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Introduction

The differential equations are of fundamental importance in engineering mathematics because many
physical laws of biology, chemistry, ecology, economics, business, etc., and relations appear mathe-
matically in the form of such equations. We know that many differential equations can be solved
explicitly in terms of elementary functions of calculus. For example, the explicit solution of the

differential equation

Y _ o b y(z)==In(e® +0O),
dr

and using initial condition y(0) = 1, we get  y(z) == In(e” + e —1).

But there are many differential equations which cannot be solved explicitly in terms of the
functions of calculus. For example, the solutions of the differential equation of the form

% o - 2ifi) :] e dz +C,
X .

but it is known that these integrals cannot be expressed in terms of the functions of calculus.
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Definition (Differential Equation)

An equation which involving functions and their derivatives. are differential equations.

dy d?y dy
Y _ 30, ) o +4-Ziy=o,

2 ;
di ; d3 d*
(c) c_i;/ =% 1742, (d) <_d.r'/‘) —S—dm‘é + 2y = 5.

The order of the differential equation is the order of the highest derivative involved. For example,
the differential equations (a) and (c) are of first-order since the highest derivatives that appear is
of first-order, whereas the differential equations (b) and (d) are respectively, the second-order and
the third-order. .

Definition (Order of Differential Equation)

The order of the differential equation is the order of the highest derivative involved. For example,
the differential equations (a) and (c) are of first-order since the highest derivatives that appear is
of first-order, whereas the differential equations (b) and (d) are respectively, the second-order and
the third-order. .

Definition (Initial Conditions)

When all of the conditions are given at starting value of independent variable x to solve a given

differential equation, is called a initial condition.
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Classification of Differential Equations

There are two major types of differential equations, called, ordinary differential equations (ODE)
and partial differential equations (PDE). If an equation contains only ordinary derivatives of one
or more dependent variables, with respect to a single independent variable, it is then said to be
an ordinary differential equation. For example, all the differential equations (a)-(d) are ordinary
differential equations because there is only one independent variable, called =.

The more general equation is 3/ = f(z,y(x)).

Since the general solution of differential equation is depends on an arbitrary constant C, so this
constant can be calculated by specifying the value of function y(x) at a particular point zq

y(zo) = yo.

The point xg is called initial point, and the number yg is called the initial value. We call the
problem of solving

dt
Y =L =f(@y) wo<z <30, Ylwo) = yo, (6.6)

the initial-value problem (IVP).

Theorem 6.1 (Existence and Uniqueness Theorem)

d ; : : . ;
Let f(x,y) and oy be continuous functions of x and y at all points (x,y) in some neighborhood of

dy
the initial point (xo,yo). Then there is a unique function y(z) defined on some interval [xg—€, xg+€]
and satisfying

y'(x) = f(z,y(x), (@) =y, z€[wo—ez0+€, €>0 (6.7)

Numerical Solution of O.D.E Dr. Mohamed Abdelwahed

4



Numerical Methods for Solving IVP
Euler’s Method

In principle, the Euler’s method uses the forward difference formula approximation of y'(x)

o4y y(@iv) — y(:)
dx h *

dy
where h is the stepsize and it is equal to x;,1 — z;. Given that d—“’r = f(x,y) and the initial

conditions x = zg, y(x) = y(xg), we have

(Tl);y %) f(xo,y(x0)), or y(x1) ~y(zo) + hf(zo,y(z0)),

which shows that y(x1) is approximately given by y(xo) + hf(xo.y(x)). We can now use this
approximation for y(z1) to estimate y(z2), that is

y(x2) = y(x1) +hf(x, y(x1)),

and so on. In general,  y(iy1) ~ y(x:) + hf(zi, y(x:i)), i=0,1,...,n—1L

Taking w; ~ y(x;), for each i = 1,2,...,n, we have
Vil = WAHAf(zim); $=0,1..0yn—1

This simple integration strategy is known as the Euler’s method, or the Euler-Cauchy method.
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Example 6.1 Use the Euler’s method to find the approzimate value of y(1) for the given initial-
value problem

y = zy+ T, OLE=1, #HO)=0, with k=101, D2

Compare your approzimate solutions with the exvact solution y(x) = —1+ g2,
Solution. Since f(x,y) = xy +x, and xy =0, yy = 0, then
Pigi =B (nia0), Jor 1= 010,09
Then for h = 0.1 and taking i = 0, we have
y1 = yo + hf(xo,y0) = yo + h(zoyo +x0) = 0+ (0.1)[(0)(0) + (0)] = 0.0000.
Similar way, we have other approzimations by taking x; = x; 1+ h,i=1,2,...,9, as follows
y2 = 0.0100, y3=0.0302, wy4=0.0611, y5=0.1036, ye = 0.1587,

yr = 0.2283, ys=0.3142, yo=0.4194, yio = 0.5471,

with possible absolute error
ly(1) — y10| = |0.6487 — 0.5471| = 0.1016.
Similarly, the approrimations for h = 0.2, give

y1 = 0.0000, y2 =0.0400, y3=0.1232, y4=0.2580, y5 = 0.4592,

with possible absolute error y(1) — ys

= [0.6487 — 0.4592| = 0.1895.
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Analysis of the Euler’s Method

The Euler’s formula uses the recurrence relation
Yi+1 = y(x:) + hf (@i, 1),

to estimate y; 1 assuming that y(z;) is the true solution. The error in y; 41 is given by y;1 —y(2i41)

which can be written as

Yi+1 — Y(zit1) = —5?}”("?(%)}7

h
for i = 0,1,...,n — 1. We call the term —?y”(?;(mi)), the local truncation error for the Euler’s method.

dz
Theorem 6.2 For the differential equations d_J = f(z,y), if the leading term in the local truncation
x

error involves hP*1, for some integer p, then the global error, for small h, is of order hP, that is
Yi+1 — Y(Tit1) = ch?,

where ¢ does not depend on stepsize h.
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Higher-Order Taylor Methods

hz i)
y(zi41) = ?;(ra)Jrhy’(ﬂri)JrgJ”(ﬂfiH-- &

n(zi) € (xi, Tit1)-

v o= fley)=1f
ﬂ'” = ffzf: t f,:;f

y"=2=2 (6 9) + f,009)-f (1Y)

0 | 960y O
T ox T ay ax f+fy

~fox + finf + (2 + 22) £+ £, (i + £, )

dy 0x

=fex + feyf + fof + Ky + b+ 5°f
=fux + 2fyf + hyf2H K+ 5 f
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Higher-Order Taylor Methods

y o= flay) =
o fr = fu: *= fyf
Jm = fH = fm + Qﬁwf + fszz + fxfy T ffff

£ g
Il

h2 "
Y(xiv1) = ylog) + hf(z, y(x)) + if (2, y(ﬂﬁi)) 22
hr1+l

(n+1)!

h mn

+ = FOD (s y(@) + e F P (@), y(n(:).

By taking y; =~ y(x;), that the approximation to the exact solution at x;, for eachi =0,1,...,n—1,
hfﬂ- 1
Yi+1 = Yi + hf(xi, u:) + f TiYi) + oo+ gftn_ ) (@i, 1)

Then this formula is called the Taylor’s method of order n.

the local error of Taylor’s method of order n is

hn+1

E = (nJ_’_ l)lf[n) .Y ( J.))) =

hn+l

CESL M D(n(zy)), @i < () < Tiga
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Example 6.3 Use the Taylor’s method of order 2 to find the approrimate value of y(1) for the

given initial-value problem.
Y =ay+z, 0<z<1, y0)=0, with h=02

Compare your approzimate solution with the exact solution y(x) = —1 + e /2,
Solution. Since f(z,y) =2y + x, and xo =0, yo = 0, then
Yir1 = ¥i + hf(zi,y:) + %f’(ﬂfi,yz‘)» for i=0,1,2,3,4
where f'(x;,y;) = yi + x2y; + 22 + 1. Then for i = 0, we have
y1 = yo + h(zoyo + To) + %2(310 + x2yo +x2 + 1) = 0 + (0.2)(0) + (0.02)(1) = 0.0200,
and similar way, we have for i = 1,2,3.,4, as follows
y2 = 0.0820, y3 =0.1937, wys=0.3694, y5 = 0.6334,

with absolute possible error

ly(1) — y5| = |0.6487 — 0.6334| = 0.0153.

It showed that the result is entirely correct to 1 decimal place. Clearly, the result using this method
is better than the Euler’s method and it could be considerable improved by using smaller value of

h than 0.2.
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Runge-Kutta Method of Order Two (Modified Euler’s Method)

The equation (6.24) can be written in a standard form as

h
yi+1:yi+§[k‘1+k2], for each i = 0,1,...n — 1.

where

ki = f(zi,y;) and ko = f(ip1, 9 + hk1),

Example 6.7 Use Runge-Kutta method of order two (Modified Euler’s method) to find the approz-
imate value of y(1) for the given initial-value problem

Yy =zy+z, 0<x<1, 9(0)=0, with h=02.

Compare your approximate solution with the exact solution y(z) = —1+ /2

Solution. Since f(x,y) = zy +x, and xg = 0, yo = 0, then for i = 0, we have

NE = f(:I:o, yo) = (CIono + :Eo) = (.0000
ko = f(z1,y0+ hk1) = (x1(yo + hk1) + z1) = (0+ 0.2) = 0.2000,

and using these values, we have

h

y1 = yo + 5 [k1 + k2] = 0+ 0.1(0 +0.2000) = 0.0200.
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Continuing in this manner, we have

ki, = 0.204, ko = 0.4243,  then  yp= 0.0828,

ki = 04331, ka= 07017, then y3 = 0.1963,
by = TTL78. ko = 1.0719, then ys = 0.3753,
ki = 11002 ko= 1.5953, then ys = 0.6449,

with possible error
ly(1) — y5| = |0.6487 — 0.6449| = 0.0039

Example 6.8 Use the Runge-Kutta method of order two (the Modified Euler’s method) to find the
approzimate value of y(1.4) for the given initial-value problem
zy +y —2y=0, y(l)=4, with n=2.

and compare your approzimate solution with the exact solution y(zx) = (x + 1)

2
Solution. Since f(z,y) = L
T+

7 and xg =1, yg =4, h =(14—-1)/2 = 0.2, then for i = 0, we have
ki o= fleeyw)=F1.2=(010*2) =3,
ks = f(z1,y0 +hk1) = f(1.1,2.2) = (1.1)"2(2.2) = 1.8182,
y(1.1) ~ 31 = o + g ky + ks] = 2+ 0.05(2 + 1.8182) = 2.1900.
k1 = 1.8107 and ks = 1.6035,
and by using these values, y(1.2) =~ ys =y + g (k1 + ko] = 2.1909 4 0.05(1.8107 + 1.6035) = 2.3616,

y(1.2) —ya| = [2.3627 — 2.3616| = 0.0011, is the possible absolute error.
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