∆ and it is not a vertex, then we take the 3 triangles
[z0, a, b], [z0, b, c] and [z0, c , a], and the result is deduced from the
previous case. 1

z0

a

b c

Figure: Figure 5-2
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Theorem
[Cauchy’s Theorem (1831) on convex domains]
Let Ω be a convex open subset of C and f : Ω −→ C a continuous
function and holomorphic on Ω \ {z0}, (z0 ∈ Ω). Then f has a
primitive on Ω and for any closed piecewise continuously

differentiable path γ in Ω,

∫
γ
f (z)dz = 0.

Proof
The theorem results from theorems 2.1, 2.4 and 3.2.
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Theorem

Let Ω be an open subset of C which contains the closed disc
D(z0, r), r > 0 and let f : Ω −→ C be a holomorphic function.
Then for all z ∈ D(z0, r)

f (z) =
1

2iπ

∫
γ

f (w)

w − z
dw , (5)

with γ : [0, 2π] −→ C the closed curve defined by γ(t) = z0 + reit .
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Proof
There exists ε > 0 such that D(z0, r + ε) ⊂ Ω. Let g be the
function defined on Ω by

g(w) =


f ′(z) if w = z

f (w)− f (z)

w − z
if w 6= z

.

g is holomorphic on Ω \ {z} and continuous on Ω. By theorem 3.5
(the convex set is D(z0, r + ε)).∫

γ
g(w)dw = 0 =

∫
γ

f (w)

w − z
dw −

∫
γ

f (z)

w − z
dw .

Thus f (z) =
1

2iπ

∫
γ

f (w)

w − z
dw (because

∫
γ

dw

w − z
= 2iπ).

BLEL Mongi Local Cauchy’s Theory



Complex Integration
Local Cauchy’s Theory

The Cauchy Theorem
Cauchy’s Formula for the Circle

Theorem

A function f : Ω −→ C is holomorphic on Ω if and only if f is
analytic on Ω and ∀ z0 ∈ Ω,

f (z) =
+∞∑
k=0

f (k)(z0)

k!
(z − z0)k (6)

This series converges on any disc centered at z0 in Ω.
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Proof
Let r > 0 be such that D(z0, r) ⊂ Ω. We have:

f (z) =
1

2iπ

∫
γ

f (w)

w − z
dw , where γ(θ) = z0 + reiθ, θ ∈ [0, 2π] and

|z − z0| < r .

1

w − z
=

1

(w − z0)(1− z−z0
w−z0

)
=

+∞∑
n=0

(z − z0)n

(w − z0)n+1
.

f (z) =
+∞∑
n=0

(z − z0)n
1

2iπ

∫
γ

f (w)

(w − z0)n+1
dw =

+∞∑
n=0

an(z − z0)n.

The series converges on the disc D(z0, r). Then

BLEL Mongi Local Cauchy’s Theory



Complex Integration
Local Cauchy’s Theory

The Cauchy Theorem
Cauchy’s Formula for the Circle

1. an =
f (n)(z0)

n!
=

1

2iπ

∫
γ

f (w)

(w − z0)n+1
dw =

1

2π

∫ 2π

0

f (z0 + reiθ)

(reiθ)n
dθ.

2. The series
∑
n≥0

an(z − z0)n converges on any disc centered at

z0 in Ω.
The converse is given by theorem ?? chapter I.

Corollary

Let Ω be an open subset of C. If f is holomorphic on Ω, then for
all n ∈ N, f (n) is holomorphic on Ω.
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Theorem

Let Ω be a domain of C and f : Ω −→ C be a holomorphic
function. If f is not identically zero, then the zeros of f are
isolated.

Theorem

The ring of holomorphic functions on a domain Ω of C is integral.

These two theorems are deduced from the fact that any
holomorphic function is analytic.
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Theorem (Morera’s Theorem)

Let f be a continuous function on Ω. Then f is holomorphic on Ω
if and only if for any triangle ∆ ⊂ Ω (interior included), the

integral

∫
∂∆

f (w)dw = 0.

Proof
The necessary condition is given by theorem 3.2. For the sufficient

condition, the hypothesis that

∫
∂∆

f (w)dw = 0 for any triangle in

Ω yields that, locally the function f has a primitive F . F is
holomorphic, then f is also holomorphic.
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Corollary

If f ∈ H(Ω \ {z0}) and continuous on Ω, then f ∈ H(Ω). (z0 ∈ Ω).

Proof

Theorem 3.4 yields that

∫
∂∆

f (w)dw = 0 for any triangle ∆ in Ω.

Then by Morera’s theorem, f is holomorphic on Ω.

Corollary

Let f be a continuous function on an open set Ω. The following
conditions are equivalents.
i) f is holomorphic on Ω,
ii) f is analytic on Ω,
iii) locally f has a primitive on Ω,

iv) For any triangle ∆ ⊂ Ω,

∫
∂∆

f (z)dz = 0.
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Proof
i) ⇔ ii) results from theorem 4.2.
iii) ⇒ i) Locally f has a primitive F , F is holomorphic, thus F ′ is
holomorphic by Corollary 4.3.
i) ⇒ iv) this is theorem 3.5.
iv) ⇒ iii) Results from theorem 2.4.
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