Holomorphic Functions

BLEL Mongi

Department of Mathematics
King Saud University
2016-2017

Definition

Let $f: \Omega \longrightarrow \mathbb{C}$ be a function defined on a non empty open set Ω.

1. We say that f is differentiable at $z \in \Omega$ if there exists $\ell \in \mathbb{C}$ such that

$$
\lim _{z \rightarrow a} \frac{f(w)-f(z)}{w-z}=\lim _{h \rightarrow 0, h \in \mathbb{C}^{*}} \frac{f(z+h)-f(z)}{h}=\ell
$$

We denote $\ell=f^{\prime}(z)$ and called the derivative of f at z.
2. We say that f is holomorphic on Ω if f is differentiable at any point of Ω.
We denote $\mathcal{H}(\Omega)$ the set of holomorphic functions on Ω.

Examples

1. The function $f(z)=z^{n}$ is holomorphic on \mathbb{C}, for every $n \in \mathbb{N}$.
2. The function $f(z)=\bar{z}$ is not differentiable at any point of \mathbb{C} because $\frac{\overline{z+h}-\bar{z}}{h}=\frac{\bar{h}}{h}$ and $\lim _{h \rightarrow 0} \frac{\bar{h}}{h}$ does not exit.
3. If $f: \Omega \longrightarrow \mathbb{C}$ is a holomorphic function, then the function f^{*} defined by $f^{*}(z)=\overline{f(\bar{z})}$ is holomorphic on $\bar{\Omega}=\{\bar{z} ; z \in \Omega\}$, indeed If $z, a \in \bar{\Omega}$,

$$
\lim _{z \rightarrow a} \frac{f^{*}(z)-f^{*}(a)}{z-a}=\lim _{z \rightarrow a} \overline{\left(\frac{f(\bar{z})-f(\bar{a})}{\bar{z}-\bar{a}}\right)}=\overline{f^{\prime}(\bar{a})} .
$$

Proposition (Exercise)

1. If f and g are holomorphic on Ω, then $f+g$, $f g$ are also holomorphic on Ω.
The function $\frac{f}{g}$ is holomorphic on the open set where g does not vanishes.
2. If $f: \Omega_{1} \longrightarrow \mathbb{C}$ is a holomorphic function and $g: \Omega_{2} \longrightarrow \mathbb{C}$ is a holomorphic function such that $g\left(\Omega_{2}\right) \subset \Omega_{1}$, then $f \circ g$ is holomorphic on Ω_{2} and $(f \circ g)^{\prime}(z)=f^{\prime}(g(z)) g^{\prime}(z)$.

Theorem (Cauchy-Riemann conditions)

Let $f(z)=U(x, y)+\mathrm{i} V(x, y)$ be a function defined on a neighborhood of $z_{0}=x_{0}+\mathrm{i} y_{0} .(U=\Re f$ and $V=\Im f)$. We assume that the functions U and V are differentiable at $\left(x_{0}, y_{0}\right)$. Then the function f of complex variable $z=x+i y$ is differentiable at z_{0}, if and only if

$$
\left\{\begin{align*}
\frac{\partial U}{\partial x}\left(x_{0}, y_{0}\right) & =\frac{\partial V}{\partial y}\left(x_{0}, y_{0}\right) \tag{1}\\
\frac{\partial U}{\partial y}\left(x_{0}, y_{0}\right) & =-\frac{\partial V}{\partial x}\left(x_{0}, y_{0}\right)
\end{align*}\right.
$$

These conditions are called the Cauchy-Riemann conditions. They are equivalent to the following condition

$$
\begin{equation*}
\frac{\partial f}{\partial y}\left(z_{0}\right)=\mathrm{i} \frac{\partial f}{\partial x}\left(z_{0}\right) . \tag{2}
\end{equation*}
$$

Proof

Necessary condition

If f is differentiable at $z_{0}=x_{0}+\mathrm{i} y_{0}$, then
$\lim _{h \rightarrow 0} \frac{f\left(z_{0}+h\right)-f\left(z_{0}\right)}{h}=f^{\prime}\left(z_{0}\right)$. If we take the limit when h tends to $0, h$ real, we have

$$
\begin{align*}
f^{\prime}\left(z_{0}\right) & =\lim _{h \rightarrow 0} \frac{U\left(x_{0}+h, y_{0}\right)-U\left(x_{0}, y_{0}\right)}{h}+\mathrm{i} \frac{V\left(x_{0}+h, y_{0}\right)-V\left(x_{0}, y_{0}\right)}{h} \\
& =\frac{\partial U}{\partial x}\left(x_{0}, y_{0}\right)+\mathrm{i} \frac{\partial V}{\partial x}\left(x_{0}, y_{0}\right)=\frac{\partial f}{\partial x}\left(x_{0}+\mathrm{i} y_{0}\right) \tag{3}
\end{align*}
$$

If we take the limit when $h=\mathrm{it}$, with t real, we have

$$
\begin{align*}
f^{\prime}\left(z_{0}\right) & =\lim _{t \rightarrow 0} \frac{U\left(x_{0}, y_{0}+t\right)-U\left(x_{0}, y_{0}\right)}{h}+\mathrm{i} \frac{V\left(x_{0}, y_{0}+t\right)-V\left(x_{0}, y_{0}\right)}{\mathrm{it}} \\
& =-\mathrm{i} \frac{\partial U}{\partial y}\left(x_{0}, y_{0}\right)+\frac{\partial V}{\partial y}\left(x_{0}, y_{0}\right)=-\mathrm{i} \frac{\partial f}{\partial y}\left(z_{0}\right) \tag{4}
\end{align*}
$$

We have then the Cauchy-Riemann conditions.

Sufficient condition

By definition of the differentiability of function of two real variables, we have

$$
\left\{\begin{aligned}
U\left(x_{0}+s, y_{0}+t\right)-U\left(x_{0}, y_{0}\right) & =s \frac{\partial U}{\partial x}\left(x_{0}, y_{0}\right)+t \frac{\partial U}{\partial y}\left(x_{0}, y_{0}\right)+|h| \varepsilon_{1}(h) \\
V\left(x_{0}+s, y_{0}+t\right)-V\left(x_{0}, y_{0}\right) & =s \frac{\partial V}{\partial x}\left(x_{0}, y_{0}\right)+t \frac{\partial V}{\partial y}\left(x_{0}, y_{0}\right)+|h| \varepsilon_{2}(h)
\end{aligned}\right.
$$

with $h=s+\mathrm{i} t, \lim _{h \rightarrow 0} \varepsilon_{1}(h)=\lim _{h \rightarrow 0} \varepsilon_{2}(h)=0$. Thus
$f\left(z_{0}+h\right)-f\left(z_{0}\right)=s \frac{\partial U}{\partial x}\left(x_{0}, y_{0}\right)+t \frac{\partial U}{\partial y}\left(x_{0}, y_{0}\right)+\mathrm{i}\left(s \frac{\partial V}{\partial x}\left(x_{0}, y_{0}\right)+t \frac{\partial V}{\partial y}\left(x_{0}, y_{0}\right.\right.$
with $\varepsilon=\varepsilon_{1}+\mathrm{i} \varepsilon_{2}$.

It follows by Cauchy-Riemann conditions that

$$
f\left(z_{0}+h\right)-f\left(z_{0}\right)=A h+|h| \eta(h),
$$

with $A=\frac{\partial U}{\partial x}\left(x_{0}, y_{0}\right)+\mathrm{i} \frac{\partial V}{\partial x}\left(x_{0}, y_{0}\right)$ and $\eta(h)$ tends to 0 when h tends to 0 . Thus f is differentiable at z_{0} and $f^{\prime}\left(z_{0}\right)=A$.

Remark (Riemann 1851)

If U and V are two functions twice continuously differentiable on an open subset Ω of \mathbb{C} and if $f=U+\mathrm{i} V$ is holomorphic on Ω, then $\Delta U=\Delta V=0$, with $\Delta U=\frac{\partial^{2} U}{\partial x^{2}}+\frac{\partial^{2} U}{\partial y^{2}}$. (Δ is called the Laplace operator). We say that U and V are harmonic.

Corollary

If f is holomorphic on Ω, then

$$
\begin{aligned}
f^{\prime}(z) & =\frac{\partial f}{\partial x}(x, y)=-\mathrm{i} \frac{\partial f}{\partial y}(x, y) \\
& =\frac{\partial U}{\partial x}(x, y)+\mathrm{i} \frac{\partial V}{\partial x}(x, y)=\frac{\partial V}{\partial y}(x, y)-\mathrm{i} \frac{\partial U}{\partial y}(x, y) \\
& =\frac{\partial U}{\partial x}(x, y)-\mathrm{i} \frac{\partial U}{\partial y}(x, y)=\frac{\partial V}{\partial y}(x, y)+\mathrm{i} \frac{\partial V}{\partial x}(x, y)
\end{aligned}
$$

where $z=x+\mathrm{i} y$.

Example

Determine the holomorphic functions $f: \mathbb{C} \longrightarrow \mathbb{C}$ such that $\Re f(z)=U(x, y)=x^{2}-y^{2}-2 x y$.
Let $V=\Im f$, then by Cauchy-Riemann conditions, $\frac{\partial V}{\partial y}=2 x-2 y$, thus $V=2 x y-y^{2}+g(x)$. Furthermore
$\frac{\partial V}{\partial x}=2 y+g^{\prime}(x)=-(-2 y-2 x)=2 x+2 y$, thus
$V=x^{2}-y^{2}+2 x y+C$ and $f(z)=(1+\mathrm{i}) z^{2}+\mathrm{i} C$.

Example

Determine the holomorphic functions $f: \mathbb{C} \longrightarrow \mathbb{C}$ such that $\Re f(z)=x^{3}-3 x y^{2}-2 x y-1$.
If $V=\Im f$, then $\frac{\partial V}{\partial y}=3 x^{2}-3 y^{2}-2 y$, thus
$V=3 x^{2} y-y^{3}-y^{2}+g(x)$. Furthermore
$\frac{\partial V}{\partial x}=6 x y+g^{\prime}(x)=6 x y+2 x$, thus $V=3 x^{2} y-y^{3}-y^{2}+x^{2}+C$.
$f^{\prime}(z)=\frac{\partial f}{\partial x}=3 x^{2}-3 y^{2}-2 y+\mathrm{i}(6 x y+2 x)=$
$3\left(x^{2}-y^{2}+2 \mathrm{i} x y\right)+2 \mathrm{i}(x+\mathrm{i} y)=3 z^{2}+2 \mathrm{i} z$. Thus
$f(z)=z^{3}+\mathrm{i} z^{2}+1+\mathrm{i} c$, where $c \in \mathbb{R}$.

Proposition

Let f be a holomorphic function on a domain Ω. Then $f^{\prime} \equiv 0$ on $\Omega \Longleftrightarrow f$ is constant on Ω.

Proof

The sufficient condition is trivial. For the necessary condition, it suffices to show that f is locally constant. Let $z_{0} \in \Omega$ and $r>0$ such that $D\left(z_{0}, r\right) \subset \Omega$. Let $z_{1} \in D\left(z_{0}, r\right)$, the complex number $z_{2}=\Re z_{1}+\mathrm{i} \Im z_{0} \in D\left(z_{0}, r\right)$ and $f\left(z_{0}\right)=f\left(z_{2}\right)$ because $\frac{\partial f}{\partial x}=0$ and $f\left(z_{2}\right)=f\left(z_{1}\right)$ because $\frac{\partial f}{\partial y}=0$, thus $f\left(z_{0}\right)=f\left(z_{1}\right)$.

Proposition

Let $f: \Omega \longrightarrow \mathbb{C}$ be a holomorphic function on a domain Ω of \mathbb{C}. Then the following properties are equivalent.

1. f is constant on Ω.
2. $\Re f$ is constant on Ω.
3. $\Im f$ is constant on Ω.
4. $|f|$ is constant on Ω.
5. \bar{f} is holomorphic on Ω.

Proof

- It is obvious that 1$) \Rightarrow 2$).
- By The Cauchy-Riemann conditions (1), 2) $\Longleftrightarrow 3$). Since 2) $\Longleftrightarrow 3$), then 3$) \Rightarrow 4$).
- If $|f|=0$, then \bar{f} is holomorphic on Ω.

If $|f|=c \neq 0$, then $f \bar{f}=c$ and $\bar{f}=\frac{c^{2}}{f}$ is holomorphic on Ω.

- \bar{f} is holomorphic on Ω. In use the Cauchy-Riemann conditions for f and \bar{f}, we find f is constant.

Theorem

Let f be the holomorphic function defined by the power series $\sum a_{n} z^{n}$ which admits $R>0$ as radius of convergence, then the $n \geq 0$
function g defined by the power series $\sum_{n \geq 1} n a_{n} z^{n-1}$ admits R as radius of convergence. The function f is holomorphic on $D(0, R)$ and $f^{\prime}(z)=g(z)$.

For the proof of this theorem, we need the following lemma Lemma

Let $z \in \mathbb{C}$ and $h \in \mathbb{C}$ such that $0<|h| \leq r$, then for all $n \in \mathbb{N}^{*}$

$$
\begin{equation*}
\left|(z+h)^{n}-z^{n}-n h z^{n-1}\right| \leq \frac{|h|^{2}}{r^{2}}(|z|+r)^{n} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
n|z|^{n-1} \leq \frac{1}{r}\left(2(|z|+r)^{n}+|z|^{n}\right) \tag{6}
\end{equation*}
$$

Proof

By inequality (5)

$$
\begin{aligned}
\left|(z+h)^{n}-z^{n}-n h z^{n-1}\right| & =\left|\sum_{k=0}^{n} C_{n}^{k} h^{k} z^{n-k}-z^{n}-n h z^{n-1}\right| \\
& =\left|\sum_{k=2}^{n} C_{n}^{k} h^{k} z^{n-k}\right| \\
& \leq|h|^{2} \sum_{k=2}^{n} C_{n}^{k}|z|^{n-k}|h|^{k-2} \\
& \leq \frac{|h|^{2}}{r^{2}} \sum_{k=2}^{n} C_{n}^{k}|z|^{n-k} r^{k} \leq \frac{|h|^{2}}{r^{2}}(|z|+r)^{n}
\end{aligned}
$$

We have $\left|(z+h)^{n}-z^{n}-n h z^{n-1}\right| \geq n r|z|^{n-1}-|z|^{n}-(|z|+r)^{n}$.
By (5), we deduce
$n r|z|^{n-1} \leq|z|^{n}+(|z|+r)^{n}+\left|(z+r)^{n}-z^{n}-n r z^{n-1}\right| \leq|z|^{n}+2(|z|+r)^{n}$.

Proof of theorem 2.1

We denote R^{\prime} the radius of convergence of the power series $\sum n a_{n} z^{n-1}$. It is obvious that $R^{\prime} \leq R$. Let $r>0$ such that $n \geq 1$
$|z|+r<R$. By lemma 2.2, we have
$\left|n a_{n} z^{n-1}\right| \leq \frac{1}{r}\left(2\left|a_{n}\right|(|z|+r)^{n}+\left|a_{n}\right||z|^{n}\right)$ and thus $\sum_{n \geq 1} n a_{n} z^{n-1}$
converges absolutely on $D(0, R)$. Thus the radius of convergence of the series defining g is greater than R. Thus $R=R^{\prime}$.

By inequality (5),

$$
\left|\frac{f(z+h)-f(z)}{h}-g(z)\right| \leq \frac{|h|}{r} \sum_{n=1}^{+\infty}\left|a_{n}\right|(|z|+r)^{n}
$$

this proves that when h tends to $0, f^{\prime}(z)=g(z)$, for all $z \in D(0, R)$.

Corollary

If $f(z)=\sum_{n=0}^{+\infty} a_{n} z^{n}$, then f is infinitely continuously differentiable
on $D(0, R), a_{n}=\frac{f^{(n)}(0)}{n!}$ and $f(z)=\sum_{n=0}^{+\infty} \frac{f^{(n)}(0)}{n!} z^{n}$. (This series is called the Taylor's series of f at 0 .)

The exponential function e^{z} is defined by the series $\sum_{n \geq 0} \frac{z^{n}}{n!}$,
($e^{z}=\sum_{n=0}^{+\infty} \frac{z^{n}}{n!}$) and it fulfills the following properties

- $\left(\mathrm{e}^{z}\right)^{\prime}=\mathrm{e}^{z}$,
- $\mathrm{e}^{z+w}=\mathrm{e}^{z} \mathrm{e}^{w}$ this results by definition of the product series,
- $\mathrm{e}^{z} \mathrm{e}^{-z}=1$ for all $z \in \mathbb{C}$,
- $\mathrm{e}^{x}>0$ for all $x \in \mathbb{R}$,
- $0<\mathrm{e}^{x}<1$ for all $x \in \mathbb{R}_{-}^{*}$,
- $\mathrm{e}^{\bar{z}}=\overline{\mathrm{e}^{\bar{z}}}$,
- $\left|\mathrm{e}^{\mathrm{i} y}\right|=1$ for all $y \in \mathbb{R}$, thus $\left|\mathrm{e}^{x+\mathrm{i} y}\right|=\mathrm{e}^{x}$ for all $(x, y) \in \mathbb{R}^{2}$.
- $\mathrm{e}^{z} \neq 0, \forall z \in \mathbb{C}$.

These properties prove that the exponential function $z \longmapsto \mathrm{e}^{z}(\mathbb{C},+) \longrightarrow\left(\mathbb{C}^{*}, \times\right)$ is an homomorphism of groups.

We define

- $\cos z=\frac{\mathrm{e}^{\mathrm{i} z}+\mathrm{e}^{-\mathrm{i} z}}{2}$ the cosine function,
- $\sin z=\frac{\mathrm{e}^{\mathrm{i} z}-\mathrm{e}^{-\mathrm{i} z}}{2 i}$ the sine function,
- $\cosh z=\frac{\mathrm{e}^{2}+\mathrm{e}^{-z}}{2}$ the hyperbolic cosine function,
- $\sinh z=\frac{\mathrm{e}^{z}+\mathrm{e}^{-z}}{2}$ the hyperbolic sine function.

Thus $\mathrm{e}^{\mathrm{i} z}=\cos z+\mathrm{i} \sin z, \mathrm{e}^{x+\mathrm{i} y}=\mathrm{e}^{x}(\cos y+\mathrm{i} \sin y), y$ is an argument of e^{z} (this yields the Euler formula $\mathrm{e}^{\mathrm{i} \theta}=\cos \theta+\mathrm{i} \sin \theta$).

Properties

$\cos z+\mathrm{i} \sin z=e^{\mathrm{i} z}, \cos z-\mathrm{i} \sin z=e^{-\mathrm{i} z}$, then $\cos ^{2} z+\sin ^{2} z=1$. $\cosh z+\sinh z=e^{z}, \cosh z-\sinh z=e^{-z}$, then $\cosh ^{2} z-\sinh ^{2} z=1$. $\cosh (\mathrm{iz})=\cos z$ and $\sinh (\mathrm{i} z)=\mathrm{i} \sin z$.

Proposition

The function $\mathrm{e}^{\mathrm{i} z}$ is periodic. We denote 2π the period of $\mathrm{e}^{\mathrm{i} z}$. Proof
$\mathrm{e}^{z}=\mathrm{e}^{z+w} \Longleftrightarrow \mathrm{e}^{w}=1$, thus $w=\mathrm{i} y$, with $y \in \mathbb{R}$.
Since $\cos ^{2} y+\sin ^{2} y=1$, then $(\sin y)^{\prime}=\cos y \leq 1$.

Since $\sin 0=0$, then $\sin y \leq y$ for $y \geq 0$. In the same time, $(\cos y)^{\prime}=-\sin y \geq-y$ and $\cos 0=1$, then $\cos y \geq 1-\frac{y^{2}}{2}$. It follows that $\sin y \geq y-\frac{y^{3}}{3!}$ and $\cos y \leq 1-\frac{y^{2}}{2}+\frac{y^{4}}{4!}$. These inequalities leads that $\cos \sqrt{3}<0$, thus there exists $0<y_{0}<\sqrt{3}$ such that $\cos y_{0}=0$ and $\sin y_{0}= \pm 1$. $\mathrm{e}^{\mathrm{i} y_{0}}= \pm \mathrm{i}$ and $\mathrm{e}^{4 \mathrm{i} y_{0}}=1$. Thus $4 y_{0}$ is a period of the function $\mathrm{e}^{\mathrm{i} z}$ and it is the smallest period. Indeed, let $y_{0}>y>0, \sin y \geq y\left(1-\frac{y^{2}}{6}\right) \geq \frac{y}{2}>0$. This shows that the function $\cos y$ is strictly decreasing and $\sin y$ is strictly increasing on the interval $\left[0, y_{0}\right]$, thus $\sin y<\sin y_{0}=1$, $0<\sin y<1$, this yields that $\mathrm{e}^{\mathrm{i} y} \neq \pm 1, \mathrm{e}^{\mathrm{i} y} \neq \pm \mathrm{i}$ and $\mathrm{e}^{4 \mathrm{i} y} \neq 1$. It follows that $4 y_{0}$ is the smallest period denoted w_{0}. Let w be a period such that $n w_{0} \leq w<(n+1) w_{0}$.
If $w \neq n w_{0}$, then $w-n w_{0}$ is a period and $0<w-n w_{0}<w_{0}$, this is impossible, thus $w=n w_{0}$. We denote $w_{0}=2 \pi$, thus $\mathrm{e}^{\mathrm{i} \frac{\pi}{2}}=\mathrm{i}$, $\mathrm{e}^{\mathrm{i} \pi}=-1$ and $\mathrm{e}^{2 \mathrm{i} \pi}=1$.

Lemma

For all $z=x+\mathrm{i} y \in \mathbb{C} \backslash\{0\}$, there exists $r>0$ and a unique $\theta \in\left[0,2 \pi\left[\right.\right.$ such that $z=r(\cos \theta+\mathrm{i} \sin \theta)=r \mathrm{e}^{\mathrm{i} \theta}$.
Proof
One has $\cos ^{2} \theta+\sin ^{2} \theta=1$, thus $r=\sqrt{x^{2}+y^{2}}$. We assume that $r=1$.

- If $0 \leq x<1$ and $y \geq 0$, we know that the function $f(\theta)=\cos \theta$ is decreasing and continuous of the interval $\left[0, \frac{\pi}{2}\right]$ with values on the interval $[0,1]$ and as $x \in\left[0,1[\right.$, there exists a unique $\left.\theta \in] 0, \frac{\pi}{2}\right]$ such that $x=\cos \theta$, furthermore $x^{2}+y^{2}=1$ and $y \geq 0$, thus $y=\sqrt{1-x^{2}}=\sin \theta$, where $x+\mathrm{i} y=\cos \theta+\mathrm{i} \sin \theta$.
- If $x \geq 0$ and $y \leq 0, x \neq 1$. From which above, there exists a unique $\left.\theta \in] 0, \frac{\pi}{2}\right]$ such that $x-\mathrm{i} y=\cos \theta+\mathrm{i} \sin \theta$, where $\cos \theta-\mathrm{i} \sin \theta=x+\mathrm{i} y=\cos (2 \pi-\theta)+\mathrm{i} \sin (2 \pi-\theta)$ and $2 \pi-\theta \in\left[\frac{3 \pi}{2}, 2 \pi[\right.$.
- If $x \leq 0, x \neq-1$ and $y \geq 0$. From which above, there exists a unique $\left.\theta \in] \frac{3 \pi}{2}, 2 \pi\right]$ such that $-x-\mathrm{i} y=\cos \theta+\mathrm{i} \sin \theta$, this yields that $x+\mathrm{i} y=\cos (-\pi+\theta)+\mathrm{i} \sin (-\pi+\theta)$, where $\theta-\pi \in\left[\frac{\pi}{2}, \pi[\right.$.
- If $x \leq 0, x \neq 1$ and $y \leq 0$. From above, there exists a unique $\left.\theta \in] 0, \frac{\pi}{2}\right]$ such that $-x-\mathrm{i} y=\cos \theta+\mathrm{i} \sin \theta$, this yields that $x+\mathrm{i} y=\cos (\pi+\theta)+\mathrm{i} \sin (\pi+\theta)$, where $\left.\theta+\pi \in] \pi, \frac{3 \pi}{2}\right]$.
- If $x=1$ and $y=0$, then $x+\mathrm{i} y=\cos 0+\mathrm{i} \sin 0$.
- If $x=-1$ and $y=0$, then $x+\mathrm{i} y=\cos \pi+\mathrm{i} \sin \pi$.

The uniqueness of θ in $[0,2 \pi[$ results from the fact that 2π is the smallest period of the function $\mathrm{e}^{\mathrm{i} z}$.

We will prove that the branches of the logarithm defined as above are holomorphic.

Remark

From which above, for all $\alpha \in \mathbb{R}$ and all $z \in \mathbb{C} \backslash\{0\}$, there exists a unique $r>0$ and a unique $\theta \in[\alpha, \alpha+2 \pi[$ such that $z=r(\cos \theta+\mathrm{i} \sin \theta)$.

Proposition

The mapping $\left.A: \mathbb{C} \backslash \mathbb{R}^{+} \longrightarrow\right] 0,2 \pi[$ defined by $A(z)=A(r(\cos \theta+\mathrm{i} \sin \theta))=\theta$ is continuous.

Proof

$z=r(\cos \theta+\mathrm{i} \sin \theta)=x+\mathrm{i} y$, where $\theta \in] 0,2 \pi[$.
$x=r \cos \theta=-r \cos (\pi-\theta)=-2 r \cos ^{2}\left(\frac{\pi-\theta}{2}\right)+r$.
$y=r \sin \theta=r \sin (\pi-\theta)=2 r \cos \left(\frac{\pi-\theta}{2}\right) \sin \left(\frac{\pi-\theta}{2}\right)$.
$r-x=2 r \cos ^{2}\left(\frac{\pi-\theta}{2}\right)$.
$y=2 r \cos \left(\frac{\pi-\theta}{2}\right) \sin \left(\frac{\pi-\theta}{2}\right)$
$\frac{y}{-x+\sqrt{x^{2}+y^{2}}}=\operatorname{tg}\left(\frac{\pi-\theta}{2}\right) \Rightarrow \frac{\pi-\theta}{2}=\tan ^{-1}\left(\frac{y}{\sqrt{x^{2}+y^{2}}-x}\right)$.

Thus

$$
\theta=\pi-2 \tan ^{-1}\left(\frac{y}{\sqrt{x^{2}+y^{2}}-x}\right)
$$

and A is continuous.
In the same way, the mapping $\left.\mathbb{C} \backslash\left\{t \mathrm{e}^{\mathrm{i} \alpha}, t \geq 0\right\} \longrightarrow\right] \alpha, \alpha+2 \pi[$ defined by $A_{\alpha}(z)=A(r(\cos \theta+\mathrm{i} \sin \theta))=\theta$ is continuous. To prove the holomorphy of the Logarithmic function, we need the following theorem

Theorem

Let Ω be an open subset of \mathbb{C} and let $f: \Omega \longrightarrow \mathbb{C}$ be a holomorphic function. We assume that $f^{\prime}(z) \neq 0 \forall z \in \Omega, f$ is bijective of Ω on $f(\Omega)=\Omega^{\prime}$, where Ω^{\prime} is an open subset of \mathbb{C}.
If f^{-1}, the inverse function of f is continuous on Ω^{\prime}, then f^{-1} is holomorphic on Ω^{\prime} and

$$
\left(f^{-1}\right)^{\prime}(w)=\frac{1}{f^{\prime}\left(f^{-1}(w)\right)}, \quad \forall w \in \Omega^{\prime} .
$$

Proof

Let $w_{0} \in \Omega^{\prime}$ and $z_{0}=f^{-1}\left(w_{0}\right) \in \Omega$. For $w \in \Omega^{\prime}$, there exists a unique $z \in \Omega$, such that $w=f(z)$. Since f^{-1} is continuous, if w tends to w_{0}, then z tends to z_{0}. Thus

$$
\frac{f^{-1}(w)-f^{-1}\left(w_{0}\right)}{w-w_{0}}=\frac{z-z_{0}}{f(z)-f\left(z_{0}\right)} \underset{w \rightarrow w_{0}}{\longrightarrow} \frac{1}{f^{\prime}\left(z_{0}\right)}=\frac{1}{f^{\prime}\left(f^{-1}\left(w_{0}\right)\right)}
$$

We will prove that the assumptions, f^{-1} is continuous, $f^{\prime}(z) \neq 0$, $\forall z \in \Omega$ and Ω^{\prime} is an open subset of \mathbb{C} are hold for any holomorphic function $f: \Omega \longrightarrow \Omega^{\prime}$ bijective unlike in the real case.

Corollary

The mapping $z \longmapsto \mathrm{e}^{z}$ is a holomorphic function, bijective of the strip $A_{t}=\{x+\mathrm{i} y \in \mathbb{C} ; t-\pi<y<\pi+t, x \in \mathbb{R}\}$ on $\mathbb{C} \backslash J_{t}$, with $J_{t}=\left\{r \mathrm{e}^{\mathrm{i} t}, r \leq 0\right\}, t \in \mathbb{R}$. It has an inverse function defined on $\mathbb{C} \backslash J_{t}$ with values on A_{t}. We denote by $\log _{t}$ this function.

This corollary results by theorem 2.9 and the continuity of the mapping $A(z)$.

Definition

The principal determination (branch) of the logarithm is the inverse function of the exponential function defined on $\mathbb{C} \backslash J_{0}$ with values on A_{0}. We denote this function by Log.

Exercise

Show that

1. $\log z=\ln \sqrt{x^{2}+y^{2}}+2 i \tan ^{-1} \frac{y}{x+\sqrt{x^{2}+y^{2}}}, \quad \forall z=$ $x+\mathrm{i} y \in \mathbb{C} \backslash J_{0}$.
2. $\left(\log _{t} z\right)^{\prime}=\frac{1}{z}$ for all $t \in \mathbb{R}$ and $z \in \mathbb{C} \backslash J_{t}$.

Corollary

The function $f(z)=\log _{t}(z)-\log _{t^{\prime}}(z)$ is constant on each connected component of $\left(\mathbb{C} \backslash J_{t}\right) \cap\left(\mathbb{C} \backslash J_{t^{\prime}}\right)$.

Remark

The relation $\log \left(z_{1} \cdot z_{2}\right)=\log z_{1}+\log z_{2}$ is not always valid. It suffices to take $z_{1}=e^{\frac{3 i \pi}{4}}=z_{2}, z_{1} z_{2}=e^{\frac{3 i \pi}{2}}=\mathrm{e}^{\frac{-\mathrm{i} \pi}{2}}, \log z_{1} z_{2}=-\mathrm{i} \frac{\pi}{2}$ and $\log z_{1}+\log z_{2}=\frac{3 \mathrm{i} \pi}{2} \neq-\frac{\mathrm{i} \pi}{2}$.

Proposition

For $|z|<1, \log (1-z)=-\sum_{n=1}^{+\infty} \frac{z^{n}}{n}$, where $\log (1-z)$ is the principal determination (branch) of the logarithmic function.

Proof

Let $f(z)=\sum_{n=1}^{+\infty} \frac{z^{n}}{n}$, for $|z|<1$, then $f^{\prime}(z)=\sum_{n=0}^{+\infty} z^{n}=\frac{1}{1-z}$. It
follows that $f(z)+\log (1-z)=0$ because $f(0)=\log (1-0)=0$.

Let Ω be an open subset of \mathbb{C}^{*} and let $\alpha \in \mathbb{C}^{*}$. We define a continuous determination of z^{α} on Ω by any continuous function $g: \Omega \longrightarrow \mathbb{C}$ such that for all $z \in \Omega$, there exists a logarithm h of z such that

$$
\left\{\begin{array}{c}
g(z)=\mathrm{e}^{\alpha h(z)} \\
z=\mathrm{e}^{h(z)}
\end{array}\right.
$$

In particular, if there exists on Ω a continuous determination (branch) of the logarithm log, then the mapping $z \longrightarrow \mathrm{e}^{\alpha \log }$ is a continuous determination of z^{α} on Ω. We use only this type of determination for z^{α}.

Definition

A function $f: \Omega \longrightarrow \mathbb{C}$ is called analytic on Ω if, whenever $z_{0} \in \Omega$ there exists a neighborhood V of z_{0} and a power series
$\sum_{n \geq 0} a_{n}\left(z-z_{0}\right)^{n}$ such that $f(z)=\sum_{n=0}^{+\infty} a_{n}\left(z-z_{0}\right)^{n}$ for all $z \in V$.

Theorem

Any analytic function is holomorphic.

Proof

This theorem results by theorem 2.1. The inverse will be proved in the chapter III.

Theorem

If the power series $\sum_{n \geq 0} a_{n} z^{n}$ has a radius of convergence $R>0$, its
$\operatorname{sum} f(z)=\sum_{n=0}^{+\infty} a_{n} z^{n}$ is analytic on the disc $D(0, R)$.

For the proof of this theorem we need the following result on double sums.
Theorem
Let $\left(a_{n, m}\right)_{n, m \in \mathbb{N}}$ be a sequence of complex numbers. If $\sum_{m=0}^{+\infty} \sum_{n=0}^{+\infty}\left|a_{n, m}\right|<+\infty$, one has

$$
\sum_{m=0}^{+\infty} \sum_{n=0}^{+\infty}\left|a_{n, m}\right|=\sum_{n=0}^{+\infty} \sum_{m=0}^{+\infty}\left|a_{n, m}\right|=\sup _{N, M \in \mathbb{N}}\left[\sum_{m=0}^{M} \sum_{n=0}^{N}\left|a_{n, m}\right|\right]
$$

and

$$
\sum_{m=0}^{+\infty} \sum_{n=0}^{+\infty} a_{n, m}=\sum_{n=0}^{+\infty} \sum_{m=0}^{+\infty} a_{n, m}
$$

(i.e we may compute the sum $\sum_{n, m=0}^{+\infty} a_{n, m}$ by an arbitrary summation over the $a_{n m}$, and the sum is independent of the chosen order.) \equiv

Proof

This theorem results by Fubini's theorem. Indeed, we consider the countable measure μ on \mathbb{N}. If $f: \mathbb{N} \longrightarrow[0,+\infty]$ is a μ-integrable function, then $\int_{\mathbb{N}} f(x) d \mu(x)=\sum_{k=0}^{+\infty} f(k)$. Furthermore, if $\sigma: \mathbb{N} \longrightarrow \mathbb{N}$ is a bijection, then

$$
\sum_{k=0}^{+\infty} f(k)=\sum_{k=0}^{+\infty} f(\sigma(k))
$$

Let $\left(b_{m, n}\right)$ be a sequence of non negative real numbers. By Beppo-Levi's theorem

$$
\sum_{m=0}^{+\infty} \sum_{n=0}^{+\infty} b_{m, n}=\sum_{n=0}^{+\infty} \sum_{n=0}^{+\infty} b_{m, n}
$$

It suffices to take the function f defined on $\mathbb{N} \times \mathbb{N}$ by $f(n, m)=b_{n, m}$.
In our case the function g defined on $\mathbb{N} \times \mathbb{N}$ by $g(n, m)=a_{n, m}$ is integrable and the theorem results by Fubini's theorem

Proof of the theorem 3.3

Let $z_{0} \in D(0, R),\left|z_{0}\right|=r_{0}<R$. We shall show that
$f(z)=\sum_{n=0}^{+\infty} \frac{f^{(n)}\left(z_{0}\right)}{n!}\left(z-z_{0}\right)^{n}$, whenever $z \in D\left(z_{0}, R-r_{0}\right)$.
Let $z \in \mathbb{C}$ such that $\left|z-z_{0}\right|<r-r_{0}<R-r_{0}$ and let

$$
\begin{equation*}
S(z)=\sum_{k=0}^{+\infty} \sum_{n=k}^{+\infty} C_{n}^{k} a_{n} z_{0}^{n-k}\left(z-z_{0}\right)^{k} \tag{7}
\end{equation*}
$$

We shall prove that the series $\sum_{k=0}^{+\infty} \sum_{n=k}^{+\infty} C_{n}^{k} a_{n} z_{0}^{n-k}\left(z-z_{0}\right)^{k}$ is absolutely convergent.
Let

$$
\begin{equation*}
R(z)=\sum_{k=0}^{+\infty} \sum_{n=k}^{+\infty} C_{n}^{k}\left|a_{n}\right|\left|z_{0}\right|^{n-k}\left|z-z_{0}\right|^{k} \tag{8}
\end{equation*}
$$

$R(z) \leq \sum_{k=0}^{+\infty} \sum_{n=k}^{+\infty} C_{n}^{k}\left|a_{n}\right| r_{0}^{n-k}\left(r-r_{0}\right)^{k}=$
$\sum_{n=0}^{+\infty}\left|a_{n}\right|\left(\sum_{k=0}^{n} C_{n}^{k} r_{0}^{n-k}\left(r-r_{0}\right)^{k}\right)=\sum_{n=0}^{+\infty}\left|a_{n}\right| r^{n}<+\infty$. Thus the series
which defines S is absolutely convergent, thus it is commutatively convergent.

$$
\begin{aligned}
& S(z)=\sum_{k=0}^{+\infty} \frac{1}{k!}\left(z-z_{0}\right)^{k}\left(\sum_{n=k}^{+\infty} \frac{n!}{(n-k)!} a_{n} z_{0}^{n-k}\right), \text { this means that } \\
& S(z)=\sum_{k \geq 0} \frac{f^{(k)}\left(z_{0}\right)}{k!}\left(z-z_{0}\right)^{k} \text { and } \\
& S(z)=\sum_{n=0}^{+\infty} a_{n}\left(\sum_{k=0}^{n} C_{n}^{k} z_{0}^{n-k}\left(z-z_{0}\right)^{k}\right)=\sum_{n=0}^{+\infty} a_{n} z^{n}=f(z)
\end{aligned}
$$

It follows that $f(z)=\sum_{k=0}^{+\infty} \frac{f^{(k)}\left(z_{0}\right)}{k!}\left(z-z_{0}\right)^{k}$, whenever $z \in D\left(z_{0}, R-r_{0}\right)$.

Theorem (Principle of the Analytic Continuation)

Let f be an analytic function on a domain Ω of \mathbb{C} and let $z_{0} \in \Omega$.
The following conditions are equivalent

1. f is identically zero on Ω.
2. There exists a neighborhood V of z_{0} such that f is identically zero on V.
3. For all $n \geq 0, f^{(n)}\left(z_{0}\right)=0$.

Proof

We shall show that 2$) \Rightarrow 1$) (the other properties are trivial). Let $A=\{z \in \Omega ; f \equiv 0$ on a neighborhood of $z\}$. A is a non empty open subset by hypothesis. Then it suffices to show that it is closed in Ω. Let $\left(z_{n}\right)_{n}$ be a sequence of A which converges to $a \in \Omega$. Since $z_{n} \in A$, then $f^{(k)}\left(z_{n}\right)=0$ for all $k \in \mathbb{N}$ and by continuity $f^{(k)}(a)=0$. f is analytic, this yields that f is zero on a neighborhood of a.

Corollary

Let f and g be two analytic functions on a domain Ω of \mathbb{C}. If f and g coincide on a neighborhood of a point of Ω, then they coincide on Ω.

Theorem (Principle of Isolated Zeros)

Let f be an analytic function on a domain Ω of \mathbb{C}. If f is not identically zero on Ω, the set of zeros of f is a discrete closed subset of Ω.

Proof

Let $A=f^{-1}\{0\}$ be the set of zeros of f. A is closed since f is continuous. Let $z_{0} \in A$, by theorem 3.5 , there exists k such that $f^{(k)}\left(z_{0}\right) \neq 0$. We choose k the smallest integer such that $f^{(k)}\left(z_{0}\right) \neq 0$. So the power series of f at z_{0} is $f(z)=a_{k}\left(z-z_{0}\right)^{k}+\left(z-z_{0}\right)^{k} g(z)$, where $a_{k} \neq 0$ and $g\left(z_{0}\right)=0$, $g(z)=\sum_{n=1}^{+\infty} a_{n+k}\left(z-z_{0}\right)^{n}$. Since $g\left(z_{0}\right)=0$, there exists a neighborhood V of z_{0} such that $|g(z)|<\left|a_{k}\right|$ for all $z \in V$. Thus $|f(z)| \geq\left|z-z_{0}\right|^{k}\left(\left|a_{k}\right|-|g(z)|\right)>0$ for $z \in V \backslash\left\{z_{0}\right\}$. It results that z_{0} is the only zero of f in V.

Corollary

If f is an analytic function and non-identically zero on a domain Ω, then any compact subset of Ω contains only a finite number of zeros of f.

Corollary

The ring of the analytic functions on a domain Ω is integral.
Corollary (The Identity Theorem)
If f and g are two analytic functions on a domain Ω, which coincides on a set admitting a cluster point (or an accumulation point) in Ω, then they coincide on Ω.

