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1 Anti-Derivatives, Indefinite Integrals

• In the classical analysis course, we defined the derivative f ′ of functions if it exists.
• In this section we are interested to the inverse problem. If f is a function, find if it
is possible a function F such that F ′ = f .

Definition 1.1
A function F is called an anti-derivative of f on an interval I, if F is differentiable
on I and

F ′(x) = f(x), ∀x ∈ I.

Example 1 :
Let F (x) = x2, x ∈ R; then F is differentiable on R and F ′(x) = 2x. Therefore F is
an anti-derivative of 2x on R.

Note: There are many anti-derivatives of f(x) = 2x on R such as

F1(x) = x2 + 1, F2(x) = x2 − 7, F3(x) = x2 +
11

2
, F4(x) = x2 −

√
2.

In general the function G(x) = x2 + c, where c is an arbitrary constant is an anti-
derivative of f(x) = 2x.

Theorem 1.2
Let F and G be two anti-derivatives of f on an interval I, then there is a constant
c ∈ R such that

F (x) = G(x) + c, ∀x ∈ I.

Proof .
(F −G)′(x) = F ′(x)−G′(x) = 0, then F −G = c on the interval I.

Example 2 :
Given F (x) = sin(x), its derivative is F ′(x) = cos(x). Then an anti-derivative of
cos(x) is sin(x). Also G(x) = sin(x) + c is an anti-derivative of cos(x).

Definition 1.3

Let F be an anti-derivative of f on an interval I, we denote

∫
f(x)dx any anti-

derivative i.e. ∫
f(x)dx = F (x) + c, ∀x ∈ I (1.1)∫

f(x)dx is called the indefinite integral of f on I.

In the equation (1.1),
• the constant c is called the constant of integration,
• x is called the variable of integration,
• f(x) is called the integrand.

The mapping f 7−→
∫
f(x)dx is called an indefinite integral or an integrating of f .
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Basic table of indefinite integrals

f(x)

∫
f(x)dx

1 x+ c

xr;
xr+1

r + 1
+ c, r ∈ Q \ {−1}

cos(x) sin(x) + c

sin(x) − cos(x) + c

sec2(x) tan(x) + c

csc2(x) − cot(x) + c

sec(x) tan(x) sec(x) + c

csc(x) cot(x) − csc(x) + c

Theorem 1.4 (Some important formulas)
• If f is differentiable on an interval I, then∫

d

dx
f(x)dx = f(x) + c.

• If f has an anti-derivative on an interval I, then

d

dx

∫
f(x)dx = f(x).

• If f has an anti-derivative on an interval I, then for all α ∈ R the function αf has
an anti-derivative on the interval I and∫

αf(x)dx = α

∫
f(x)dx.

• If f and g have anti-derivatives on an interval I, then the function f + g has an
anti-derivative on the interval I and∫

f(x) + g(x)dx =

∫
f(x)dx+

∫
g(x)dx.

2 Change of Variables; Substitution Method

Theorem 2.1 (Substitution)
If F is an anti-derivative of f , then F (g(x)) is an anti-derivative of f(g(x))g′(x).
Or,
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∫
f(g(x))g′(x)dx = F (g(x)) + c.

This is obvious. It is called ”substitution” since it can be obtained by substituting
u = g(x) and du = g′(x)dx into∫

f(u)du = F (u) + c.

Remark 2.2
Substitution method is also called changing variable method.

Example 1 :∫
(x2 + 1)n2xdx

u=x2+1
=

∫
undu =

un+1

n+ 1
=

(x2 + 1)n+1

n+ 1
+ c.

Example 2 :∫
sin(2x+ 3)dx

u=2x+3
=

1

2

∫
sinudu = −1

2
cosu+ c = −1

2
cos(2x+ 3) + c.

Example 3 :∫
1

cos2(πx)
dx

u=πx
=

1

π

∫
1

cos2(u)
du =

1

π
tan(πx) + c.

Example 4 : ∫
cos(x)dx = sin(x) + c,

but ∫
cos(2x)dx 6= sin(2x) + c,

because d
dx

(sin(2x) + c) = 2 cos(2x) 6= cos(2x).
To solve this problem, substituting u = 2x, then du = 2dx. Thus

∫
cos(2x)dx =

∫
cos(u)

1

2
du =

1

2

∫
cos(u)du =

1

2
sin(2x) + c.

Example 5 :
Let n 6= −1. ∫

xndx =
xn+1

n+ 1
+ c,

but ∫
(3x+ 1)ndx 6= (3x+ 1)n+1

n+ 1
+ c,

because d
dx

( (3x+1)n+1

n+1
) = 3(3x+ 1)n 6= (3x+ 1)n.

To solve this problem, substituting u = 3x+ 1, then du = 3dx. Thus

∫
(3x+ 1)ndx =

∫
un

1

3
du =

1

3

∫
undu =

un+1

n+ 1
+ c =

1

3

(3x+ 1)n+1

n+ 1
+ c.
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Theorem 2.3
Let I be an interval. Let r ∈ Q \ {−1} and f : I → R be a differentiable function.
Assume that f r(x) is defined for every x ∈ I. Then∫

f r(x)f ′(x)dx =
f r+1(x)

r + 1
+ c.

Example 6 :
Find the values of the following integrals

K1 =

∫
(2x3 + 1)76x2dx

K2 =

∫
(7− 6x2)1/2xdx

K3 =

∫
x2 − 1

(x3 − 3x+ 1)6
dx.

Solution.
• To compute K1, set f(x) = 2x3 + 1, then f ′(x) = 6x2, therefore

K1 =

∫
f 7(x)f ′(x)dx

=
f 8(x)

8
+ c

=
(2x3 + 1)8

8
+ c.

• To compute K2, set f(x) = 7− 6x2, then f ′(x) = −12x, therefore

K2 = − 1

12

∫
(7− 6x2)1/2(−12x)dx

=

∫
f 1/2(x)f ′(x)dx

=
f 3/2(x)

3/2
+ c

=
2

3
(7− 6x2)3/2 + c.

• To compute K3, set f(x) = x3− 3x+ 1, then f ′(x) = 3x2− 3 = 3(x2− 1), therefore

K3 =
1

3

∫
3(x2 − 1)

(x3 − 3x+ 1)6
dx

=
1

3

∫
(x3 − 3x+ 1)−6.3(x2 − 1)dx
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=
1

3

∫
(f(x))−6f ′(x)dx

=
1

3

(f(x))−5

−5
+ c

= − 1

15(x3 − 3x+ 1)5
+ c.

3 Summation Notation

Definition 3.1

Given a set of numbers {a1, a2, ..., an}, the symbol
n∑
k=1

ak represents their sum as

follows
n∑
k=1

ak = a1 + a2 + ...+ an.

3.1 Summation Properties.

Let C be a constant and let m,n ∈ N. We have the following summation properties

1.
n∑
k=1

C = C + C + C + . . .+ C︸ ︷︷ ︸
n terms

= nC.

2.
n∑
k=1

(ak + bk) =
n∑
k=1

ak +
n∑
k=1

bk.

3.
n∑
k=1

(ak − bk) =
n∑
k=1

ak −
n∑
k=1

bk.

4.
n∑
k=1

Cak = C
n∑
k=1

ak.

5. If 1 ≤ m ≤ n then
m∑
k=1

ak +
n∑

k=m+1

ak =
n∑
k=1

ak.

Example 1 :

Evaluate the sum
3∑

k=1

(k + 1)2k3.

Solution. Here n = 3 and ak = (k + 1)2k3. Then

a1 = 4, a2 = 72, a3 = 432.

Therefore
3∑

k=1

(k + 1)2k3 = 4 + 72 + 432 = 508.
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Example 2 :

Evaluate the sum
10∑
k=1

(1 + (−1)k).

Solution. Here n = 10 and ak = 1 + (−1)k. Then

a1 = 0, a2 = 2, a3 = 0, a4 = 2, a5 = 0, a6 = 2, a7 = 0, a8 = 2, a9 = 0, a10 = 2.

Therefore
10∑
k=1

(1 + (−1)k) = 0 + 2 + 0 + 2 + 0 + 2 + 0 + 2 + 0 + 2 = 10.

Theorem 3.2
For every c ∈ R and n ∈ N, we have

n∑
k=1

c = nc.

Example 3 :

Evaluate the sum
123∑
k=1

4.

Solution. We have
123∑
k=1

4 = 123× 4 = 492.

Theorem 3.3
Let α, β ∈ R and n ∈ N. For every a1, a2, ..., an, b1, b2, ..., bn ∈ R we have

n∑
k=1

(αak + βbk) = α
n∑
k=1

ak + β
n∑
k=1

bk.

Example 4 :

Evaluate the sum
3∑

k=1

[
5(1 + (−1)k) + 2(k + 1)2k3

]
.

Solution. We have
3∑

k=1

[
5(1+(−1)k)+2(k+1)2k3

]
= 5

3∑
k=1

(1+(−1)k)+2
3∑

k=1

(k+1)2k3 = 5×2+2×508 = 1026.

Theorem 3.4
Let n ∈ N. Then

n∑
k=1

k =
n(n+ 1)

2

n∑
k=1

k2 =
n(n+ 1)(2n+ 1)

6

n∑
k=1

k3 =
[n(n+ 1)

2

]2
.
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Example 5 :
Evaluate the following sums

100∑
k=1

k,
20∑
k=1

k2,
10∑
k=1

k3.

Solution. We have

100∑
k=1

k =
100× (100 + 1)

2
= 50× 101 = 5050,

20∑
k=1

k2 =
20× (20 + 1)× (2× 20 + 1)

6
=

20× 21× 41

6
= 2870,

10∑
k=1

k3 =
[10× (10 + 1)

2

]2
= 552 = 3025.

Example 6 :
Express the sum in terms of n

n∑
k=1

(3k2 − 2k + 1).

Solution. We have

n∑
k=1

(3k2 − 2k + 1) = 3
n∑
k=1

k2 − 2
n∑
k=1

k +
n∑
k=1

1,

= 3.
n(n+ 1)(2n+ 1)

6
− 2.

n(n+ 1)

2
+ 1.n,

=
n

2

[
(n+ 1)(2n+ 1)− 2(n+ 1) + 2

]
,

=
n

2
(2n2 + 3n+ 1− 2n− 2 + 2),

=
n

2
(2n2 + n+ 1).

4 Riemann Sums, Area and the Definite Integral

The approach of the integral of function by areas gives the geometrical sense of
integration. The second approach consists in introducing a priori the anti-derivative
of function. The idea of the first approach is to cut the interval [a, b] by a subdivision
in sub-intervals [aj, aj+1], then to add the areas of rectangles based on the intervals
[aj, aj+1].

Definitions 4.1
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1. A partition P of the closed interval [a, b] is a finite set of points P = {a0, a1, a2, . . . , an}
such that a = a0 < a1 < a2 < . . . < an−1 < an = b. Each [aj−1, aj] is called a
subinterval of the partition and the number hj = aj−aj−1 is called the amplitude
of this interval.

2. The norm of a partition is defined to be the length of the longest subinterval
[aj, aj+1], that is, it is ||P || = max{aj − aj−1, j = 1, . . . , n}.

3. A partition P = {a0, a1, a2, . . . , an} of the closed interval [a, b] is a called uni-

form if ak+1 − ak =
b− a
n

. Then in this case

ak = a+ k
b− a
n

.

4. A mark on the partition P = {a0, a1, a2, . . . , an} is a set of points w = {x1, . . . , xn}
such that xj ∈ [aj−1, aj].

5. A pointed partition of an interval is a partition of an interval together with a
finite sequence of numbers x1, x2, . . . , xn such that

∀j = 1, . . . , n, xj ∈ [aj−1, aj].

This pointed partition will be denoted by:

P = {([aj−1, aj], xj)}1≤j≤n.

Definition 4.2
Let P = {([aj−1, aj], xj)}1≤j≤n be a pointed partition of the interval [a, b]. The Rie-
mann sum of f with respect to the pointed partition P is the number

R(f, P ) =
n∑
j=1

f(xj)(aj − aj−1) =
n∑
j=1

f(xj)∆j (4.2)

Each term in the sum is the product of the value of the function at a given
point and the length of an interval. Consequently, each term represents the area of a
rectangle with height f(xj) and length aj−aj−1. The Riemann sum is the signed area
under all the rectangles.

The Riemann sum R(f, P ) is the algebraic area of the union of the rectangles
of width ∆j and height f(xj). This is an algebraic area since f(xj)∆j is counted
positively if f(xj) > 0 and negatively if f(xj) < 0.

Intuitively the algebraic area A under the graph of f is the limit of R(f, P )
when the ∆j tend to 0. One possible choice is a uniform partition of the interval [a, b]

aj = a+ j
b− a
n

, 0 ≤ j ≤ n where ∆j = h =
b− a
n

,

which could be combined with any choice of xj.
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Example 1 :
As a first example, consider the identity function f(x) = x on the interval [0, 1]. For
n ≥ 1 let :

a0 = 0, a1 =
1

n
, . . . , aj =

j

n
, . . . , an = 1.

This partition is uniform and of norm equal to
1

n
. We present three cases

of Riemann sums, as we put the xj at the beginning, middle or at the end of the
intervals [aj−1, aj].

xj = aj−1 : R(f, P ) =
n∑
j=1

j − 1

n

1

n
=

1

n2

n−1∑
j=0

j =
n− 1

2n
,

xj =
aj−1 + aj

2
: R(f, P ) =

n∑
j=1

2j − 1

2n

1

n
=

1

2n2

n−1∑
j=0

2j + 1 =
1

2

xj = aj : R(f, P ) =
n∑
j=1

j

n

1

n
=
n+ 1

2n
.

The second sum is equal to
1

2
for every n, the other tends to

1

2
when n tends

to infinity. The area of the triangle under the graph of the function is equal to
1

2
.

Definition 4.3
For any bounded function f defined on the closed interval [a, b], the definite integral
of f from a to b is ∫ b

a

f(x)dx = lim
n→∞

n∑
k=1

f(wk)∆xk, (‖P‖ → 0)

whenever the limit exists. (The limit is over all pointed partitions P = {([xj−1, xj], wj)}1≤j≤n).
When the limit exists, we say that f is Riemann integrable (or integrable) on [a, b].

Example 2 :
Let f : [0, 1] −→ R defined by: f(x) = 1 if x ∈ Q∩ [0, 1] and f(x) = 0 if x 6∈ Q∩ [0, 1].
If P = {x0, x1, x2, . . . , xn} a partition of the closed interval [0, 1], we take the marks
t = {t0, t1, t2, . . . , tn}, t′ = {t′0, t′1, t′2, . . . , t′n} such that tk ∈ [xk, xk+1] ∩ Q and t′k ∈
[xk, xk+1] ∩ (R \Q), for all k = 0, . . . , n− 1. Then R(f, P, t) = 1 and R(f, P, t′) = 0.
Then f is not Riemann integrable.

Theorem 4.4
If f : [a, b]→ R is continuous, then f is integrable on [a, b].
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Definition 4.5
A function f : [a, b] −→ R is called piecewise continuous on a closed interval [a, b] if
there exists a partition P = {x0, x1, x2, . . . , xn} of the closed interval [a, b] such that
f is continuous on every interval ]xk, xk+1[, limx→x+k

f(x) and limx→x−k+1
f(x) exist in

R, for all k = 0, . . . , n− 1.

Theorem 4.6
Any piecewise continuous function f : [a, b] −→ R is Riemann integrable and then∫ b

a

f(x)dx = lim
n→+∞

b− a
n

n∑
k=1

f(xk).

Example 3 :∫ 1

0

(3x+ 7)dx = lim
n→+∞

1

n

n∑
k=1

3
k

n
+ 7 = lim

n→+∞

3

n2

n(n+ 1)

2
+ 7 =

3

2
+ 7 =

17

2
.

Example 4 :∫ 4

1

(x2 + x+ 2)dx = lim
n→+∞

3

n

n∑
k=1

(
1 + 3

k

n

)2

+ (1 + 3
k

n
) + 2

= lim
n→+∞

3

n

n∑
k=1

(
1 + 6

k

n
+ 9

k2

n2
+ 1 + 3

k

n
+ 2

)
= lim

n→+∞

3

n

(
n+

6

n

n(n+ 1)

2
+

9

n2

n(n+ 1)(2n+ 1)

6
+ n+

3

n

n(n+ 1)

2
+ 2n

)
=

69

2
.

Example 5 : ∫ 2

0

(6x3 + 1)dx = lim
n→+∞

2

n

n∑
k=1

6

(
2
k

n

)3

+ 1

= lim
n→+∞

2

n

(
12

(n+ 1)2

n
+ n

)
= 26.

4.1 Fundamental Properties.

1. Linearity. If f, g: [a, b]→ R are two functions and α,β two reals numbers, then

S(αf + βg, P ) = αS(f, P ) + βS(g, P ).

2. Monotony. If f, g: [a, b]→ R are two functions, then

f ≤ g ⇒ S(f, P ) ≤ S(g, P ).

In particular, if f ≥ 0, then S(f, P ) ≥ 0.
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3. Chasles’s Formula. If a < c < b are three reals numbers and f be a function
defined on [a, b]. If P1 is a pointed partition of [a, c] and P2 be a pointed partition
of [b, c], then P1 ∪ P2 is a pointed partition of [a, b] and

S(f, P1 ∪ P2) = S(f, P1) + S(f, P2).

Example 6 :
Find the Riemann sum for the following function

f(x) = 4x+ 1

on the partition P = {−1, 0, 2, 4, 6} of the interval [−1, 6] by choosing in each
subinterval of P

a) the left hand end point,
b) the right hand end point,
c) the middle point.

Solution.
Start by given ∆xk for every k:

∆x1 = 0− (−1) = 1, ∆x2 = 2− 0 = 2, ∆x3 = 4− 2 = 2, ∆x4 = 6− 4 = 2.

a) The left hand endpoints are

w1 = −1, w2 = 0, w3 = 2, w4 = 4,

and
f(w1) = −3, f(w2) = 1, f(w3) = 9, f(w4) = 17.44

Therefore

S(f, P ) =
4∑

k=1

f(wk)∆xk

= (−3)× 1 + 1× 2 + 9× 2 + 17× 2

= 1 + 2 + 18 + 34

= 56.

b) The right hand endpoint are

w1 = 0, w2 = 2, w3 = 4, w4 = 6.

Then
f(w1) = 1, f(w2) = 9, f(w3) = 17, f(w4) = 25.
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Therefore

S(f, P ) =
4∑

k=1

f(wk)∆xk

= 1× 1 + 9× 2 + 17× 2 + 25× 2

= 1 + 18 + 34 + 50

= 103.

c) The middle points are

w1 =
−1 + 0

2
= −1

2
, w2 =

0 + 2

2
= 1, w3 =

2 + 4

2
= 3, w4 =

4 + 6

2
= 5.

Then
f(w1) = −1, f(w2) = 5, f(w3) = 13, f(w4) = 21.

Therefore

S(f, P ) =
4∑

k=1

f(wk)∆xk

= (−1)× 1 + 5× 2 + 13× 2 + 21× 2

= −1 + 10 + 26 + 42

= 77.

Example 7 :
Use the above definition to express each the following limits as a definite integral

lim
n→∞

1

n

n∑
k=1

π(w2
k − 4), [a, b] = [2, 3], wk = 2 +

k

n
,

lim
n→∞

1

n

n∑
k=1

(w
1/3
k + 4wk), [a, b] = [−4,−3], wk = −4 +

k

n
.

Solution. Using the definition and the above theorem, we obtain

lim
n→∞

n∑
k=1

π(w2
k − 4)∆xk =

∫ 3

2

(x2 − 4)dx

lim
n→∞

n∑
k=1

(w
1/3
k + 4wk)∆xk =

∫ −3
−4

(x1/3 + 4x)dx.

Conventions and Notations:

If c > d, then

∫ d

c

f(x)dx = −
∫ c

d

f(x)dx.

If f(a) exists, then

∫ a

a

f(x)dx = 0.
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Theorem 4.7 If f : [a, b]→ R is integrable and

f(x) ≥ 0, ∀x ∈ [a, b],

then the area A of the region under the graph of f from a to b is

A =

∫ b

a

f(x)dx.

Example 8 :
Express the area A of the shaded region as a definite integral

X

Y

y = 3
4
x+ 11

4

Solution. We have

3x− 4y = 11 ⇐⇒ y =
3

4
x+

11

4
= f(x).

Clearly f is continuous and positive on the interval [−1, 3], by the above theorems
we obtain

A =

∫ 3

−1
f(x)dx =

∫ 3

−1

3

4
x+

11

4
dx.

Example 9 :
Evaluate the definite integrals by regarding it as the area under the graph of function

I1 =

∫ 3

−1
4dx, I2 =

∫ 4

0

xdx, I3 =

∫ 4

−1
|x|dx.

Solution.
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The functions wich we integrate are continuous.

I1 =

∫ 3

−1
4dx = lim

n→+∞

4

n

n∑
k=1

4 = lim
n→+∞

16n

n
= 16.

I2 =

∫ 4

0

xdx = lim
n→+∞

4

n

n∑
k=1

4k

n
= lim

n→+∞

8(n+ 1)

n
= 8.

I3 =

∫ 4

−1
|x|dx =

∫ 0

−1
(−x)dx+

∫ 4

0

xdx,∫ 0

−1
(−x)dx = lim

n→+∞

1

n

n∑
k=1

(1− k

n
) =

1

n
(n− n+ 1

2
) =

1

2
,

∫ 4

0

xdx = 8, then I3 =
1

2
+ 8.

Theorem 4.8
We have the following properties of the definite integrals:
(P1) If α is a real number, then ∫ b

a

αdx = α(b− a).

(P2) If α is a real number and f : [a, b] → R is an integrable function, then αf is
integrable on [a, b] and ∫ b

a

αf(x)dx = α

∫ b

a

f(x)dx.

(P3)If f and g are two integrable functions on [a, b], then f + g is integrable on [a, b]
and ∫ b

a

f(x) + g(x)dx =

∫ b

a

f(x)dx+

∫ b

a

g(x)dx.

(P4)If f and g are two integrable functions on [a, b], then f − g is integrable on [a, b]
and ∫ b

a

f(x)− g(x)dx =

∫ b

a

f(x)dx−
∫ b

a

g(x)dx.

(P5) If a < c < b and if f is an integrable function on [a, b], then f is integrable on
[a, c] and on [c, b], moreover∫ b

a

f(x)dx =

∫ c

a

f(x)dx+

∫ b

c

f(x)dx.

(P6)If f is integrable on a closed interval I and if a, b and c three numbers in I, then∫ b

a

f(x)dx =

∫ c

a

f(x)dx+

∫ b

c

f(x)dx.

(P7) If f is integrable on [a, b] and

∀x ∈ [a, b], f(x) ≥ 0.

Then ∫ b

a

f(x)dx ≥ 0.



16

(P8) If f and g are integrable on [a, b] and

∀x ∈ [a, b], f(x) ≥ g(x).

Then ∫ b

a

f(x)dx ≥
∫ b

a

f(x)dx.

Example 10 :
Verify the inequality ∫ 4

1

(2x+ 2)dx ≤
∫ 4

1

(3x+ 1)dx.

Solution. Here [a, b] = [1, 4] and

f(x) = 3x+ 1, g(x) = 2x+ 2.

We have

f(x)− g(x) = (3x+ 1)− (2x+ 2) = x− 1 ≥ 0, ∀x ∈ [1, 4],

then
f(x) ≥ g(x), ∀x ∈ [1, 4].

Using the property (P8), we obtain∫ 4

1

g(x)dx ≤
∫ 4

1

f(x)dx

or ∫ 4

1

(2x+ 2)dx ≤
∫ 4

1

(3x+ 1)dx.

5 The Fundamental Theorem of Calculus

Theorem 5.1 (Mean Value Theorem for the definite integrals)
If f is continuous on [a, b], then there is a number c ∈ [a, b] such that∫ b

a

f(x)dx = (b− a)f(c).

Proof .
Let m = inf

x∈[a,b]
f(x) and M = Sup

x∈[a,b]
f(x).

Since m ≤ f ≤M , m ≤ 1

b− a

∫ b

a

f(x)dx ≤M . By the Intermediate Value Theorem,

there exists c ∈ [a, b] such that
1

b− a

∫ b

a

f(x)dx = (b− a)f(c).
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Definition 5.2
Let f be a continuous on [a, b]. Then the average value fav of f is given by

fav =
1

b− a

∫ b

a

f(x)dx.

Example 11 :

We give

∫ 3

0

3x2dx = 27. Let f(x) = 3x2, x ∈ [0, 3].

a) Find the average value of f on [0, 3].
b) Find a number c that satisfies the conclusion of the Mean Value Theorem.

Solution.

a)
1

3

∫ 3

0

3x2dx = 9.

b)
1

3

∫ 3

0

3x2dx = 9 = 3c2. Then c2 = 3 and c =
√

3.

Remark 5.3
The continuity of f is important here. It is possible that a discontinuous function
never equals its average value. We can take f(x) = 0 on the interval [0, 1] and
f(x) = 1 on the interval [1, 2]. The average of f on the interval [0, 2] is equal to
1

2

∫ 2

0

f(x)dx =
1

2

∫ 2

1

dx =
1

2
. But f(x) = ne1

2
, for all x ∈ [0, 2].

Example 12 :

Let f(x) = 3x+ 7 on the interval [0, 1]. We know that

∫ 1

0

(3x+ 7)dx =
17

2
. Then the

point c where f reaches its average value verifies 3c+ 7 = 172, then c =
1

2
.

Example 13 :

Let f(x) = x2 + x + 2 on the interval [1, 4]. We know that

∫ 1

0

(x2 + x + 2)dx =
69

2
.

Then the point c where f reaches its average value verifies c2 + c + 2 = 696, then

c =
−1 +

√
39

2
.

Example 14 :

Let f(x) = 6x3 + 1 on the interval [0, 2]. We know that

∫ 1

0

(x2 + x+ 2)dx =
2

6
. Then

the point c where f reaches its average value verifies 6c3 + 1 = 26, then c = (
25

6
)
1
3 .

Example 15 :

Let f be a continuous function on [a, b], b 6= a and if

∫ b

a

f(x)dx = 0, then then

f(x) = 0 at least once in [a, b].
The average value of f on [a, b] is 0. Then by the Mean Value Theorem, f

reaches this value at some point c ∈ [a, b].
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Theorem 5.4 (The Fundamental Theorem of Calculus) part I

If f is a continuous function on [a, b], then F (x) =

∫ x

a

f(t)dt is continuous on [a, b]

and differentiable on [a, b] and its derivative is F ′(x) = f(x).

Proof .
Let x ∈ [a, b] and h 6= 0 such that x + h ∈ [a, b]. Then it results from the The Mean
Value Theorem for Definite Integrals that there exists c ∈ [x, x + h] or c ∈ [x + h, x]

such that f(c) =
F (x+ h)− F (x)

h
=

1

h

∫ x+h

x

f(t)dt. As f is continuous lim
h→0

f(c) =

f(x) = F ′(x).

Theorem 5.5 (The Fundamental Theorem of Calculus) part II
If f is a continuous function on [a, b] and F is an anti-derivative of f on [a, b], then∫ b

a

f(t)dt = F (b)− F (a)

Proof .

Let G(x) =

∫ x

a

f(t)dt. We know that G′(x) = f(x), then there exists c ∈ R such

that F (x) = G(x) + C for some constant C for a ≤ x ≤ b. Since G(a) = 0, then
C = F (a), and G(x) = F (x)− F (a), for all x ∈ [a, b].
Notations:[
F (x)

]b
a

= F (b)− F (a).

Theorem 5.6
Let f be continuous on the closed interval [a, b]. Let c ∈ [a, b] and

G(x) =

∫ x

c

f(t)dt; x ∈ [a, b].

Then
G′(x) = f(x); ∀x ∈ [a, b].

Proof .

G(x) =

∫ x

a

f(t)dt−
∫ c

a

f(t)dt, then G′(x) = f(x).

Example 1 :

If G(x) =

∫ x

1

1

t
dt and x > 0, find G′(x).

Solution.
G′(x) = 1

x
.

Example 2 :

Find
d

dx

∫ 1

0

t
√
t2 + 4dt.

Solution.∫ 1

0

t
√
t2 + 4dt is a constant,

d

dx

∫ 1

0

t
√
t2 + 4dt = 0.
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Theorem 5.7
Let f be continuous on an interval I. If v and u be two differentiable functions on an
interval J such that v(J) ⊂ I and u(J) ⊂ I, then the function

x 7−→
∫ v(x)

u(x)

f(t)dt

is defined and differentiable on the interval J . Moreover

d

dx

(∫ v(x)

u(x)

f(t)dt
)

= v′(x)f(v(x))− u′(x)f(u(x)); ∀x ∈ J.

Proof .

Let F (x) =

∫ x

a

f(t)dt, where a ∈ I.

∫ v(x)

u(x)

f(t)dt = F (u(x)) − F (v(x)). Since

F ′(x) = f(x), the Chain Rule Formula yields

d

dx

(∫ v(x)

u(x)

f(t)dt
)

= v′(x)f(v(x))− u′(x)f(u(x)); ∀x ∈ J.

Example 3 :

Find
d

dx

(∫ x2

3x

(t3 + 1)7dt
)

.

Solution.
d

dx

(∫ x2

3x

(t3 + 1)7dt
)

= 2x(x6 + 1)7 − 3(27x3 + 1)7.

6 Numerical Integration

Very often definite integrations cannot be done in closed form. When this happens
we need some simple and useful techniques for approximating definite integrals. In
this section we discuss three such simple and useful methods.

6.1 Trapezoidal Rule

Let f : [a, b] −→ R be a non negative continuous function. In this method, to ap-
proximate the area under the graph of f , we join the point (xj, f(xj)) with the point
(xj+1, f(xj+1)) for each sub-interval [xj, xj+1], by a straight line and find the area
under this line. which means that we replace f on [xj, xj+1] by the polynomial P of
degree 1 such that P (xj) = f(xj) and P (xj+1) = f(xj+1). We say that P interpolates
f on the points xj and xj+1. Then

P (x) = f(xj)
xj+1 − x
xj+1 − xj

+ f(xj+1)
x− xj
xj+1 − xj

.

The area under the graph of P on the interval [xj, xj+1] is the area of a trape-
zoid with value equal to



20

1

2
(xj+1 − xj)(f(xj+1) + f(xj+1)).

The area under the graph of f is approximated by:

n∑
j=1

1

2
(xj+1 − xj)(f(xj+1) + f(xj)). (6.3)

In the case where xj+1 − xj =
b− a
n

, this area is approximated by∫ b

a

f(x)dx ≈ b− a
2n

(
f(a) + 2

n−1∑
j=1

f(xj) + f(b)

)
. (6.4)

This formula is called the Trapezoidal Rule.
This formula is exact for the polynomial of degree at most 1.

Theorem 6.1
Let f : [a, b] −→ R be a twice continuously differentiable function. The reminder for
this method is approximated as follows

|Rn| ≤
(b− a)3M2

12n2
, M2 = Sup

x∈[a,b]
|f (2)(x)|.

Example 1 :
Let f(x) = 2x − 1 and g(x) = x2 + 3x − 1 defined on the interva] [1, 3]. Use the

trapezoidal Mathod for n = 5 to give an approximation of the integrals

∫ 3

1

f(x)dx

and

∫ 3

1

g(x)dx.

Solution xk = 1 +
2k

5
, f(xk) = 1 +

4k

5
and g(xk) = 3 + 2k +

4k2

25
.∫ 3

1

(2x− 1)dx ≈ 1

5

(
1 + 5 + 2

4∑
k=1

(1 +
4k

5
)

)
= 6.

∫ 3

1

(x2 + 3x− 1)dx ≈ 1

5

(
3 + 17 + 2

4∑
k=1

(1 +
4k

5
)2 + 3(1 +

4k

5
)− 1

)

=
1

5

(
20 + 2

4∑
k=1

(
4k2

25
+ 2k + 3)

)
=

1

5
(93 +

3

5
) = 18.72.
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6.2 Simpson Method

In this method, we replace f on [xj, xj+1] by the polynomial P of degree 2 which
interpolates f to the points xj, xj+1 and the middle point mj =

xj+xj+1

2
.

∫ xj+1

xj

f(x)dx ≈
∫ xj+1

xj

Pj(x)dx =
xj+1 − xj

6
(f(xj) + f(xj+1) + 4f(mj)).

Pj(x) = f(xj)
(xj+1 − x)(x−mj)

(xj+1 − xj)(xj −mj)
+ f(mj)

(xj+1 − x)(x− xj)
(xj+1 −mj)(mj − xj)

+ f(xj+1)
(x− xj)(x−mj)

(xj+1 − xj)(xj+1 −mj)
.

∫ xj+1

xj

f(x)dx ≈
∫ xj+1

xj

P2(x)dx =
xj+1 − xj

6
(f(xj) + f(xj+1) + 4f(mj)).

If the the partition is uniform, xj+1 − xj =
b− a
n

, then

Sn(f) =
b− a
6n

n−1∑
j=0

(f(xj)+f(xj+1)+4f(mj)) =
b− a

6

(
f(a)+f(b)+2

n−1∑
j=1

f(xj)+4
n−1∑
j=0

f(mj)
)
.

This formula is called The Simpson Formula and it is exact for polynomials of
degree at most 3.
An other expression of the Simpson formula If n = 2m is an even integer and
P = {x0, x1, . . . , x2m−1} is a partition of the interval [a, b], The Simpson Formula
takes the following form

Sn(f) =
b− a
3n

(
f(a) + f(b) + 4

m−1∑
j=0

f(x2j+1) + 2
m−1∑
j=1

f(x2j)
)
.

Example 2 :
Let g(x) = x2 + 3x− 1 and h(x) = x3 defined on the interval [1, 3]. Use the Simpson

Method for n = 8 to give an approximation of the integrals

∫ 3

1

x2 + 3x − 1dx and∫ 3

1

x3dx.

Solution

xk = 1 +
k

4
, x2k = 1 +

k

2
and x2k+1 = 1 +

2k + 1

4
, g(xk) = 3 +

5k

4
+
k2

16
and

h(xk) = 1 +
3k

4
+

3k2

16
+
k3

64
.

∫ 3

1

(x2 + 3x− 1)dx ≈ 1

12

(
3 + 17 + 4

3∑
k=0

g(x2k+1) + 2
3∑

k=1

g(x2k)

)
= 18.5.
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∫ 3

1

x3dx ≈ 1

12

(
1 + 27 + 4

3∑
k=0

h(x2k+1) + 2
3∑

k=1

h(x2k)

)
= .

Example 3 :
Let f(x) =

√
1 + x3 defined on the interval [0, 3]. Use the Simpson Method for n = 6

to give an approximation of the integral

∫ 3

0

√
1 + x3dx.

Solution

xk =
k

2
,

k xk m mf(xk)
0 1 1 1

1
1

2
4 4.24264

2 1 2 2.82842

3
3

2
4 8.3666

4 2 2 3.4641

5
5

2
4 16.3095

6 3 1 5.2915
41.50276∫ 3

0

√
1 + x3dx ≈ 6.9171.

Theorem 6.2
Let f : [a, b] −→ R be a function. If the function f is C4 on the interval [a, b], the
reminder for this method is approximated as follows

|Rn| ≤
(b− a)5M4

2880n4
, M4 = Sup

x∈[a,b]
|f (4)(x)|.

7 Symmetry and Definite Integrals

Definition 7.1

1. A function f : [−a, a] −→ R is odd if f(−x) = −f(x) for all x ∈ [−a, a].

2. A function f : (−a, a) −→ R is even if f(−x) = f(x) for all x ∈ [−a, a].

3. A function f :R −→ R is T−periodic if f(x+ T ) = f(x) for all x ∈ R

Theorem 7.2
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1. If f is an odd function on [−a, a], then∫ a

−a
f(x) dx = 0.

2. If f is an even function on [−a, a], then∫ a

−a
f(x) dx = 2

∫ a

0

f(x) dx.

3. If f is T−periodic, then

∫ a+T

a

f(x) dx =

∫ T

0

f(x) dx, for all a ∈ R.

Proof .

1. If f is an odd function on [−a, a], then

∫ 0

−a
f(x) dx

t=−x
= −

∫ 0

a

f(−t) dt =

−
∫ a

0

f(t) dt, then ∫ a

−a
f(x) dx = 0.

2. If f is an even function on [−a, a],then

∫ 0

−a
f(x) dx

t=−x
= −

∫ 0

a

f(−t) dt =∫ a

0

f(t) dt, then ∫ a

−a
f(x) dx = 2

∫ a

0

f(x) dx.

3. If f is T−periodic, then

∫ a+T

T

f(x) dx
t=x−T

=

∫ a

0

f(t+ T ) dt =

∫ a

0

f(t) dt, then

∫ a+T

a

f(x) dx =

∫ 0

a

f(x) dx+

∫ T

0

f(x) dx+

∫ a+T

T

f(x) dx

= −
∫ a

0

f(x) dx+

∫ T

0

f(x) dx+

∫ a

0

f(x) dx

=

∫ T

0

f(x) dx.

Example 4 :

Compute

∫ 1

−1
x2 dx,

∫ 1

−1
x3 dx and

∫ 5+π

5−π
sin(x) dx

Solution
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∫ 1

−1
x2 dx = 2

∫ 1

0

x2 dx = 2

[
1

3
x3
]1
0

=
2

3
.∫ 1

−1
x3 dx =

[
1

4
x4
]1
−1

= 0.∫ 5+π

5−π
sin(x) dx =

∫ π

−π
sin(x) dx = 0.

8 Exercises

Exercise 1 :
Evaluate the given integrals.

1)

∫
etan

−1 x

1 + x2
dx, 2)

∫
esin

−1 x

√
1− x2

dx, 3)

∫
esin 2x cos 2xdx,

4)

∫
x2ex

3

dx, 5)

∫
e2x

1 + e2x
dx, 6)

∫
ex cos(1 + 2ex)dx,

7)

∫
e3x sec2(2 + e3x)dx, 8)

∫
10cosx sinxdx, 9)

∫
4sec−1 x

x
√
x2 − 1

dx,

10)

∫
x10x

2+3dx.


