


➢We learned from last chapter,  Oersted discovered a compass needle is 

deflected by a current-carrying conductor in 1819.

➢ After that, Jean-Baptiste Biot (1774–1862) and Félix Savart (1791–1841) 

performed quantitative experiments on the force exerted by an electric 

current on a nearby magnet. 

➢ From their experimental results, Biot and Savart arrived at a mathematical 

expression that gives the magnetic field at some point in space in terms of 

the current that produces the field. That expression is based on the 

following experimental observations for the magnetic field dB at a point P 

associated with a length element ds of a wire carrying a steady current I

❖ Introduction





❑ The field dB in 

is the field created by the current in only a small length element ds of the conductor.

❑ To find the total magnetic field B created at some point by a current of finite size, 

we must sum up contributions from all current elements I ds that make up the 

current.

where the integral is taken over the entire current distribution. 





❑ The right-hand rule for determining the 

direction of the magnetic field 

surrounding a long, straight wire 

carrying a current.

Note that the magnetic field lines form 

circles around the wire.

A convenient rule for determining

the direction of B is to

1- grasp the wire with the right hand, 

2-positioning the thumb along 

the direction of the current. 

3- The four fingers wrap

in the direction of the magnetic field



❖Consider a thin, straight wire carrying a constant current I and placed along 

the x axis as shown in Figure 30.3.  Determine the magnitude and direction 

of the magnetic field at point P due to this current



A long straight wire carries a current of 5.00 A. At one instant a proton, 

4.00 mm from the wire, travels at 1.50×105 m/s parallel to the wire and in 

the same direction as the current. 

Find (a) the magnitude and direction of the magnetic force that is acting 

on the proton because of the magnetic field produced by the wire. 



❖ Because a current in a conductor sets up its own magnetic field, it is easy to 

understand that two current-carrying conductors exert magnetic forces on each other.

❖ Two long, straight, parallel wires separated by a distance a and carrying currents I1

and I2 in the same direction

❖ We can determine the force exerted on one wire due to the magnetic field set up by 

the other wire.



❖ Wire 2, which carries a current I2 and is 

identified arbitrarily as the source wire, 

creates a magnetic field 𝐵2 at the location 

of wire1, the test wire. The direction of 

𝐵2 is perpendicular to wire1, 

❖ The magnetic force on a length 𝑙 of wire1 is 𝐹1 = 𝐼1 𝑙 × 𝐵2. Because 𝑙 is 

perpendicular to B2 in this situation, the magnitude of F1 is

𝐹1 = 𝐼1 𝑙 𝐵2 = 𝐼1 𝑙
𝜇0𝐼2

2𝜋𝑎
=

𝜇0𝐼1𝐼2

2𝜋𝑎
𝑙

❖ If the field set up at wire 2 by wire1 is calculated, the force F2 acting on wire 2 is 

found to be equal in magnitude and opposite in direction to F1. 

❖ Parallel conductors carrying currents in the same direction attract each other, 

and parallel conductors carrying currents in opposite directions repel each 

other.

❖When the currents are in opposite directions (that is, when one of the currents is 

reversed), the forces are reversed and the wires repel each other.



❖ Because the magnitudes of the forces are the same on both wires, we denote 

the magnitude of the magnetic force between the wires as simply FB.

❖ The force between two parallel wires is used to define the ampere



❖The SI unit of charge, the coulomb, is defined in terms of the ampere



❑ Several compass needles are placed in a horizontal plane near a long vertical wire. 

(a) When no current is present in the wire, all the needles point in the same direction 

(that of the Earth’s magnetic field), as expected. 

(b) When the wire carries a strong, steady current, the needles all deflect in a 

direction tangent to the circle which is the direction of the magnetic field created 

by the current. 

❖ These observations is consistent with the right-hand rule described. 

When the current is reversed, the needles also reverse.



Ampère’s law describes the creation of magnetic fields by all continuous 

current configurations, but at our mathematical level it is useful only for 

calculating the magnetic field of current configurations having a high degree 

of symmetry. 





The magnetic field at any point 

can be calculated from Ampère’s 

law using a circular path of 

radius r, concentric with the 

wire. 

❖ Because the wire has a high degree of

symmetry, we categorize this as an 

Ampère’s law problem.

❖ From symmetry, B must be constant in

magnitude and parallel to ds at every point 

on this circle. Because the total current 

passing through the plane of the circle is I, 

Ampère’s law gives 



Now consider the interior of the wire, where r < R.

Here the current I’ passing through the plane of 

circle 2 is less than the total current I. Because the 

current is uniform over the cross section of the wire, 

the fraction of the current enclosed by circle 2 must 

equal the ratio of the area 𝜋𝑟2 enclosed by circle 2 

to the cross-sectional area 𝜋𝑅2 of the wire :

They give the same value of the magnetic field at r = R, demonstrating that  the magnetic field is 

continuous at the surface of the wire.







A solenoid is a long wire wound in the form of a helix. With this configuration, a

reasonably uniform magnetic field can be produced in the space surrounded by the

turns of wire—which we shall call the interior of the solenoid—when the solenoid

carries a current.

❖ The turns can be approximated as a

circular loop, and the net magnetic field 

is the vector sum of the fields resulting 

from all the turns.



(a) Magnetic field lines for a tightly wound solenoid of finite length, carrying a steady 

current. The field in the interior space is strong and nearly uniform. Note that the field 

lines resemble those of a bar magnet, meaning that the solenoid effectively has north 

and south poles. (b) The magnetic field pattern of a bar magnet.

This field line distribution is similar to that surrounding a bar magnet as one end of the 

solenoid behaves like the north pole of a magnet, and the opposite end behaves like the 

south pole.



❖ An ideal solenoid is approached when the turns are closely spaced 

and the length is much greater than the radius of the turns.

❖ As the length of the solenoid increases, the interior field becomes more 

uniform and the exterior field becomes weaker.

❖ In this case, the external field is close to zero, and the interior field is 

uniform over a great volume.



Cross-sectional view of an ideal 

solenoid, where the interior magnetic 

field is uniform and the exterior field 

is close to zero. 

❖We can use Ampère’s law to obtain a 

quantitative expression for the interior

magnetic field in an ideal solenoid.

❖ Consider the rectangular path of length 

𝑙 and width 𝑤 . We can apply Ampère’s 

law to this path by evaluating the 

integral of 𝐵 ( ds over each side of the 

rectangle.







❖ Consider an element of area dA on an 

arbitrarily shaped surface

❖ If the magnetic field at this element is 

𝐵 , the magnetic flux through the 

element is 𝐵 . (dA, where dA is a 

vector that is perpendicular to the 

surface and has a magnitude equal to 

the area dA.

❖ The total magnetic flux ∅𝐵 through the surface is







❖ for any closed surface, the number of lines entering the surface equals the number 

leaving the surface; thus, the net magnetic flux is zero.
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