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Definition 3.1 (Linear equation)

It is an equation in which the highest exponent in a variable term is no more than one. The graph
of such equation is a straight line. °

For example, the equations
. 4
b1 + 200 =2, —Z1+ 25 =1, 201 —4x9 = T,
5

Definition 3.2 (System of Linear Equations)

A system of linear equations (or linear system) is simply a finite set of linear equations.

For example,
dry — 239 = 5
3331 + 2332 == 4

is a system of two equations in two variables xy and x,, and

23?1 + NI} - 53"; + 233,1 =
4z + 3z + 2x3 + 44 = 3
T + 2x9 + 3x3 + 234 = 11
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In order to write a general system of m linear equations in the n variables z,

anzri1 + apr2 + - + @pTn = b
a21x1 + axers + - + amrn = by
AGm1T1 + am2®2 + -+ + AmnTn = bm

or, in compact form the system (3.1) can be written

T
E a;;T; = by, b= 18w
Jj=1

...,Tn, we have

(3.1)

The system of linear equations (3.3) can be written as the single matrix equation

17 412 -+ Qip Iy 51
a1 @2 - a2y o bo
- = : ' can be written AX=Db,

nl Op2 o Onn L bn

ail a2z - Qin x1 b1

az1 azz -+ Qp 2 b2

A = ] : X = . b= ] ;
Ap1 Ap2 -+ Qpp Ly bn
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3.4 Direct Numerical Methods for Linear Systems

3.4.1 Gaussian Elimination Method
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Simple Gaussian Elimination Method

Forward Elimination

Consider first equation of the given system (3.14)

a11T1 + a12rs + a13x3 + -+ + a1y = by,

as first pivotal equation with first pivot element aq.
mi1 = (ain/an), i = 2,3,...,n, is subtracted from the ih equation to eliminate first variable z,
producing an equivalent system

a;1ry + a2
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Now consider a second equation of the system (3.16), which is

aé?ﬂ?g + a%]:rg R aé},}:}:ﬂ = bélj? (3:17)

(1)

as second pivotal equation with second pivot element a,,’. Then the second equation times multiples
Mg = (aEé}/aég}, i =3,...,n,is subtracted from the ith equation to eliminate second variable x3,
producing an equivalent system

@111 + a2 + aizrs + - 4+ @pTn = b
aprs + aygrs + oo+ ayzn = by
5 2 9
a':(;:-';:] 3:'3 + LRt + a':[%n) ﬂ:n = h:g } (318)
aBzs + o + o8z, = P

Similarly, after (n-1)th steps, we have the nth pivotal equation which have only one unknown

variable x,,, that is

a11T1 + apry + a3z + o0+ AT, = b
+ ag.lz)xg + a%)xg e a&)mn = bél)
2 2 2
I af3)m3 X T = a;(;n)a:n = b:g ) (3.20)
g:L-l)xn — b‘gl,n-l)
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The Gaussian elimination can be carried out by writing only the coefficients and the right-hand

side terms in a matrix form, which means the augmented matrix form.

( a1

a2
a3zl

\ Qnl

Consequently system (3.20) is now written directly as follows:
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Backward Substitution

(n—1) )
2 o 1
n = (n—1)
Gnn
1 (n—2) (n—2)
Tn—-1 = (n—2) (bn—l —On_1n mﬂ) \
n—1ln—1
1 n
I = — |’31 — Zau:}:j
iy : L
1 j=2 J

Example 3.9 Solve the following linear system using the simple Gaussian elimination method

1 -+ 2T2 A r3 = 2
27 + S5z + 2x3
r1 + 32 + 4dx3

i
S -

solution. The process begins with the augmented matriz form

1 2 1 2
2 5 3 1
1 3 4 5
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: , : T 2
Since a11 = 1 # 0,  In this case the multiples are ma; = 7= 2 and m3 = % = 1. Hence

18 1.i =
Bt L & -3
013 : 3

As ang) =1 # 0, therefore, we eliminate entry in ag;) position by subtracting the multiple mss =

— =1 of the second row from the third row, to get

1
1 21 : 2
0 1. 1L & =3
00 2 : 6

Now expressing the set in algebraic form yields

z1 + 2z + Trg = 2
Ty F r3 = -3
208 = 6

Now wusing backward substitution, we get

2o = B gives =3
ra = -wx3—3=—(3)—3= -6, gives xry = —6,
1 = 29215 —33=2-—2(—6)—3, gives & =11,
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Example 3.11 Solve the linear system using the simple Gaussian elimination method

i + 23 + g3z = 3
2:}31 -+ 2332 + 3:]33 = T
r1 + 2w9 + 3zz3 = 6

Solution. Writing the given system in the augmented matriz form

111 : 3
2 2 8 &7
1 2 3 : 6

First elimination step is to eliminate the elements as) = 2 and az1 = 1 from second and third rows

1
by subtracting multiples mqq = T 2 and mg; = 7= 1 of row 1 from row 2 and row 3 respectively,

qives
111 : 3
001 :1
012 : 3

. . . + 1
To start the second elimination step, since we note thatthe element aéQJ = {},

so the simple Gaussian elimination cannot continue in its present form.
Therefore, we interchange the rows 2 and 3, to get

I a gl @
0 1 & 4 38 s Using backward substitution, we get, t1 =1, zoa =1, x3=1.
60 7T 21
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Example 3.17 Consider a linear system

0.000100zy + =2 = 1
T + 1 = 2

which has exact solution x = [1.00010, 0.99990]7. Now we solve this system by the simple Gaussian
elimination. The first elimination step is to eliminate first variable x1 from second equation by
subtracting multiple ma1 = 10000 of first equation from second equation, gives

0.000100x, + T = 1
— 10000z, = —10000

Using backward substitution to get the solution x* = [0,1]7. Thus a computational disaster has
occurred. But if we interchange the equations, we obtain

r1 + 12 = 2
0.000100x1 + z2 = 1

Apply the Gaussian elimination again, and we got the solution x* = [L,1]7. This solution is as
good as one would hope. So, we conclude from this example that it is not enough just to avoid zero
pivot, one must also avoid relatively small one. .

Here we need some pivoting strategies which help us to over come these difficulties facing during

the process of simple Gaussian elimination.
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3.4.2 Pivoting Strategies

Partial Pivoting
the basic approach is to use the largest (in absolute value) element on or below the diagonal in the column

of current interest as the pivotal element for elimination in the rest of that column.

Example 3.18 Solve the following linear system using the Gaussian elimination with partial piv-
oting

1 + a3 + g = 1
2e1 + 3x2 + 43
4z1 + 9z2 + 16z3

151

Solution. For the first elimination step, since 4 is the largest absolute coefficient of first variable
x1, therefore, the first row and the third row are interchange, giving us

4£L‘1 cf 9.172 = 161133 = 1
2v1 + 3x9 + dxz = :
¢i + ®g + T = ]

1 . :
the multiples ma1 = . and mg; = 2 of row 1 from row 2 and row 3 respectively, gives
4

4r1 + 9xa 4+ 16xz3 = 11
— 5/4zy — x5 = —T7/5

System of Linear Equations Dr. Mohamed Abdelwahed 11



For the second elimination step, —3/2 is the largest absolute coefficient of second variable xy, so

eliminate second variable xo from the third row by subtracting the multiple mgs = 5 of row 2 from
row 3, gives

41‘1 + 91132 —+ 161‘3 — 11
— 3/2z3 — 4xz = —5/2
1/3z3 = 1/3

Obuviously, the original set of equations has been transformed to an equivalent upper-triangular form.
Now using backward substitution, gives, x1 = 1, x9 = —1, x3 = 1, the required solution. .
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3.4.4 LU Decomposition Method

Here we decompose or factorize the coefficient matrix A into the product of two triangular matrices in the

form A= LU, where L is a lower-triangular matrix and U is the upper-triangular matrix.

lhi 0 -+ 0 U1l w2 o Uln

lor la2 -+ 0 0 w22 -+ u2p
L= . . . . s =

lnl 171.2 P lnn 0 0 ccr Upnp

such that [;; = 0 for 7 < j, and u;; = 0 for 7 > j.
Consider a linear system Ax=Db., = LUx =b,

which can be written as Ly =b, where y = Ux.

The solution of Ax=Db, can be computed in the following two steps:

1. Solve the lower-triangular system Ly =b. By using the forward elimination,
y1 = by,
i—1
Yi = hl_zfljy,ﬂ i:2:‘37"'7ﬂ“
j=1
2. Solve the upper-triangular system U=y
Un
:I'Tl. —
?‘Lﬂ.n.
1 T
T, = — |y — Hexwl i = t= 1l =21
i Wi Yi Z LY RV

j=i+1
System of Linear Equations Dr. Mohamed Abdelwahed
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Theorem 3.12 If the Gaussian elimination can be performed on the linear system Ax = b without
row interchanges, then the matriz A can be factored into the product of a lower-triangular matriz
L and an upper-triangular matriz U, that is

A=LU,

where the matrices L and U are of the same size as A. .

Now we discuss the two possible variations of the LU decomposition to find the solution of the
nonsingular linear system in the following.

Doolittle’s Method

11 12 ails 1 0 U U111 12 Ul3
21 022 a3 = Mo 1 U U a2  Uog
(31 (32 (33 mgp mgy 1 0 0  ugg

Crout’s Method

The Crout’s method, in which matrix U has unity on the main diagonal, is similar to Doolittle’s
method in all other aspects. The L and U matrices are obtained by expanding the matrix equation
A = LU term by term to determine the elements of the L and U matrices.
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Example 3.20 Construct the LU decomposition of the following matriz A by using the Gauss fac-
torization (that is, the LU decomposition by Doolittle’s method).

Solution. Applying the forward elimination step of Simple Gauss-elimination to the given matriz

1 2 1
A=1]1 2 5 3 |,
1 8 4
2
using the multiples moy = 2 =l and mg1 = 1 = l31, we get 01 1
0 1 3
E 2 g
Similarly, by using the multiple mgs = 1 = lgo, we oblain 011 |=U
0 0 2

Hence we obtained the L U-decomposition of the given matriz as follows

1 2 1 1 00 1 2 1
253 |=[210 g 1 31l
1 3 4 111 00 2

where the unknown elements of matriz L are the used multiples and the matriz U is same as we
obtained in forward elimination process. .
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Example 3.23 Solve the following linear system by LU decomposition using Doolittle’s method

1 2 4 —2
A=11 & 8 and b= 3
2 2 2 —6
Solution. Since
1 0 0 11 w12 U113
A=LU = 21 1 0 0 woe  wuog
131 132 1 [} U 33

Performing the multiplication on the right-hand side, gives

1 2 4 11 U2 U3
1 3 3 |=] l2un [21u12 + w22 l21u13 + u23
a2 & [31u11  l31u12 + l32u22  I31u13 + l32U23 + u33

Then equating elements of first column to obtain

1 = wu, u;n = 1,
1 = lqun, b1 = 1,
g = 131?1.11, 131 = 2
Now equating elements of second column to obtain
2 o= U192, U1 = 2.,
3 = biuiz + um, uzz = 3—-2=1,
2 = lz1ujo+l3pune, lzgp = 2—4=-2

System of Linear Equations Dr. Mohamed Abdelwahed
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Finally, equating elements of third column to obtain

4 = w3, iz = 4,
3 = Is1uy13 + uos, oy = 3—4=-1,
7 — 131?1.13 + lgzuzg + ug3, ugzgz = 2-—10= —8.
Thus we obtain
1 2 4 1 0 0 1 2 4
i T = 1 1 0 0 1 -1
2 2 2 2 =2 1 0 0 -8

1 0 0 Y1 —2
1 1 0 Y2 | = 3
2 -2 1 Y3 —6
Performing forward substitution yields
Y1 = =2, qwes Yy = —2,
Y1+ y2 = 3, gives Y2 = 9,
2. — 2y + yz = 6, gwes s = 8

System of Linear Equations
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Then solving the second system Ux =y for unknown vector x, that is

1 2
0 1
0 0

1
=]
—8

Performing backward substitution yields

System of Linear Equations

)

+ 2x2 + 4xj

T2

L3
81?3

€I
)
T3

gives
gilves
grves

2

oo o

x1
Z2
T3
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Example 3.27 Solve the following linear system by LU decomposition using Crout’s method

1 2 3 1
A=1]16 5 4 and b= -1
2 5 6 H
Solution. Since
lly 0 0 1 wo wyg

AZLU= 121 122 0 0 1 U923
l31 l32 33 0 0 1

Performing the multiplication on the right-hand side, gives

1 2 3 11 liiuge l11u13
6 5 4 | = log lajuin +1lan lajuig + laguog
2 5 6 31 lg1uie + 132 l31u13 + l3ouss + l33

Then equating elements of first column to obtain

1 = I, 2 = hhw, w2 = 2,
6 = Ia,
- 5 = layuia+1lo, lo = 5-12= -7,
5 = 331'&124—{32, 332 = H—-4=1.

Finally, then equating elements of third column to obtain

3 = lhug, uiy = 3,
4 = Isq1u13 + laouss, Uy = (4 — 18)/ —i=2,
6 = 131'1‘1.13 —|— 132'&23 + Igg., 333 — (6 =z 6 7 2) = —2.
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Thus we get

I. 2' '3 1 0 0 1 2 3
6 5 4 |=| 6 -7 0 01 2
2 5 6 2 1 2 0 01

Then solving the first system Ly = b for unknown vector y, that is

1 0 0 Y1 1
6 —7 0 Y2 — —1
2 1 -2 Y3 5
Performing forward substitution yields
Y1 = 1, gives 1n =
6y1 — Ty2 = —1, gives y2 =
20 + Y2 — 2y3 = 5, giwves y3 =
Then solving the second system Ux =y for unknown vector x, that is
L & 8 T 1
i x9 | = 1
Performing backward substitution yields
r1 + 2x9 + 3x3 = 1, gives Ty =
Ty + 2r3 = 1, gives To =
xz3 = —1, gives Ty =

and we obtained the approzimate solution x* = [-2,3, —1]7,

System of Linear Equations
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Since we know that not every matrix has a direct LU decomposition. We define the following
matrix which gives the sufficient condition for the LU decomposition of the matrix. It also, helps

us for the convergence of the iterative methods for solving linear systems.

Definition 3.24 (Strictly Diagonally Dominant Matrix)

A square matriz is said to be strictly diagonally dominant (SDD) if the absolute value of each
element on the main diagonal is greater than the sum of the absolute values of all the other elements

in that row. Thus, strictly diagonally dominant matriz is defined as

T
lais| >3 laigl,  for i=1,2,...,n.
i=1
J#i
Example 3.30 The matriz
T3 1
A= 1 6 3|,
-2 4 8

is strictly diagonally dominant since

71 > 3|+ 1], thatis, 7 > 4,
6] > [1]+3], thatis 6 > 4,
8] = | —2|+14], thatis 8 > 6.

but the following matriz

6 -3 4
B=]|3 7 3
5 —4 10

s not strictly diagonally dominant since

6] > | —3|+ 4|, thatis 6>7,

System of Linear Equations

(3.35)
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Theorem 3.14 If a matriz A is strictly diagonally dominant, then:

1. Matriz A is nonsingular.

2. Gaussian elimination without row interchange can be performed on the linear system Ax = b.

3. Matriz A has LU factorization. o
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3.5 Norms of Vectors and Matrices

Vector Norms

It is sometimes useful to have a scalar measure of the magnitude of a vector. Such a measure is
called a vector norm and for a vector x is written as ||x||.
A vector norm on R" is a function, from R"” to R satisfying:

T |x|| >0 forall xeR".

2. |x|| =0 if and only if x=0.

3. |lox|| = |a|x|, foral aeR, xeR".
L xtyl < Ixl 4yl oral xyeRe

There are three norms in R™ that are most commonly used in applications, called {{-norm, (s-norm,
and l-norm, and are defined for the given vectors x = [z1,z2,... ,:e:n]Jr as

T TL 1;’2
2
||x||1 = Zl|9‘z ; ||X||2 = (z; Ta) ; ||X||oo — lrlglriaaikrﬂ
1= =

Example 3.32 Compute l,-norms (p = 1,2,00) of the vector x = [—-5,3,—2]" in R?.

Solution. These l,-norms (p = 1.2,0¢c) of the given vector are:

Ixli = ||+ |z2| + |zs| = | = 5|+ [3] + | — 2| = 10.

2 2 2y1/2 =2 2 2 142
Il = (a%+a3+a3)¥2 = (=52 + (32 +(-2)?] " ~6.16.
%|looc = max{|z1|,|z2|, ||} = max{| — 5|, |3],| — 2|} = 5.
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Matrix Norms

a matrix norm on the set of all n x n matrices is a real-valued function, ||.||, defined on this set,
satisfying for all n x n matrices A and B and all real number a as follows:

1. 4] > 0, A#£0.

2. |A|| =0, A=0.

3. [T =2l I is the identity matrix.
4. |aAl| = |a|||Al|, for scalar o € R.
5. A+B| <[ Al+|B].

6. | AB| < |A]|B|

7. |lA-B| = |lAl - Bl

Several norms for matrices have been defined, we shall use the following three natural norms [, s,
and [, for a square matrix of order n:

mn
|Al1 = max (Z laij| | = maximum column-sum.
T \i=1

|All2 = nllax1 | Ax||2 = spectral norm.
9

llzll2=

n

| Alloc = max (Z |a£j|) = TOW-SUIM norm.

J.=l T i 1/2
For m xn matrix, we can paraphrase the Frobenius norm (or Euclidean norm,  ||Allp = | > a;;|*
i=1 j=1
System of Linear Equations Dr. Mohamed Abdelwahed 24



Example 3.33 Compute l,-norms (p = 1,00, F') of the following matrix

4 2 —1
A= ] 3 5 —2
1 -2 7
Solution. These norms are:
Slaa| = (4413 +1]=8, > laiel = 2| +|5]+|—2|=09, ;1ai3| = |=1+|-2[+[7] =10,
i=1 =1 =

S0 |A|l1 = ma=x{8,9,10} = 10.

Also, Y lay|=H|+12|+|=1=7 D laz|=[3]+15] +|—2| = 10, > lag;| = 11|+ | — 2| + 7] = 10,
j=1 j=1 j=1

S0 |4 |l = max{7,10,10} = 10.
Finally, we have

|Allp = (16 +4+1+9+25+ 4+ 1+ 4+ 49)1/2 ~ 10.6301,
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3.6 Iterative Methods for Solving Linear Systems

3.6.1 Jacobi Iterative Method

ailry + ai2r2 + a13r3
ag1x1 + Q93 + (23T3
31X1 + (@32T3 + @A33T3
1 =
rn = —\hh —
gy -
1 =
=) gy = o|hy =
lgg *
1 .
xI3 = — h:.] =
a3z L

7
Let x(k) = {x&kj, J:ékj,mgkj}

System of Linear Equations

E+1
NS

(k+1)
Lo

(k+1)
L3

2101

1311

then we define an iterative

\ g

(1133

2313

3212

110
12212
33X3

(k)

112y

(k)

314

(k)

sequence called the Jacobi formula

(k)]
== {113333

(k)]
— 23T

(k)

1pX2 — Q1373
a21r1 — 2373
az31xr1 — 43272
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For a general system of n linear equations, the Jacobi method is

i—1 T
k1 1 k k ,
TE ) = — bi_zﬂ'ijm; ) Z ﬂijﬂ?;) i = 1,2.....n,
Qii j=1 j=i+1
provided that the diagonal elements a;; # 0 for each i = 1,2,..., n.
0) :
it is conventional to start with G“E ) = 0 for all i.

The iterations defined by (3.37) are stopped when HX”“‘Hj — ¥ | <€ oOr

[+ — x®)|
<]

<8

Example 3.34 Solve the following system of equations using the Jacobi iterative method, using

€ = 107% in the low-norm.

oxr1 — xo + x3 = 10
2r1 + 8x9 — x3 = 11
—T1 F T2 + 4dxrz = 3

Start with the initial solution x'% = [0, 0,0]%.

The Jacobi iterative method for the given system has the form

: 1 -
A = Lo 4 o - P
! |

3 1 -
A = 1 - w4 o
! 1 ; 9]
a:gkﬂ) = g [3 e :}:&” = mé‘”)_

System of Linear Equations
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and starting with initial approrimation a:&m = (), mg)) =0, J:_%U) = 0, then for k = 0, we obtain

2D

Tt =

0| =

10

11

W | =

3

-

-

2

2:1:&0) +

2O

MO _ol =
zy’] = 2 [10+0 0] =2,
() _ 1

= 1-
2y)] = 7[3+0-0] =0.75.

i +o] — 1.375,

The first and subsequent iterations are listed in Table 3.1.

System of Linear Equations

Table 3.1: Solution of the Example 3.34

k i 5 zy

0 | 0.000000 | 0.000000 | 0.000000
1| 2000000 | 1.375000 | 0.750000
2 | 2.125000 | 0.968750 | 0.906250
15 | 2000000 | 0.999999 | 1.000000
16 | 2.000000 | 1.000000 | 1.000000
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3.6.2 Gauss-Seidel Iterative Method

the Gauss-Seidel formula for the system of three equations

k+1 I k k)]
TE ) - — bl — ﬂlgﬂﬂg ) — (113:]3; )
ail E
k+1 k5 k+1 k)]
:ré ) = by — aglarg ) _ {123:}3; )
a9 =
k+1 1l k+1 +1
ﬂ‘g ) = — bg — 1’131:}3& ) — aqgﬂ‘g )
agz -

For a general system of n linear equations, the Gauss-Seidel iterative method defined as

k 1 : k
) — b =Y ay (+1) Za”y i = 1.2,....n, k=0,1,2,...
12 J:l —l+1

Example 3.36 Solve the following system of equations using the Gauss-Seidel iterative method,
with € = 107% in I -norm.

5331 == Ty + T3 = 10
201 + 8xo — x3 = 11
—z1 + x2 + 4dz3 = 3

Start with the initial solution x'%) = 0,0,0]%.
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Solution. The Gauss-Seidel iteration for the given system is

k+1 1 k k)T
Tg ) = 5 [10 = Té ) ’rg )_
1 . %
mgcﬂ) = = [11 2ng+1) £ Igc)
1 e
ng+1) = [3 i mgkﬂ) :(:é“ 1)
; o — . . (0} _ (0)
and starting with initial approzimation ;" = 0,x,
1 5 A
2V = 2[00 + 2 - 2 =-;10+0—0]=2,
J L . oL
1 T
L 5 11— 200 + @)= 5 i 0] — 0.875,
1r : : 1r
sy = £[3 + of 23| = ;[3+2—0875] = Lo3125.

=0, :13:(30) =0, then for k = 0, we obtain

The first and subsequent iterations are listed in Table 3.3.

k zy zy” P

0 [ 0.000000 | 0.000000 | 0.000000
1 | 2.000000 | 0.875000 | 1.031250
2 | 1.968750 | 1.011719 | 0.989258
3 | 2.004492 | 0.997534 | 1.001740
9 | 2.000000 | 0.999999 | 1.000000
10 | 2.000000 | 1.000000 | 1.000000

System of Linear Equations
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From the Examples 3.34 and (3.36), we noted that the solution by the Gauss-Seidel method con-
verges more quickly than the Jacobi method. In general, we may state that if both the Jacobi
method and the Gauss-Seidel method are converge, then the Gauss-Seidel method
converges more quickly. This is generally the case but not always true. In fact, there are some
linear systems for which the Jacobi method converges but the Gauss-Seidel method does not, and
others for which the Gauss-Seidel method converges but the Jacobi method does not.

3.6.3 Matrix Forms of Iterative Methods for Linear System
The iterative methods to solve the system of linear equations Ax — b, start with an initial
approximationl_;{(m € R and generates a sequence of vectors {X(H}Eio that converges to x.
Ax=Db, equivalent x=Tx+c,
the sequence of approximate solutions vector is generated by computing
x(F+1) :Tx[kj—l—c, fof &=P302, ..

Let a matrix A can be written A =L+ D+ U,

00 0 0 0 a2 a3 -+ aim a1 0 0 -+ 0

a91 0 0 0 0 0 asg - Q9p 0 a292 0 0

L = azy as2 0O -~ 0 ) U= 0 0 0 -+ asn D= 0 0 agg --- 0
Gnl Qn2 G@n3 -+ 0 0 0 0o --- 0 0 0 0 - ann
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Jacobi Iterative Method
The equation (3.47) can be written as Dx=—(L+U)x+b.

Since matrix D is nonsingular, x = —D_l(L + U)x+ Db,

which can be put in the form  y(k+1) _ TJXEH + ¢, Te 1 ) e

T;=-D"YL+U) and ¢; =D"'b,

1

Gauss-Seidel Iterative Method
The equation (3.47) can also be written as (L 4+ D)x = —Ux + b.

Since lower-triangular matrix (L + D) is nonsingular, x = —(L 4+ D) 'Ux+ (L + D) 'b,

which can be put in the form  xF+1) = T-x*) | ¢p. for k=0,1,2,...

To=—(L+ D)V and cqg=(L+ D) b,

System of Linear Equations Dr. Mohamed Abdelwahed

32



Example 3.38 Consider the following system

6x1 + 2x9 — 1
&1 F 7332 = 2.’1‘3 = 2
i — 25 + Y3 = 1

(a) Find the matriz form of iterative (Jacobi and Gauss-Seidel) methods.

Solution. Since the given matriz A is

6 2 0
A= 1 1 7 —2
3 —2 9
and so
0 0 0 0 2 0 6 0 0
A=L+U+D=| 1 O 0l+100 —-21|4+1070
3 =2 0 0 0 0 0 0 9
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Jacobi Iterative Method

(a) Since the matriz form of the Jacobi iterative method can be written as

BT TJX[&:) +c, E=0,1.2...

L8|

where

T;=-D YL+ U) and c=D"'b.

One can eastly compute the Jacobi iteration matriz Ty and the vector ¢ as follows:
2 1
B == 0 =

[0 — o) F o

9
Ty=|-= o Z
! 7 7

\~5 7 ) -

Thus the matriz form of Jacobi iterative method is

and ¢ =

Wl - =3 b3

2 1
[ o ~ 0\ ( E\
<k = | _1 gg x®) 4 g T )

O]

~
I

o Lo
[l J I
[
—
I

I

-\“'h__
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Gauss-Seidel Iterative Method

(a) Now by using Gauss-Seidel method, first we compute the Gauss-Seidel iteration matriz T and
the vector ¢ as follows:

(o —% 0 ) ( é\
Ter=1] 0 % % and c= i—;
\0 5 5 / 37
Thus the matriz form of Gauss-Seidel iterative method is
[0 —% 0 ) ( -é )
=T % % x®) 4 % . k=0,1,2.
Y ww/ \-m
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3.6.4 Convergence Criteria of Iterative Methods

Since we noted that the Jacobi method and the Gauss-Seidel method do not always converge to
the solution of the given system of linear equations. Here we need some conditions which make the

both methods converge. The sufficient conditions for the convergence of both iterative methods are
discussed in the following theorems.

Theorem 3.15 (Sufficient Condition for Convergence)
If the matriz A is strictly diagonally dominant (SDD), then for any choice of initial approxima-

tion x°) € R both the Jacobi method and the Gauss-Seidel method give sequence {x®}2°, of
approrimations that converge to the solution of the linear system. .

Example 3.39 Rearrange the following linear system of equations

r1 + 6xa — 3x3 = 4
2209 + 229 + 43 = T
ox1 + 2x9 — x3 = 6
such that the convergence of both iterative methods (Jacobi and Gauss-Seidel) is guaranteed. Use

initial solution x\) = [0.0,0]%, compute approzimation solution within accuracy 0.5 x 1072,

Solution. For the guarantee convergence of iterative methods, the system must be SDD form, so
rearrange the given system in the following form

r1 + 6x2 — 3x3 = 4
2r1 + 229 + 4x3 = T
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Jacobi Iterative Method

(k+1) Lr (k) (k)T
T = 5-6 — 2.1:2 +  Z3 |
s T ; .
o = Lo o o 4 sl
ng+1) = i -7 — 2.’1“.-(lk) — 2.7:ék)-

Starting with x©) = [0,0,0]7, the first and subsequent iterations are listed in Table 3.5.

k| 2 | 2y | ay
0.000 | 0.000 | 0.000
1.200 | 0.667 | 1.750
1.283 | 1.342 | 0.983
0.860 | 0.944 | 0.773

o BN =D

10 | 0.997 | 0.998 | 0.999
11 | 1.001 | 1.000 | 1.002
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Gaus_s—Seidel Iterétive -Meth(-)d

X 1r R e
£ = 2o - 2+ oY
"—"ékﬂ) =~ B _4 - mgk“) + 3.7:%“_

; 1r i o
..rékﬂ) = Z _7 B 2x(1k+1) B 2ng+1)

Starting with initial approzimation x'9 = [0,0,0]7, the first and subsequent iterations are listed in
Table 3.6. Note that Gauss-Seidel iterative method converges faster than Jacobi iterative method.

PRI IR
0 | 0.000 | 0.000 | 0.000
1 1.200 | 0.467 | 1.033
2 | 1.220 | 0.980 | 0.895
3 | 0.987 | 0.950 | 1.019
§ 1.003 | 1.002 | 0.998
7 10999 | 0.999 | 1.001
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Theorem 3.16 (Sufficient Condition for Convergence)

For any initial approzimation x'9 € R, the sequence {m(k)}i":(, of approximations defined by
x(bH) — Py () 4 c. foreach k>0, and c#0, (3.52)

converges to the unique solution of x =Tx+c if |T| <1 for any natural matriz norm, and the
following error bounds hold:

e —x® < |TI*Ix® — x|,
7t (3.53)

[ &
1|7

gl S|

Note that smaller the value of the ||T'||, faster the convergence of iterative methods.
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Example 3.41 Consider the following linear system of equations

4dr, — Tra + Tz = 12
—x1 + 323 + 3 = 1
1 + To + 53"3 = 14

(a) Show that both iterative methods (Jacobi and Gauss-Seidel) will converge by
using | T < 1.

(b) Find second approzimation x\2) when the initial solution is x\0) = [4,3,-3]".

(¢) Compute the error bounds for your approrimations.

(d) How many iterations needed to get an accuracy within 10~

Solution. From (53.46), we have

4 -1 1 0 0 0 g —1 1 4 0 0
A = -1 31 |=1-1007]|+|0 01 |{+]0320
1 1 5 : kB 0 0 0 0 0 5

= L+U+D.

Jacobi Method

(a) Since the Jacobi iteration matriz is defined as

Ty = DY L+ U),
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and by using the given information, we have

Then the lo, norm of the matriz T is

1
(Z 0 0) 0 —1
1
0 3 0 —1 0
1 1 1
\ 0 0 =
||T,/||oo=max{4,3,5

2 2 2
T3a-a<tL

3

Thus the Jacobi method will converge for the given linear system.

(b) The Jacobi method for the given system is

System of Linear Equations

(k+1)  _
.’L'l —

S| = W =

(k+1)
)

(k+1)
ZIq —

W | =

12

R |
=} argk) — a:lgk)-
—14 - ng) - mék)-

1 1
=1
1
¥ 3
5 0
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Starting with initial approximation a:&o)

first and the second approximations as

= 4,:1:%0) = 3,:1:;(30) = —3, and for k = 0,1, we obtain the

xD = [4.5,2.6667, —4.2]7 and x¥ = [4.7167,3.2333, —4.2333]".

(¢) Using the error bound formula (3.53), we obtain

4.5 4
2/3)? 4
|x —x@)|| < 1( /2)/3 2.6667 | — 3 < 5(1.2) =1.61
N —4.2 -3

(d) To find the number of iterations, we use the formula (3.53) as

||T.1||,c 1 0 -4
Ix —xB|| L 01D (00| < 1074,
| <= |
It gives
(2/3)* 4 A (U
A B | ¢ 2 =

Taking In on both sides, we obtain

1 —4
kln(2/3) < In (O—) , gives k> 258789, or k=26,

3.6

which is the required number of iterations.
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Gauss-Seidel Method

(a) Since the Gauss-Seidel iteration matriz is defined as
Te =—(D+ L)™'V,

and by using the given information, we have

(i 00\(0—11\ (0 3—1\
TG=—%%0 001=01—12—%
ok BV Y e g &,
Then the l, norm of the matriz T¢ is
||TG”Oo=max{§,f—2,é—(2)}=%<1.

Thus the Gauss-Seidel method will converge for the given linear system.
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(b) The Gauss-Seidel method for the given system is

; 1
:I:EIC_HJ = —|12 + :.':ék) — :r%k)]
4 I K
. 1r "
:rékﬂj = -1 ) :rgkﬂj| — :r:gk)}
2L
k+1) 17 (k+1) (k+1)
Tq = 5l- 12 — @ — Ty ]
Starting with initial approzimation m&nj = ¥ ﬂjém = 3,:1:;[3“} = —3, and for k = 0,1, we obtain the

first and the second approrimations as
xV) = [4.5,2.8333, —4.2667]T and x@ = [4.775,3.3472, —4.4244].

(¢) Using the error bound formula (3.53), we obtain

4.5 4
12y 1
Ix —x@|| < 1( fl)/g 28333 | — | 3 ||| < 5(1.2667) = 0.6334.
- —4.2667 -3

(d) To find the number of iterations, we use the formula (3.53) as

1T,

Ix —x®)|| < 1xD — x| <1074
e == Ty |
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It gives
10~
2.5334

(1/2)*
1/2

(1.2667) <107, or (1/2)F <
Taking In on both sides, we obtain

10714
2.5334

kln(1/2) <In ( ) . gqiwes k>14.6084 or k=15,

which is the required number of iterations.

Remark

Since |Tqlle < |Th|lec, which shows that Gauss-Seidel method will converge faster than Jacobi
method for the given linear system. .
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3.7 Errors in Solving Linear Systems

ar

if x* is an approximate solution of the given system Ax = b, we compute a vector

r =b — Ax", which is called the residual vector and can be easily calculated.

_ . lefl _ [lb—Ax*]| : ;
The quantity b = B called the relative residual.

The smallness of the residual then provides a measure of the goodness of the approximate solution
x*. If every component of vector r vanishes, then x* is the exact solution. If x* is a good
approximation then we would expect each component of r to be small, at least in a relative sense.

For example, the following linear system

Ty + 219 = 3
1.000l1z7y + 2z, = 3.0001

has the exact solution x = [1, l}T but has a poor approximate solution x* = [3,(}]11. To see hos
good this solution is, we compute the residual, r = [0, —0.0002]7, and so |r|| = 0.0002. Althoug
the norm of the residual vector is small, the approximate solution x* = [3,0]? is obviously quit
poor; in fact ||x — x*|| = 2.

Intuitively it would seem reasonable to assume that when | r|| is small for a given vector norm, then

the error ||x — x*|| would be small as well. In fact this is true for some systems. However, there are
systems of equations which do not satisfy this property. Such systems are said to be ill-conditioned.
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3.7.1 Conditioning of Linear Systems

These are systems in which small changes in the coefficients of the system

lead to large changes in the solution. For example,

r + TIa = 2
r1 + 1.0lze = 201

The exact solution is easily verified to be 1 = x3 = 1. On the other hand, the system

Ty + a2 = 2
1.00lxy + z2 = 2.01

has the solution 1 = 10,22 = —8. Thus change of 1 percent in the coefficients has changed the
solution by a factor of 10. If in the above given system, we substitute 1 = 10, x2 = 8, we find
that the residual are ri = 0,79 = 0.09, so that this solution looks a reasonable although it is
grossly in error. In practical problems we can expect the coefficients in the system to be subject

to small errors, either because of round-off or because of physical measurement. If the system is
ill-conditioned.

We have seen that for ill-conditioned systems the residual is not necessarily a good measure of the
accuracy of a solution. How then can we tell when a system is ill-conditioned 7 In the following we
discuss the some possible indicators of ill-conditioned system.
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Definition 3.25 (Condition Number of a Matrix)

The number ||A||| A=Y|| is called the condition number of a nonsingular matriz A and is denoted by
K(A), that is
cond(A) = K(A) = ||A||||A7. (3.55)

Note that the condition number K(A) for A depends on the matrix norm used and can, for some
matrices, vary considerably as the matrix norm is changed. Since

1= |[I]| = [ AA7Y] < Al A7H = K(4),

therefore, the condition number is always in the range 1 < K(A) < oo regardless of any natural
norm. The lower limit is attained for identity matrices and K(A) = oo if A is singular. So the
matrix A is well-behaved(or well-conditioned) if K (A) is close to 1 and is increasingly ill-conditioned
when K (A) is significantly greater than 1, that is, K(A) — oc.

Example 3.44 Compute the condition number of the following matriz using the ls-norm

2 o=l 0
A= 2 —4 -1
— 0 2
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Solution. Since the condition number of a matriz is defined as
K(A) = || Allso]| A oo

First we calculate the inverse of the given matrix which is

fiE B K

13 13 13
A=t = _3_ __4_ _E
I3 13 13

\ & L &
13 13 13 /
Now we calculate the l-norm of both the matrices A and A~'. Since the l-norm of a matriz is

the mazimum of the absolute row sums, we have
|Alloo = maz{[2| + | — 1| +10], 2] + | — 4]+ | = 1, | = 1| + [0 + |2} = 7,

and
b = 5+ 521+ [ ol Sl + o

which gives
11
Ao = =.
Therefore,

y il
KMJ=WﬂwW4Wm=4ﬂ(ﬁ>z59%L

Depending on the application, we might consider this number to be reasonably small and conclude
that the given matriz A is reasonably well-conditioned. °
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Some matrices are notoriously ill-conditioned. For example, consider the 4 x 4 Hilbert matrix
o 2

1 L |
(1 553
] S S
2315
H =

1N T T |
31556
L Jdr I X
\2567)

The inverse of the matrix H can be obtained as

16 —120 240 —140
—-120 1200 -2700 1680
240 —-2700 6480 —4200
—140 1680 —4200 2800

Bt

Then the condition number of the Hilbert matrix is
K(H) = || H||loo||H ™| 0o = (2.0833)(13620) ~ 28375,

which is quite large. Note that the condition number of Hilbert matrices increase rapidly as the
size of the matrices increases. Therefore, large Hilbert matrices are considered to be extremely
ill-conditioned.
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Theorem 3.18 (Error in Linear Systems)

Suppose that x* is an approximation to the solution x of the linear system Ax = b and A is a
nonsingular matriz and r is the residual vector for x*. Then for any natural norm, the error is

Ix —x*|| < [e]l) A7 (3.56)
and the relative error is
% < K(A)H%H, provided x # 0, b # 0. (3.57)

Proof. Since r = b — Ax" and A is nonsingular, then
Ax— Ax*=H —(b—r) =%,

which implies that
Alx—x® =1, or x—x'=A""r (3.58)

Taking norm on both side, gives
e —x*|| = A7 || < |A7Hfle-

Moreover, since b = Ax, then

b

bl < [A[llIx]l,  or x| = 7=
bl < {lA] kx| Il =177
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Hence

e —x*|| _ A7 el _ oy Dl
< < K(A)—.
(3] bl /1A (il
The inequalities (3.56) and (3.57) imply that the quantities ||A~!|| and K(A) can be used to give
an indication of the connection between the residual vector and the accuracy of the approximation.
If the quantity K(A) ~ 1, the relative error will be fairly close to the relative residual. But if

K(A) >> 1, then the relative error could be many times larger than the relative residual. .

Example 3.47 Consider a following linear system

1 -+ o x3 = il
r1 + 2z — 2x3 = 0
—2r1 + a2 + x3 = -—1

(a) Discuss the ill-conditioning of the given linear system.

(b) If x* = [2.01,1.01,1.98]7 be an approzimate solution of the given system, then find the residual
vector r and its norm ||r| -

(c) Estimate the relative error using (3.57).

(d) Use the simple Gaussian elimination method to find approximate error using (3.58).
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Solution. (a) Given the matriz

1 -1
A= I 2 -2 1,
-2 1 1
and whose inverse can be computed as
2 -1 0
A'=1] 15 -05 05
25 =15 0.5

Then the l..-norm of both matrices are
|A|looc =5 and ||A7Y s = 4.5.

Using the values of both matrices norms, we can find the value of the condition number of A as
follows:

K(A) = |Alloo A oo = 22.5 >> 1,

which shows that the matriz is ill-conditioned. Thus the given system is ill-conditioned.
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(b) The residual vector can be calculated as

1 1 1 -1 2.0 —0.04
r=b-Ax"=| 0 — 1 2 -2 .01 | = —0.07 |.

—1 -2 1 1 1.98 0.03

and it gives
|r|s = 0.07
(¢c) From (3.57), we have
|x — x*| il
< K(A)—.
x| b

By using above parts (a) and (b) and the value |b|| = 1, we obtain

e = o (99.5)8097) _ 1 575
x| L
(d) To solve the linear system Ae =r, where
1 1 -1 —0.04
A= 1 2 -2 and r= | —0.07
-2 1 1 0.03
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and e = x — x*. Writing the above system in the augmented matrixz form

1 3 =1, ¢ <004
1 3 =8 | «f0F
-2 1 1 : 003

After applying forward elimination step of the simple Gauss elimination method, we obtain

1 1 ~1 & ~0.04
01 -1 : —0.03
00 2 : 0.04

Now by using the backward substitution, we obtain the solution
e* = [-0.01,—0.01,0.02]7,

which is the required approximation of the exact error. »
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