Chapter 3

Digital Signals and Systems

Introduction

- Basic concepts and the mathematical tools that form the basis for the representation and analysis of discrete-time signals and systems.
- Properties of *linear systems* such as *time invariance*, *causality*, *impulse response*, *difference equations*, and *digital convolution*.

Digital Signals

• A discrete-time signal x[n] is a sequence of numbers of an integer variable n, where $n \in \mathbb{Z}$.

- x(0): zero-th sample amplitude at the sample number n = 0,
- x(1): first sample amplitude at the sample number n = 1,
- x(2): second sample amplitude at the sample number n=2,
- x(3): third sample amplitude at the sample number n = 3, and so on.
- The *duration* or *length* L_x of x[n] is the number of samples from the first nonzero sample $x[n_1]$ to the last nonzero sample $x[n_2]$, $L_x = n_2 n_1 + 1$.
- the *support* of the sequence is the range $n_1 \le n \le n_2$ or $[n_1, n_2]$.
- The symbol \uparrow denotes the index n = 0; it is omitted when the table starts at n = 0.

Functional

Tabular

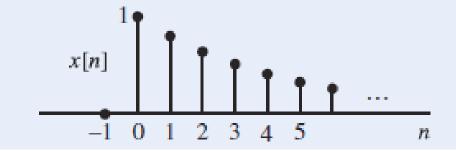
Sequence

Pictorial

$$x[n] = \begin{cases} \left(\frac{1}{2}\right)^n, & n \ge 0\\ 0, & n < 0 \end{cases}$$

$$\frac{n \mid \dots -2 -1}{x[n] \mid \dots} = 0 \quad 0 \quad 1 \quad \frac{1}{2} \quad \frac{1}{4} \quad \frac{1}{8} \quad \dots$$

$$x[n] = \left\{ \begin{array}{ccccc} \dots & 0 & 1 & \frac{1}{2} & \frac{1}{4} & \frac{1}{8} & \dots \end{array} \right\}$$



Signal representation

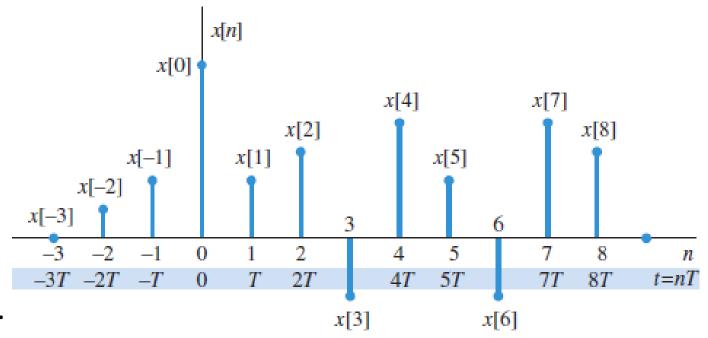
Digital Signals Contd.

Energy: The energy of a sequence x[n] is defined by the formula

$$\mathcal{E}_x \triangleq \sum_{n=-\infty}^{\infty} |x[n]|^2.$$

Power: the power of a sequence x[n] is defined as the average energy per sample.

$$\mathcal{P}_{x} \triangleq \lim_{L \to \infty} \left[\frac{1}{2L+1} \sum_{n=-L}^{L} |x[n]|^{2} \right].$$

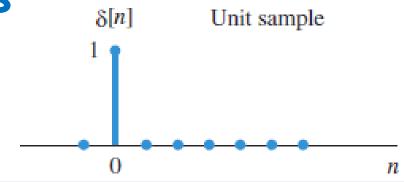


Representation of a sampled signal

Common Digital Sequences

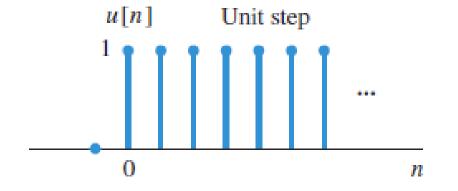
1. Unit-impulse sequence:

$$\delta[n] \triangleq \begin{cases} 1, & n = 0 \\ 0, & n \neq 0 \end{cases}$$



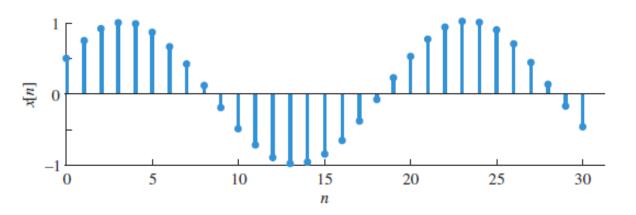
2. Unit-step sequence:

$$u[n] \triangleq \begin{cases} 1, & n \ge 0 \\ 0, & n < 0 \end{cases}$$

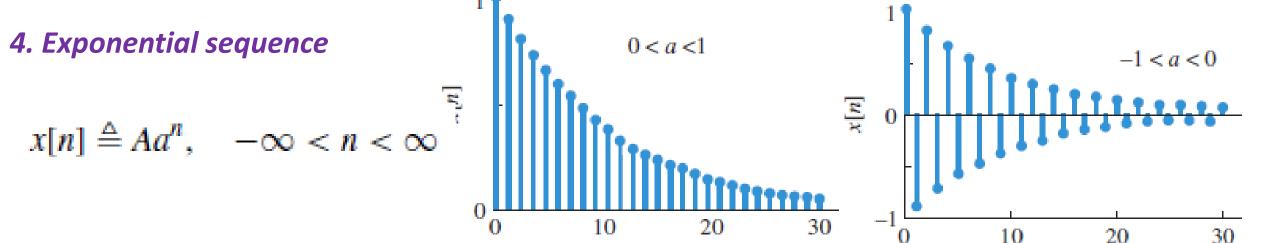


3. Sinusoidal sequence

$$x[n] = A\cos(\omega_0 n + \phi), \quad -\infty < n < \infty$$



Common Digital Sequences

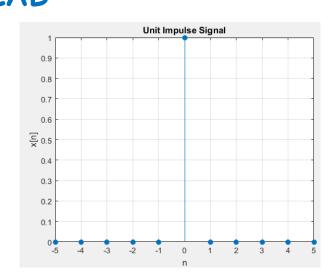


Signal generation and plotting in MATLAB

```
n=(-10:10); x=2*cos(2*pi*0.05*n);

disp('Digital Signals Generation');
N=input('Enter no of samples: ');
n=-N:1:N;
x_impulse=[zeros(1,N),1,zeros(1,N)];
x_step=[zeros(1,N+d),ones(1,N-d+1)];
x_step=[zeros(1,N+d),ones(1,N-d+1)];
plot the sequence
stem(n,x_impulse,'fill'); grid on
xlabel('n'); ylabel('x[n]'); title('Unit Impulse Signal');
```

where A and a can take real or complex values. "



n

Operations on sequences

$$y[n] = x_1[n] + x_2[n],$$

 $y[n] = x_1[n] - x_2[n],$
 $y[n] = x_1[n] \cdot x_2[n],$
 $y[n] = x_1[n]/x_2[n],$
 $y[n] = a \cdot x_2[n].$

(signal addition)

(signal subtraction)

(signal multiplication)

(signal division)

(signal scaling)

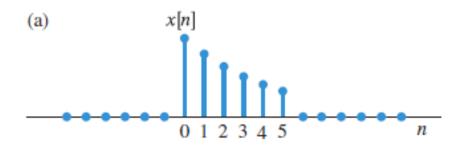
• Time-reversal or folding: reflects the sequence x[n] about the origin n = 0. y[n] = x[-n],

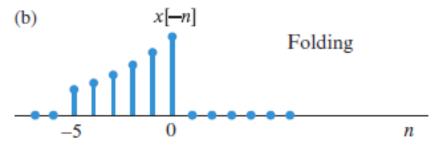
$$x[-n] = x[n]$$
 even or symmetric $x[-n] = -x[n]$ odd or anti-symmetric

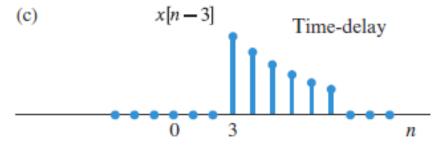
Time-shifting: the sequence x[n] is shifted by n_0 samples $y[n] = x[n - n_0]$.

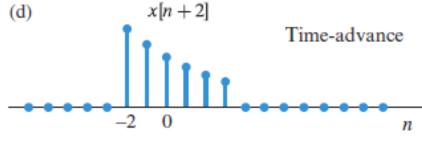
If $n_0 > 0$ shift to the right (time-delay)

If $n_0 < 0$ shift to the left (time-advance.)









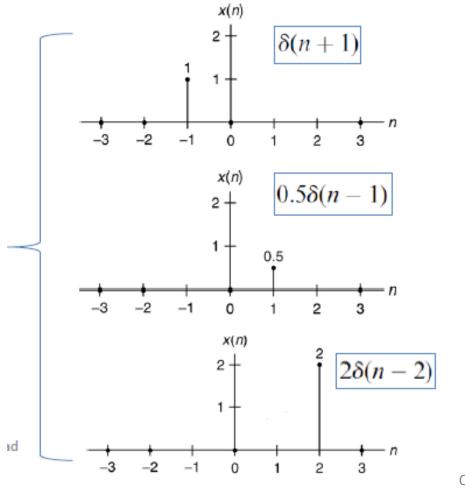
Folding and time-shifting

Example 1

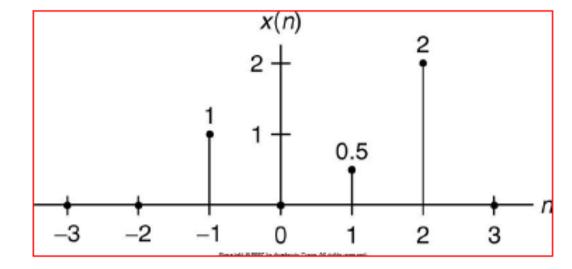
Given the following,

$$x(n) = \delta(n+1) + 0.5\delta(n-1) + 2\delta(n-2),$$

a. Sketch this sequence.



Solution:



Generation of Digital Signals

• To generate the digital sequence x(n) from the analog signal x(t):

uniformly sampling at the time interval of $\Delta t = T$

$$x(n) = x(t) \Big|_{t=nT} = x(nT)$$

Example 2

Convert analog signal x(t) into digital signal x(n), when sampling period is 125 microsecond, also plot sample values.

$$x(t) = 10e^{-5000t}u(t)$$

Solution:

$$t = nT = n \times 0.000125 = 0.000125n$$

$$x(n) = x(nT) = 10e^{-5000 \times 0.000125n}u(nT) = 10e^{-0.625n}u(n)$$

Example 2 (contd.)

The first five sample values:

$$x(0) = 10e^{-0.625 \times 0}u(0) = 10.0$$

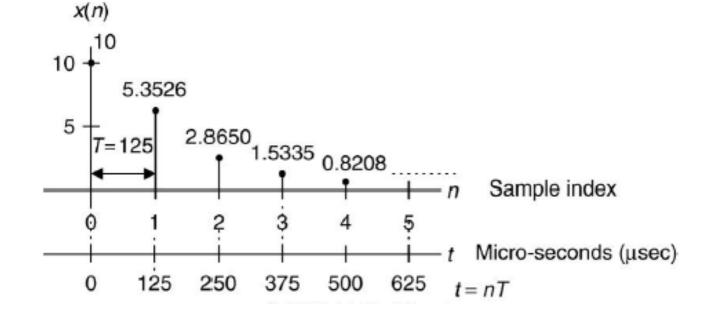
$$x(1) = 10e^{-0.625 \times 1}u(1) = 5.3526$$

$$x(2) = 10e^{-0.625 \times 2}u(2) = 2.8650$$

$$x(3) = 10e^{-0.625 \times 3}u(3) = 1.5335$$

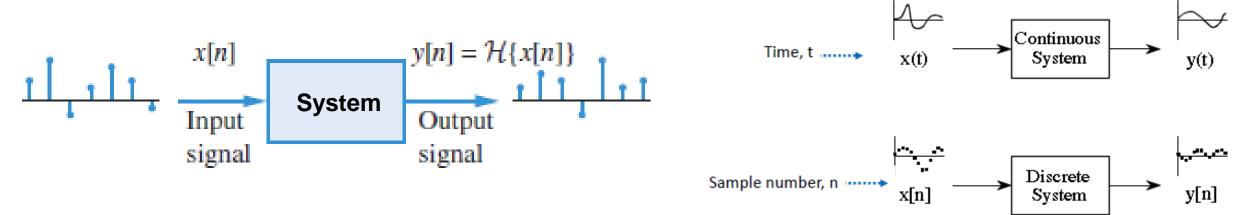
$$x(4) = 10e^{-0.625 \times 4}u(4) = 0.8208$$

Plot of the digital sequence:



Digital Systems

A *Digital system* is a computational process or algorithm that transforms or maps a sequence x[n], called the *input signal*, into another sequence y[n], called the *output signal*.



Example 3

Determine the response of the following system to the input signal $x(n) = \begin{cases} |n|, & -3 \le n \le 3 \\ 0, & otherwise \end{cases}$ and the system's output $y(n) = \frac{1}{3}[x(n+1) + x(n) + x(n-1)]$

Solution:

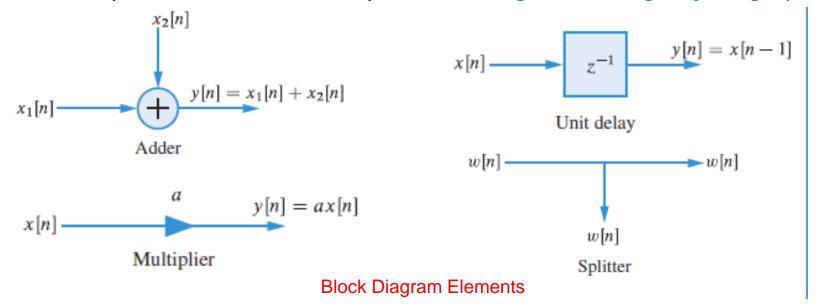
The output of this system is the mean value of the present, immediate past, and the immediate future samples.

For
$$n = 0$$
 \Rightarrow $y(0) = \frac{1}{3}[x(-1) + x(0) + x(1)] = \frac{1}{3}[1 + 0 + 1] = \frac{2}{3}$

Repeating this computation for every value of n \Rightarrow $y(n) = \left\{ ..., 0, 1, \frac{5}{3}, 2, 1, \frac{2}{3}, 1, 2, \frac{5}{3}, 1, 0, ... \right\}$

Block Diagram of Discrete-Time Systems

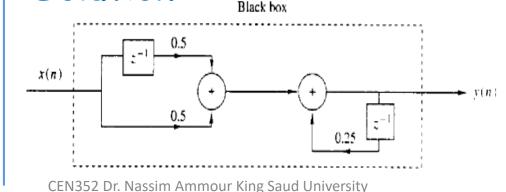
• Operations required in the implementation of a discrete-time system can be depicted in one of two ways: a *block diagram* or a *signal flow graph*.

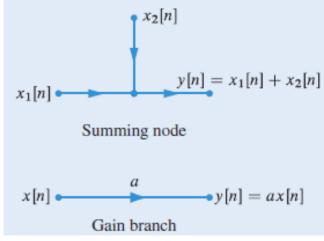


Example 4

Sketch the block diagram representation of the discrete-time system described by the input-output relation.

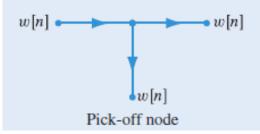
$$y(n) = \frac{1}{4}y(n-1) + \frac{1}{2}x(n) + \frac{1}{2}x(n-1)$$







Unit delay branch



Signal Flow Graph Elements

Classification of Discrete-Time Systems

Static and dynamic systems

$$y(n) = x(n) + 3x(n-1)$$
 Dynamic (have memory) past or future samples of the input

$$y(n) = n x(n) + b x^3(n)$$
 Static or memory-less no past or future samples of the input

Causality

A system is called *causal* if the present value of the output does not depend on future values of the input. Causality is required for systems that should operate in real-time.

Example:
$$y(n) = 0.5x(n) + 2.5x(n-2)$$
, for $n \ge 0$

If the output of a system depends on future values of its input, the system is non-causal.

Example:
$$y(n) = 0.25x(n-1) + 0.5x(n+1) - 0.4y(n-1)$$
, for $n \ge 0$

Stability

A system is said to be *stable*, in the Bounded-Input Bounded-Output (BIBO) sense. Stability is a property that should be satisfied by every practical system.

Example:

$$|x[n]| \le M_x < \infty \Rightarrow |y[n]| \le M_y < \infty.$$

- The moving-average system is stable: $y[n] = \frac{1}{3}\{x[n] + x[n-1] + x[n-2]\} \le 3M_x$. for $|x[n]| \le M_x$
- The accumulator system is *unstable*: $y[n] = \sum_{k=0}^{\infty} x[n-k]$ becomes unbounded as $n \to \infty$.

Example 9

Given a linear system given by: y(n) = 0.25y(n-1) + x(n) for $n \ge 0$ and y(-1) = 0

Which is described by the unit-impulse response: $h(n) = (0.25)^n u(n)$

Determine whether the system is stable or not.

Solution: To determine whether a system is stable, we apply the following equation:

$$S = \sum_{k=-\infty}^{\infty} |h(k)| = \ldots + |h(-1)| + |h(0)| + |h(1)| + \ldots < \infty.$$

$$S = \sum_{k=-\infty}^{\infty} |h(k)| = \sum_{k=-\infty}^{\infty} |(0.25)^k u(k)|$$

Using definition of step function:

$$u(k) = 1 \text{ for } k \ge 0$$
, $S = \sum_{k=0}^{\infty} (0.25)^k = 1 + 0.25 + 0.25^2 + \dots$

For a< 1, we know
$$\sum_{k=0}^{\infty} a^k = \frac{1}{1-a}$$
 where $a = 0.25 < 1$

Therefore
$$S = 1 + 0.25 + 0.25^2 + \dots = \frac{1}{1 - 0.25} = \frac{4}{3} < \infty$$

The summation is finite, so the system is stable.

Linearity

A digital system is *linear* if and only if it satisfy the *superposition principle*, for every real or complex constant a_1 , a_2 and every input signal $x_1[n]$ and $x_2[n]$:

$$H[a_1x_1[n] + a_2x_2[n]] = a_1H[x_1[n]] + a_2H[x_2[n]] \qquad \qquad \text{Homogeneity \& Additivity}$$
 (deals with amplitude)

linearity means that the output due to a sum of input signals equals the sum of outputs due to each signal alone

time invariance

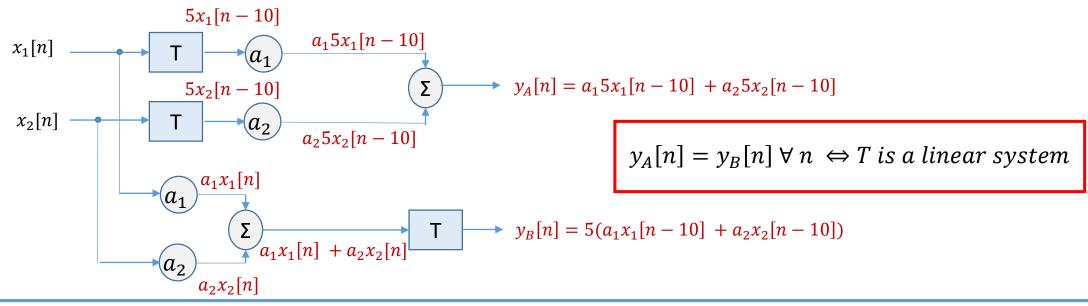
system is called time-invariant (shift-invariant) or fixed if and only if for every input x[n] and every time shift n_0

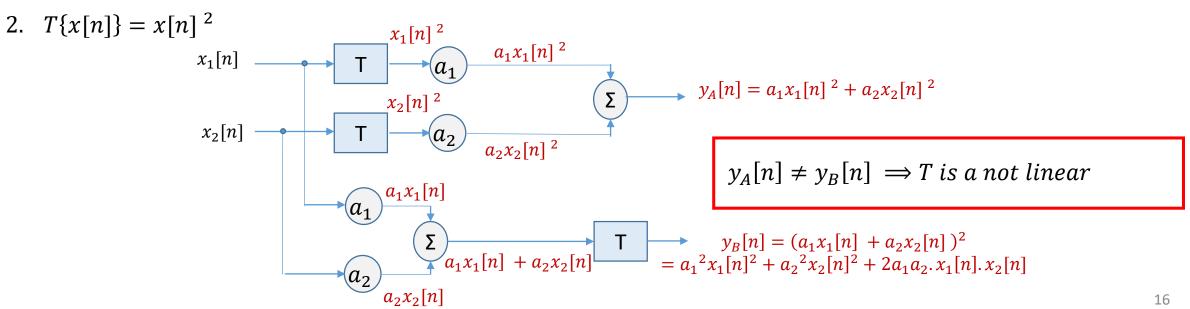
$$y[n] = \mathcal{H}\{x[n]\} \Rightarrow y[n-n_0] = \mathcal{H}\{x[n-n_0]\},$$
 a time shift in the input results in a corresponding time shift in the output

Time-invariance means that the system does not change over time.

Example 5 (Linearity)

1. $T{x[n]} = 5x[n-10]$





Example 6 (Time Invariance)

1. $T{x[n]} = 5x[n-10]$

$$x[n]$$

$$x[n]$$

$$x[n-10]$$

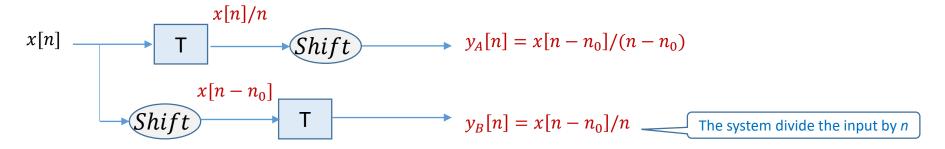
$$x[n-n_0]$$

$$y_A[n] = 5x[n-10-n_0]$$

$$y_B[n] = 5x[n-n_0-10]$$

 $y_A[n] = y_B[n] \forall n \Leftrightarrow T \text{ is time invariant}$

2.
$$T\{x[n]\} = \frac{x[n]}{n}$$
 The system divide the input by n



 $y_A[n] \neq y_B[n] \implies T \text{ is } \text{not time invariant}$

Difference Equation

A causal, linear, time-invariant system (LTI) can be described by a difference equation as follow:

$$y(n) + a_1y(n-1) + \cdots + a_Ny(n-N) = b_0x(n) + b_1x(n-1) + \cdots + b_Mx(n-M)$$
 Outputs Inputs
$$y(n) = -a_1y(n-1) - \cdots - a_Ny(n-N) + b_0x(n) + b_1x(n-1) + \cdots + b_Mx(n-M)$$
 Finally:
$$y(n) = -\sum_{i=1}^N a_iy(n-i) + \sum_{j=0}^M b_jx(n-j)$$

Example 7 Identify non zero system coefficients of the following difference equations.

Solution:

$$y(n) = 0.25y(n-1) + x(n)$$

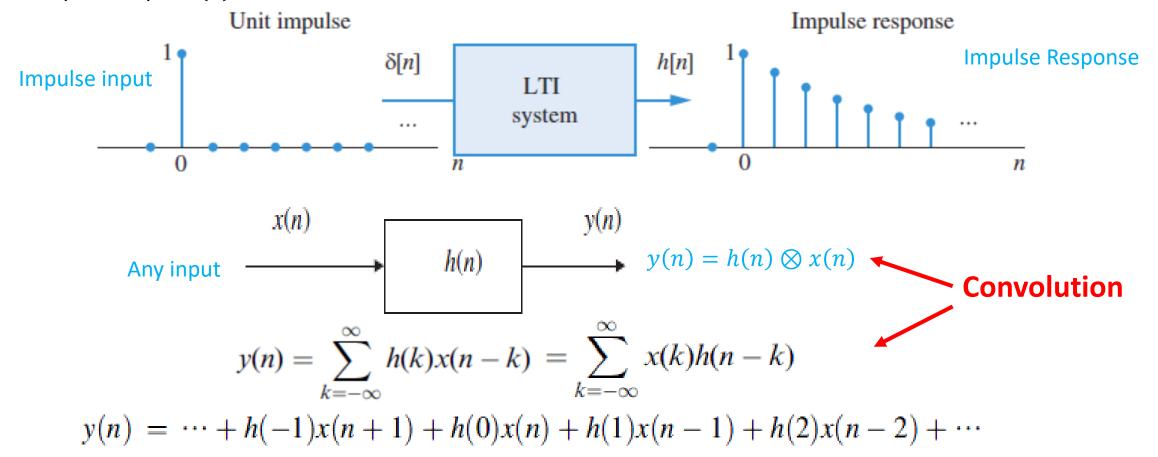
$$b_0 = 1, \quad a_1 = -0.25$$

$$y(n) = x(n) + 0.5x(n-1)$$

$$b_0 = 1, \quad b_1 = 0.5$$

System Representation Using Impulse Response

- The *linearity* and *time invariance* properties greatly simplify the analysis of linear systems (output of a decomposed, scaled and shifted input signal = sum of outputs of individual inputs)
- A *linear time-invariant* system (LTI system) can be completely described by its *impulse response* h[n] due to the impulse input $\delta(n)$ with zero initial conditions.



Example 8 (a)

Given the linear time-invariant system:

$$y(n) = 0.5x(n) + 0.25x(n-1)$$
 with an initial condition $x(-1) = 0$,

- a. Determine the unit-impulse response h(n).
- b. Draw the system block diagram.
- c. Write the output using the obtained impulse response.

Solution:

a. let
$$x(n) = \delta(n)$$
, then $h(n) = y(n) = 0.5x(n) + 0.25x(n-1) = 0.5\delta(n) + 0.25\delta(n-1)$

Therefore,
$$h(n) = \begin{cases} 0.5 & n = 0 \\ 0.25 & n = 1 \\ 0 & elsewhere \end{cases}$$

c. The system output

From convolution formula

$$h(n) = 0.5\delta(n) + 0.25\delta(n-1)$$

$$y(n)$$

Example 8 (b)

Given the difference equation

$$y(n) = 0.25y(n-1) + x(n)$$
 for $n \ge 0$ and $y(-1) = 0$,

- a. Determine the unit-impulse response h(n).
- b. Draw the system block diagram.
- c. Write the output using the obtained impulse response.

Solution:

a. Let $x(n) = \delta(n)$, then $h(n) = 0.25h(n-1) + \delta(n)$

To solve for h(n), we evaluate

$$h(0) = 0.25h(-1) + \delta(0) = 0.25 \times 0 + 1 = 1$$

$$h(1) = 0.25h(0) + \delta(1) = 0.25 \times 1 + 0 = 0.25$$

$$h(2) = 0.25h(1) + \delta(2) = 0.25 \times 0.5 + 0 = 0.0625$$

....

With the calculated results, we can predict the impulse response as

$$h(n) = (0.25)^n u(n) = \delta(n) + 0.25\delta(n-1) + 0.0625\delta(n-2) + \cdots$$

Example 8 (b) - contd.

b. The system block diagram

$$\begin{array}{c}
x(n) \\
 \hline
 h(n) = \delta(n) + 0.25\delta(n-1) + \dots \\
\end{array}$$

c. The output sequence

$$y(n) = h(0)x(n) + h(1)x(n-1) + h(2)x(n-2) + \cdots$$
$$= x(n) + 0.25x(n-1) + 0.0625x(n-2) + \cdots$$

Finite Impulse Response (FIR) system:

When the difference equation contains no previous outputs, i.e. 'a' coefficients are zero. (See example 8 (a))

Infinite Impulse Response (IIR) system:

When the difference equation contains previous outputs, i.e. 'a' coefficients are not all zero. (See example 8 (b))

Digital Convolution

A LTI system can be represented using a digital convolution

$$y(n) = h(n) * x(n) \implies y(n) = \sum_{k=-\infty}^{\infty} h(k)x(n-k)$$
$$= \dots + h(-1)x(n+1) + h(0)x(n) + h(1)x(n-1) + h(2)x(n-2) + \dots$$

- The unit-impulse response h(n) relates the system input and output.
- The sequences are interchangeable.

$$y(n) = \sum_{k = -\infty}^{\infty} h(k)x(n - k) = \sum_{k = -\infty}^{\infty} x(k)h(n - k) \qquad x[n] * h[n] = h[n] * x[n]$$

Commutative

$$x[n]*h[n] = h[n]*x[n]$$

- Convolution sum requires h(n) to be reversed and shifted.
- If h(n) is the given sequence, h(-n) is the **reversed sequence**.

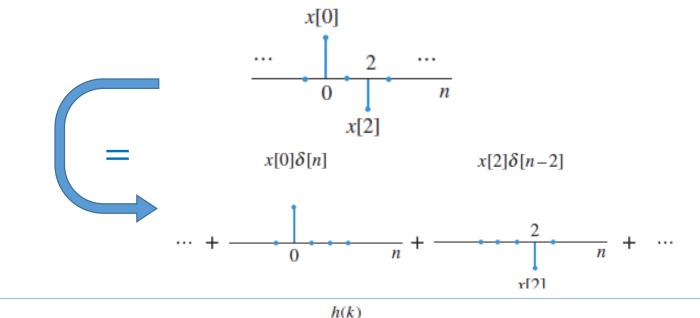
Signal decomposition into impulses

$$x_k[n] = \begin{cases} x[k], & n = k \\ 0, & n \neq k \end{cases}$$
 Sample k of $x[n]$

$$x_k[n] = \delta[n-k]$$
: Impulse at $n = k$

$$\delta[n-k] = \begin{cases} 1, & n=k \\ 0, & n \neq k \end{cases}$$
 Shifted Impulse

$$x[n] = \sum_{k=-\infty}^{\infty} x[k]\delta[n-k]. \quad -\infty < n < \infty$$



x[n]

Reversed Sequence

Example:

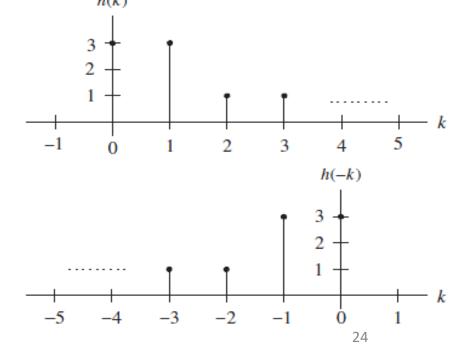
Given a sequence
$$h(k) = \begin{cases} 3, & k = 0, 1 \\ 1, & k = 2, 3 \\ 0 & elsewhere \end{cases}$$

Sketch the sequence h(k) and reversed sequence h(-k).

Solution:

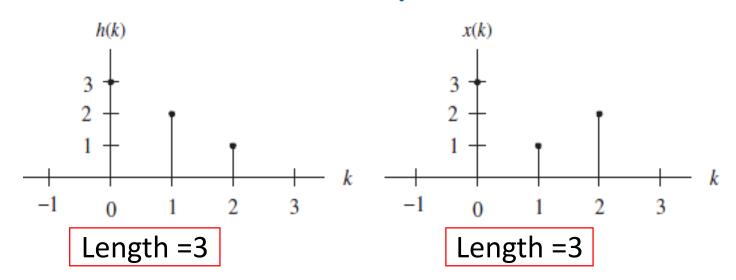
$$k > 0, h(-k) = 0$$

 $k = 0, h(-0) = h(0) = 3$
 $k = -1, h(-k) = h(-(-1)) = h(1) = 3$
 $k = -2, h(-k) = h(-(-2)) = h(2) = 1$
 $k = -3, h(-k) = h(-(-3)) = h(3) = 1$



CEN352 Dr. Nassim Ammour King Saud University

Convolution Using Table Method Example 9



Solution:

Convolution sum using the table method.

<i>k</i> :	-2	-1	0	1	2	3	4	5	
<i>x</i> (<i>k</i>):			3	1	2				
h(-k):	í <u>ı</u> –	2	3						$y(0) = 3 \times 3 = 9$
h(1 - k)		1	2	3					$y(1) = 3 \times 2 + 1 \times 3 = 9$
h(2-k)			1	2	3				$y(2) = 3 \times 1 + 1 \times 2 + 2 \times 3 = 11$
h(3-k)				1	2	3			$y(3) = 1 \times 1 + 2 \times 2 = 5$
h(4-k)					1	2	3		$y(4) = 2 \times 1 = 2$
h(5 - k)						1	2	3	y(5) = 0 (no overlap)

Convolution Using Table Method Example 10

$$x(n) = \begin{cases} 1 & n = 0, 1, 2 \\ 0 & otherwise \end{cases} \text{ and } h(n) = \begin{cases} 0 & n = 0 \\ 1 & n = 1, 2 \\ 0 & otherwise \end{cases}$$

Length = 2

Solution:

k:
 -2
 -1
 0
 1
 2
 3
 4
 5
 ...

$$x(k)$$
:
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1

Length = 3

Convolution length = 3 + 2 - 1 = 4

Convolution Properties

- $\delta[n]$ is the *identity element* of the convolution operation.
- Commutative: $a[n] \otimes b[n] = b[n] \otimes a[n]$
- Associative: $(a[n] \otimes b[n]) \otimes c[n] = a[n] \otimes (b[n] \otimes c[n])$
- Distributive: $a[n] \otimes (b[n] + c[n]) = a[n] \otimes b[n] + a[n] \otimes c[n]$

