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2.1 Introduction

I. A nonlinear equation in this chapter may be considered any one of the following types:

1. An equation may be an algebraic equation (a polynomial equation of degree n)

AnZ" + Oy 1Z™ -+ ayz+ag=0, a8, #0,
where a,, 8n-1..

n>l,
...a1 and ag are constants,

For example, Z+bz+6=0; a°=2z+1; sW+zt+1=0.

2. The power of the unknown variable (not a positive integer number)
. ol o L

For example, ' 42r=1 JVoe+z=0; 23 +=+4=0.
-

3. An equation may be a transcendental equation, the equation which involves the trigopnometric

functions, exponential functions and logarithmic functions. For example, all the following
transcendental equations are nonlinear

r = ros(x); e+ —10=10; r+Inx=10.

Definition 2.1 (Root of an Nonlinear Equation)

Assume that f(x) is a continuous function. An number « for which f(a) = 0 is called a root of the
equation f(x) =0 or a zero of the function f(x). o
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2.2 Method of Bisection

— This is one of the simplest iterative technique for determining roots of f(z) = 0

— we begin by supposing f(x) is a continuous function defined on the interval [a, b] such that

f(a).f(b) <0.

The implication is that one of the values is negative and the other is positive.

y=Hx)

Therefore the root must lies between a and b (by Intermediate Value Theorem)
a+0b
() ?

— a new approximation to the root a be calculated as ¢ =
_ If f(e) = 0, then ¢ = « is the desired root,
— if not, then there are two possibilities.
+ Firstly, if f(a).f(c) < 0, then f(z) has a zero between point a and point c.
The process can then be repeated on the new interval [a, c|.
+ Secondly, if f(a).f(c) > 0 it follows that f(b).f(c) < 0 and, f(x) has zero
between point ¢ and point b and the process can be repeated with [c,b]

an + b?’l‘.
2 H

The iterative formula (2.2) is known as the bisection method.

n=>1. (2.2)

— and, in general ¢, =

— The process continue until the desired accuracy is achieved
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Procedure 2.1 (Bisection Method)

1. Establish an interval a < z < b such that f(a) and f(b) are of opposite sign, that is,
f(a).f(b) <O.

2. Choose an error tolerance (€ > 0) value for the function.

(an + bn) X

3. Compute a new approximation for the root: ¢, = 5

=128 000

4. Check tolerance. If |f(cn)| <€, use cn, n > 1 for desired root; otherwise continue.
5. Check, if f(ayn).f(cn) <0, then set b, = c,; otherwise set a, = c,.

6. Go back to step 3, and repeat the process.
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Example 2.1 Use the bisection method to find the approzmmation to the root of the equation
2° =21 + 1,

that is located in the interval [1.5,2.0] accurate to within 1072.

Solution. Since the given function f(x) = x®> —2x—1 is a polynomial function and so is continuous
on [1.5,2.0], starting with a; = 1.5 and by = 2, we compute:

B = LB fla1) = —0.625
b = 20:  f(b) =30,

and since f(1.5).f(2.0) < 0, so that a root of f(x) = 0 lies in the interval [1.5,2.0]. Using formula
(2.2) (when n = 1), we get:

a1+ b
2

o i= =1.75;  f(c1) = 0.859375.

Hence the function changes sign on |ay,ci] = [1.5,1.75]. To continue, we squeeze from right and
set aa = a1 and ba = ¢1. Then the midpoint is:

(12+b2
2

= 1.625; f(c2) = 0.041056.

o =

Continue in this way we obtain a sequence {ci.} of approzrimation shown by Table 2.1.

n Left Right Function Value
Endpoint a,, | Midpoint ¢, | Endpoint b,, flen)
01 1.500000 1.750000 2.000000 0.8593750
02 1.500000 1.625000 1.750000 0.0410156
03 1.500000 1.562500 1.625000 -0.3103027
04 1.562500 1.593750 1.625000 -0.1393127
05 1.593750 1.609375 1.625000 -0.0503273
06 1.609375 1.617188 1.625000 -0.0049520

We got the desired approximation to the root of the given equation is cg = 1.617188 =~ a after 6
iterations with accuracy € = 1072, )
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Theorem 2.1 (Bisection Convergence and Error Theorem)

Let f(x) be continuous function defined on the given initial interval [ag, bo] = [a,b] and suppose that
fla)f(b) < 0. Then bisection method (2.2) generates a sequence {cn}oo, approzimating o € (a,b)
with the property
bh—

2na’ n> 1. (2.3)

|0’-' - Cn| <

Moreover, to obtain accuracy of

|l —en| <¢,
(for e = 107%) it suffices to take

In {lﬂk(b — a)}

e
& In2 ’

(2.4)

where k is nonnegative integer.

Example 2.4 Find a bound for the number of iterations needed to achieve an approzimation with
accuracy 1071 to the solution of xe® = 1 lying in the interval [0.5,1] using the bisection method.

Find an approzimation to the root with this degree of accuracy.
Solution. Here a = 0.5, b= 1 and k = 1, then by using inequality (2.4), we get

9 In[10'(1 — 0.5)]
- In2

~ 2.3219.

So no more than three iterations are required to obtain an approzimation accurate to within 1071

The given function f(x) = xze® — 1 is continuous on [0.5,1.0], so starting with a1 = 0.5 and by = 1,
we compute:

ay

b =

0.5: fla1) = —0.1756,
1:  f(b) =1.7183,
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since f(0.5).f(1) < 0, so that a root of f(z) = 0 lies in the interval [0.5,1]. Using formula (2.2)
(when n = 1), we get:

8 = =075  f(c1) = 0.5878.

Hence the function changes sign on |ay,ci] = [0.5,0.75]. To continue, we squeeze from right and
set ag = a1 and by = ¢1. Then the bisection formula gives

= 0.625; Fle2)=0.1677.

asz+0b
g = ——— = 0.5625
2
the value of the third approxzimation which is accurate to within 1071, °

Example 2.5 Use the bisection method to compute the first three approrimate values for v/18.
Also, compute an error bound and absolute error for your approrimation.

Solution. Consider

z=v18=18)Y4, o z'-18=0.

Choose the interval [2,2.5] on which the function f(z) = x* — 18 is continuous and the function
f(x) satisfies the sign property, that is

F(2).£(2.5) = (—2)(21.0625) = —42.125 < 0.

Hence root o = /18 = 2.0598 € [2,2.5] and we compute its first approzimate value by using formula
(2.2) (when n =1) as follows:

_2.0+25

e =5 =22500 and [(225)=7.628.
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Since the function f(x) changes sign on [2.0,2.25]. To continue, we squeeze from right and use
formula (2.2) again to get the following second approzimate value of the root a as:

_ 2.0+225

c2 =2.1250; and f(2.1250) = 2.3909.

Then continue in the similar way, the third approximate value of the root a is cg = 2.0625 with
f(2.0625) = 0.0957. Note that the value of the function at each new approximate value is decreasing

which shows that the approzimate values are coming closer to the root a. Now to compute the error
bound for the approximation we use the formula (2.3) and get

2.5.—2.0

o — 5] < =3 = 0.0625,

which is the possible maximum error in our approximation and
|E| = |2.0598 — 2.0625| = 0.0027,

be the absolute error in the approzimation. °
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2.3 Fixed-Point Method

The basic idea of this method which is also called successive approximation method or function iteration,
is to rearrange the original equation

f(z) =0, (2.5)

into an equivalent expression of the form

e=mgle) (2.6)

Any solution of (2.6) is called a fixed-point for the iteration function g(x) and hence a root of (2.5).

y=alx)

Figure 2.5: Graphical Solution of Fixed-Point Method.
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Definition 2.2 (Fixed-Point of a Function)

A fized-point of a function g(z) is a real number o such that o = g(a). For example, © = 2 is a

2
e — 4
fized-point of the function g(x) = 3127314_8 because ¢g(2) = 2. .

Definition 2.3 (Fixed-Point Method)
The iteration defined in the following
Lt =050 ) n=2012..., (2.7)

is called the fized-point method or the fized-point iteration. ®

Procedure 2.2 (Fixed-Point Method)

1. Choose an initial approximation xo such that xq € [a,b].
Choose a convergence parameter € > 0.

Compute new approrimation Tpew by using the iterative formula (2.7).

> o

Check, if |Tnew — xo| < € then Tpeyw is the desire approximate root; otherwise set xo = Tnew
and go to step 3.
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Example 2.6 Consider the nonlinear equation x* = 2x-+1 which has a root in the interval [1.5,2.0]
using fired-point method with xo = 1.5, take three different rearrangements for the equation.

Solution. Let us consider the three possible rearrangement of the given equation as follows:

b
(?') In+l = 5‘1(3371) = M: n= 0'.' ]-'.' 2': i |

(33) Tn+l = 92(3:?1) - ﬁ: n = U': ]-'.! 27 L ]

[(2zn +1
(iii) Tps1 = g3(zn) = M; n=0,1,2,...,
In

then the numerical results for the corresponding iterations, starting with the initial approzimation
xg = 1.5 with accuracy 5 x 1072, are given in Table 2.3. We note that the first two considered

n | Tar1 =091(Tn) | Tat1=g2(Tn) Znt+1 = 93(zn)
= (23 —1)/2 =1/(z2 -2) | =2z, +1)/z,

00 1.500000 1.500000 1.500000

01 1.187500 4.000000 1.632993

02 0.337280 0.071429 1.616284

03 -0.480816 -0.501279

04 -0.555579 -0.571847

05 -0.585745 -0.597731

sequences diverge and the last one converges. This erample asks the need for a mathematical
analysis of the method. The following theorem gives sufficient conditions for the convergence of the
fized-point iteration. .
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Theorem 2.2 (Fixed-Point Theorem)

If g is continuously differentiable on the interval [a,b] and g(x) € [a,b] for all x € [a,b], then
(a) g has at-least one fived-point in the given interval [a,b].

Moreover, if the derivative ¢'(x) of the function g(z) exists on an interval [a,b] which contains the
starting value xg, with

g (z)| <k < 1; for all x € [a,b)]. (2.8)
Then:

(b) The sequence (2.7) will converge to the attractive (unique) fived-point « in [a, b].

(¢) The iteration (2.7) will converge to o for any initial approximation.

(d) We have the error estimate

n

la — zp| < — k|x1 — xo|, for all n > 1. (2.9)
(e) The limit holds:
fijy & F0FL J (a). (2.10)
n—oo  (y — Tn
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Proof

(a) Suppose g is continuous on [a,b] and g(z) € [a,b]. We need to show it has a fizved point. If
g(a) = a and g(b) = b, then the function g has a fized-point at the endpoints. Suppose that it
is not happening, that is, g(a) # a and g(b) # b and define a function f(x) = g(x) — x which
is continuous on [a,b]. Then f(z) has a zero in [a,b] if and only if g(x) has a fized point in
[a,b] but

fla) = g(a) —a >0,

since g(a) is in [a,b] and hence cannot be smaller than a, and we have assumed that g(a) is
not equal to a. Similarly,

f(b)=g(b)—b<0,

and so by the Intermediate Value Theorem there is a a in the interval (a, b) such that f(a) = 0,
which implies that o = g(«). Thus the function g(x) has at least one fized-point in [a,b]. This
proves (a).
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(b) Suppose now that (2.8) holds, and o and § are two fived-points of the function g in |a,b].
Then we have

a = g(a) and B = g(B).

In addition, by the Mean Value Theorem, we have that for any two points o and 3 in [a,b],
there exits a number n such that

oo — B| = g(e) — g(B)| = lg'(n) | — B| < ko — B,

where 1 € (a,b). Thus
(1-k)|la—p|<0.

Since k < 1, we must have o = 3; and thus, the function g has a unique fized-point o in the
interval [a,b]. This proves (b).
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(¢) For the convergence, consider the iteration
T =glTn-1), for all n>12...,
and the definition of the fized-point, that is
a = g(a).
If we subtract last two equations and take the absolute values, we get

la —zn| = |g(@) — g(zn-1)| < kla —zp-1].

The recursion can be solved readily to get
lo —zp| <klo—zp_1| <Kla—z -1 —2| <Ko — x|,
from which it follows that
as n—oo, k'—=0, (since k<1,

therefore, x,, — «. Hence the iteration converges. This proves (c).

(2.11)
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(d) Since we note that

la—xo| = |a—z1+ 21 —20| < | — 21| + |21 — 20|

IN

|g(@) — g(@0)| + |z1 — 20| < k|a — x0| + |21 — T0|,

or
(1 —k)|a —=zo| < |21 — 20,

from which it follows that

la — x| < |z1 — zo|.

1
1-k
From (2.11), we can write above equation as follows

n

k
1—-k

|Ot - xnl < |$1 —=rol,

which proves (d).
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(e) Finally, by subtracting iteration xn41 = g(zn) and a = g(a), we have

O —Tpyl = g((l’) - g(:}:n) — 9;(7?(3"))(0-‘ - ﬂjﬂ):‘

which implies that

O — Tl o
o (n(z)),

and by taking limits, we have

lim 2" — Jim g/(n(2)) = ¢'(a),

n—oe  (y — I'p n—+oo

since n(x) — « is forced by the convergence of xy to a. This proves (e). .
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Example 2.6

Now we come back to our previous Example 2.6 and discuss that why the first two rearrangements
we considered, do not converge but on the other hand, last sequence has a fixed-point and converge.
Since, we observe that f(1.5).f(2) < 0, then the solution we seek is in the interval [1.5,2].

73

-1
(i) For g,(x) = , we have ¢} (z) = 22, which is greater than unity throughout the interval

[1.5,2]. So by Fixed-Point Theorem 2.2 this iteration will fail to converge.

1 —2x
(ii) For go(x) = g e have gh(z) = ﬁ and |g5(1.5)] > 1, so from Fixed-Point
Theorem 2.2 this iteration will fail to converge.

2z +1

(#i1) For gs(z) = Sfi3 , we have gi(z) = 27%2/2\/2x +1 < 1, for all x in the given interval
[1.5,2]. Also, g3 is decreasing function of z, and g3(1.5) = 1.63299 and g3(2) = 1.58114
both lie in the interval [1.5,2]. Thus gs(z) € [1.5,2], for all x € [1.5,2], so from Fixed-Point

Theorem 2.2 the iteration will converge, see Figure 2.6. .
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Note 2.1 From (2.9) Note that the rate of convergence of the fived-point method depends on the

factor : the smaller the value of k, then faster the convergence. The convergence may be

(1-k)’
very slow if the value of k is very close to 1. .

Note 2.2 Assume that g(x) and ¢'(x) are continuous functions of T for some open interval I, with
the fized-point o« contained in this interval. Moreover assume that

ld'(a)] <1, for ael,

then, there exists an interval [a,b], around the solution o for which all the conditions of Theorem 2.2
are satisfied. But if

ld' ()] > 1, for ael,
then the sequence (2.7) will not converge to a.. In this case « s called a repulsive fived-point. If

ld'(a)] =0, for ael,
then the sequence (2.7) converges very fast to the root a while if
ld' ()] > 1, for ael,

then the convergence the sequence (2.7)is not guaranteed and if the convergence happened, it would
be very slow. Thus to get the faster convergence, the value of |g'(a)| should be equal to zero or very
close to zero. .
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2 _ et 2
Example 2.8 Find an interval [a,b] on which fized-point problem x = o . will converges.

Estimate the number of iterations n within accuracy 107,

- , 2—e® 42 ,
Solution. Since x = % can be written as

e —z?2+3zx—-2=0,

and we observe that f(0)f(1) = (—1)(e') < 0, then the solution we seek is in the interval [0, 1].

9 gl 2r — €*

Borgle==—g— v nehameg e} =5

< 1, for all x in the given interval [0,1]. Also,

g is decreasing function of x and g(0) = 0.3333 and g(1) = ? = 0.0939 both lie in the interval

[0,1]. Thus g(z) € [0,1], for all z € [0,1], so from fized-point theorem the g(z) has a unique
fized-point in [0,1]. Taking xo = 0.5, we have

2 — %0 + z2

= 0.2004.
3

ry = g(x0) =

Also, we have
ki1 =19'(0)| = 0.3333 and ky = |g'(1)| = 0.2394,

which give k = max{ky,ko} = 0.3333. Thus the error estimate (2.9) within the accuracy 107° is

o : (0.3333)" =
—zn| <1077, —————(0.2996) < 107",
o= #n| < gives 1703333 P
and by solving this inequality, we obtain n > 9.7507. So we need ten approximations to get the
desired accuracy for the given problem. .
Solution of Nonlinear Equations Dr. Mohamed Abdelwahed

20



Example 2.12 Show that the fized point form of the equation x = N'/3 can be written as x = Na 2
and the associated iterative scheme

=9
Tny1 = Nz_ %, n=>0

¥

will not successful (diverge) in finding the 3rd root of the positive number N.
Solution. Given x = N3 and it can be written as

22—-N=0 or mzizzN:r_z.
T

It gives the iterative scheme
T = No. > =glza), n > 0.

From this, we have
g(z) = Na 2 and g (z) = —2Nz 3.

Since a = x = N3, therefore
d(a)=—-2Na™? and ¢ (NV3) = _2N(NY3)™3 = aNN~1=_2

Thus
g (N3 =]-2[=2>1,

which shows the divergence. .
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Example 2.16 One of the possible rearrangement of the nonlinear equation e* = x + 2, which has
root in [1,2] is

Tag1 = g(2s) =1n(zs +2); =i i,
(a) Show that g(z) has a unique fized-point in [1,2].
(b) Use fized-point iteration formula (2.7) to compute approzimation x3, using xg = 1.5.
(¢) Compute an error estimate |a — 3| for your approzimation.
(d) Determine the number of iterations needed to achieve an approzimation with accuracy 102

to the solution of g(x) = In(x + 2) lying in the interval [1,2] by using the fized-point iteration
method.

Solution. Since, we observe that f(1).f(2) < 0, then the solution we seek is in the interval [1,2].
(a) For g(z) = In(z+2), we have ¢'(z) = 1/(z+2) < 1, for all x in the given interval [1,2]. Also,
g is increasing function of x, and g(1) = In(3) = 1.0986123 and g(2) = In(4) = 1.3862944
both lie in the interval [1,2]. Thus g(x) € [1,2], for all x € [1,2], so from fized-point theorem

the g(z) has a unique fived-point, see Figure 2.8.

(b) using the given initial approzimation xo = 1.5, we have the other approzimations as

z1 = g(xo) = 1.252763, z2 = g(x1) = 1.179505, z3 = g(x2) = 1.156725.

(¢) Since a =1 and b = 2, then the value of k can be found as follows
k1=|d(1)|=11/3| =0.333 and k2= |g'(2)| = |1/4]| = 0.25,
which give k = max{ky,ks} = 0.333. Thus using the error formula (2.9), gives

p— (0.333)3

1.252763 — 1.5| = 0.013687.
—1-— 0.333| |

Solution of Nonlinear Equations Dr. Mohamed Abdelwahed

22



(d) From the error bound formula (2.9), we have

T klil‘l = l'ol < 10_2.

By using above parts (b) and (c), we have

(0.333)"

1.252763 —1.5] < 1074
1 03332 5 <

Solving this inequality, we obtain
nIn(0.333) < In(0.02698), gives n > 3.28539.

So we need four approzimations to get the desired accuracy for the given problem. .
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2.4 Newton’s Method

This is one of the most popular and powerful iterative method for finding roots of the nonlinear equatior f(x)=0

This method is also called the Newton-Raphson method.

yix)

__/‘LJ 5

Figure 2.9: Graphical Solution of Newton’s Method.

The Newton’s method consists geometrically of expanding the tangent line at a current point x; until it crosses zero,

then setting the next guess x; 1 to the abscissa of that zero crossing, see Figure 2.9.
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description of the Newton’s method.

Let f € C?%a,b] and let x,, be the nth approximation to the root o such that f’(z,) # 0 and |a —x|
is small. Consider the first Taylor polynomial for f(z) expanded about x,, so we have

(x — zn)?

[ (n(a)), (2.12)

f(ﬂ‘) = f(xn) &3 ('T - mn)f’(:rn) I

where 7(z) lies between = and z,,. Since f(a) = 0, then (2.12), with = «, gives

& — X 2
F(0) = 0= flan) + (o — 2 () + E20 ).

Since |a — x,,| is small, then we neglect the term involving (o — x,,)? and so

0 & f(zn) + (o — @n) f'(2n).

Solving for a, we get

f,(’““”) , (2.13)
f'(xn)

which should be better approximation to a than is x,. We call this approximation as @41, then
we get

oL, —

Tpil = Ty — J{,((in)) Fla) 20, for all n > 0. (2.14)

The iterative method (2.14) is called the Newton’s method.
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Procedure 2.3 (Newton’s Method)
1. Find the initial approzimation xq for the root by sketching the graph of the function.

2. Ewvaluate function f(x) and the derivative f'(x) at initial approzimation.

Check: if f(zo) = 0 then xq is the desire approzimation to a root. But if f'(x¢) = 0, then go
back to step 1 to choose new approximation.

Establish Tolerance (e > 0) value for the function.

B 8

Compute new approzimation for the root by using the iterative formula (2.14).

<

Check Tolerance. If |f(zn)| < €, for n > 0, then end; otherwise, go back to step 4, and repeat
the process.
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Example 2.17 Use the Newton’s method to find the root of x3 = 2x + 1 that is located in the
interval [1.5,2.0] accurate to 1072, take an initial approximation xo = 1.5.

Solution. Given f(z) = 2® — 2o — 1 and so f'(x) = 322 — 2. Now evaluating f(x) and f'(z) at the
give approzimation xg = 1.5, gives

Fgi=:1.3; f(1.5) = —0.625, F/(1.5) = 4.750.
Using the Newton’s iterative formula (2.14), we get

@) _ | (£0.625)
07 Flze) 4.75

TH == = 1.631579.

Now evaluating f(x) and f'(x) at the new approzimation x1, gives
r1 = 1.631579, f(1.631579) = 0.0801869, f/(1.631579) = 5.9861501.

Using the iterative formula (2.14) again to get other new approximation. The successive iterates
were shown in the Table 2.4. Just after the third iterations the required root is approximated to

Table 2.4: Solution of #* = 2z + 1 by Newton’s method
n i fzn) Flzn) Error x — z,
00 | 1.500000 | -0.625000 | 4.750000 0.1180339
01 | 1.631579 | 0.0801869 | 5.9861501 | -0.0135451

02 | 1.618184 | 0.000878 5.855558 | -0.0001501

03 | 1.618034 | 0.00000007 | 5.854102 | -0.0000001

be x3 = 1.618034 and the functional value is reduced to 6.57 x 1078, Since the ezact solution is
1.6180339, so the actual error is 1 x 1077. We see that the convergence is quite faster than the
methods considered previously. °
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Example 2.21 Successive approximations x,, to the desired root are generated by the scheme

14822
4+ z3°

R e n = 0.

Find f(xz,) and f'(z,) and then use the Newton’s method to find the approximation of the root
accurate to 1072, starting with xo = 0.5.

Solution. Given

1+ 322
= gl = g(z),
and
(2) 14 322 gt — 32 +4x—1
r—glzx)=x— =
g 4+ 3 4+ 3
Since

f(@) =a—g(x) =0,
therefore, we have
f(xn) =z — 32 + 42, —1 and f'(z,) = 4a3 — 62, +4.
Using these functions values in the Newton’s iterative formula (2.14), we have (see Figure 2.10),

rd — 322 + 4z, — 1
43",2 s 63371 +4

Ipyl = T —

Finding the first approximation of the root using the initial approximation xg = 0.5, we get

4 2 5
Ty —3xf+4zp— 1 . 0.3125
r1 = In — = & —= — 2 ]_ .
I i) 4333—63304—4 0.5 15 0.2917
Similarly, the other approxrimations can be obtained as
(—0.0813) (—0.0029
rg = 0.2917 — ————— = 0.3263;: =3 = 0.3263 — ———— = 0.3276.
z2 = 0.2917 53101 0.3263: a3 = 0.3263 51312 0.3276
Notice that |x3 — x2| = 0.0013. .
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Lemma 2.1 Assume that f € C*[a,b] and there exists a number a € [a,b], where f(a) = 0. If
f'(e) # 0, then there exists a number § > 0 such that the sequence {x,}52, defined by the iteration

f(zn)

Tng1 = g(@n) =¥n — 55—~ for n=0,1,..., (2:17)
f'(xn)
will converges to « for any initial approzimation xzg € [o — 0,0 — 6. .
The Newton’s method uses the iteration function
f(z)
g(x) =z — =, (2.18)
f(z)

is called the Newton’s iteration function. Since f(a) = 0, it is easy to see that g(a) = a. Thus
the Newton’s iteration for finding the root of the equation f(x) = 0 is accomplished by finding a

fixed-point of the equation g(z) = .
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2.5 Secant Method

Since we known the main obstacle to using the Newton’s method is that it may be difficult or impos-
sible to differentiate the function f(z). The calculation of f'(x,) may be avoided by approximating
the slope of the tangent at & = z,, by that of the chord joining the two points (z,-1, f(z,—1)) and
(@, f(zy)), see Figure 2.14.

y=ix).

Figure 2.14: Graphical Solution of Secant Method.

The slope of the chord (or secant) is

(n) — f(Tn-1) _

Ip — Tp—1

Flan)~ L (2.19)

Then by using this approximation of the derivative of the function in the Newton'’s iterative formula
(2.14), we get

(zn — &n-1)f(2n) _ Tn-1f(Tn) — Tnf(Tn-1) n
f(:rn) - f(ﬂfn_l) - f(ﬂjn) = f(ﬂjn—l) : 2 1. (220)

In+l = Tp —
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Procedure 2.4 (Secant Method)
1. Choose the two initial approzimation xg and xy.
Check, if f(xg) = f(z1), go to step 1 otherwise, continue.

Establish Tolerance (e > 0) value for the function.

Compute new approximation for the root by using the iterative formula (2.20).

Check tolerance. If |xn, — xn—1| < €, for n > 1, then end; otherwise, go back to step 4, and
repeat the process.

<
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Solution of Nonlinear Equations

Example 2.27 Use the secant method to find the approximate root of the following equation within
the accuracy 1072 take xo = 1.5 and z1 = 2.0 as starting values

3 =2z +1.

Solution. Since f(x) = 2® — 2z — 1 and

o = 15,  f(zo) = —0.625,
xry = 2.0, f(ﬂ‘l):30,

therefore, we see that f(xo) # f(x1). Hence, one can use the iterative formula (2.20), to get new
approzimation:

zof(x1) —x1f(zo)  (1.5)(3.0) — (2.[})(—[}.625).

o

f@) —fzo) 30— (-0.62)
Hence xo = 1.586207 and f(x2) = —0.18434. Similar way, we can find the other possible approxi-
mation of the root. A summary of the calculations is given in Table 2.5. .

Table 2.5: Solution of 2% = 2 + 1 by secant method
n Fpe i s i ¥ Fltnit)
01 | 1.500000 | 2.000000 | 1.586207 | -0.1814342
02 | 2.000000 | 1.586207 | 1.609805 | -0.0478446
03 | 1.586207 | 1.609805 | 1.618257 | 0.0013040
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Example 2.26 Show that the secant method for finding approzimation of the square root of a
positive number N is

nwn— N
Tl = % n>1. (2.22)

Carry out the first three approzimations for the square root of 9, using ro = 2,71 = 2.5 and also
compute absolute error.

Solution. We shall compute x = N'/2 by finding a positive root for the nonlinear equation
z2 - N=0,

where N > 0 is the number whose root is to be found. If f(z) =0, then x = a = NY2 is the exact
zero of the function

f(z) = 2® — N.

Since the secant formula is

(:]37; — xn—'l)f(x”) n > 1.

f(@n) — f(#n-1) 1 -

Intl — Tn —

Hence, assuming the initial estimates to the root, say, v = xo,x = w1, and by using the secant
iterative formula, we have

(x1—m0)(@} —N)  zwo+ N

Ty =11 — = ;
2T @ -N)—@@F-N)  (z1+0)
In general, we have
i :—xnmn_1+N n=1,2
“n+1 il ) g &lgieisieiy

the secant formula for approzimation of the square root of number N. Now using this formula for
approximation of the square root of N = 9, taking xq = 2 and x1 = 2.5, we have

r9 = 3.1111, r3 = 2.9901, T4 = 2.9998.

Hence
Absolute Error = |9Y/2 — 24| = |3 — 2.9998| = 0.0002,
is the possible absolute error °
Solution of Nonlinear Equations Dr. Mohamed Abdelwahed

33



2.6 Multiplicity of a Root

So far we discussed about the function which has simple root. Now we will discuss about the
function which has multiple roots. A root is called a simple root if it is distinct, otherwise roots
that are of the same order of magnitude are called multiple.

Definition 2.4  (Order of a Root)

The equation f(x) = 0 has a root o of order m, if there exvists a continuous function h(x), and
f(x) can be expressed as the product

f(x) = (x — a)™h(x), where  h(a) # 0. (2.23)
So h(x) can be used to obtain the remaining roots of f(x) = 0. It is called polynomial deflation.

A root of order m = 1 is called a simple root and if m > 1 it is called multiple root. In particular,
a root of order m = 2 is sometimes called a double root, and so on.

Lemma 2.2 Assume that f(z) and its derivatives f'(z), f"(z).---, f™)(x) are defined and con-
tinuous on an interval about x = . Then f(x) =0 has a root o of order m if and only if

fl@)=f@)=f"e)=--=fm™V@)=0, f™(a)#0. (2.24)
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Example

For example, consider the function f(z) = 2% — 22 — 212 + 45, which has two roots; a simple root

at @ = —5 and a double root at @ = 3. This can be verified by considering the derivatives of the

function as follows:
(@) =32% — 2z — 21, f(z) =6z — 2.

At the value a = —5, we have f(5) = 0 and f/(5) = 64 # 0, so by (2.23), we see that m = 1. Hence
a = —b5 is a simple root of the function. For the value a = 3, we have

f@=0, f(3)=0 f'(3)=16+#0,

so that m = 2 by (2.24), hence a = 3 is a double root of the function. Note that this function f(x)
has the factorization and can be written in the form of (2.23) as (see Figure 2.18),

f(@) = (@ — 3)(x +5).
Example 2.29 Find the multiplicity of the root o = 1 of the equation rlnx = Inx.

Solution. From the given equation, we have

flz) = zlhz—Inz and  f(1)= 0,
Flz)y = ln:t:—l—l—l and  f'(1)= 0,
T

1 :
@) =~ and (1) # 0

Thus the multiplicity of the root o = 1 of the given equation is 2.
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Example 2.30 Consider the following two nonlinear equations

(1) ze” =0 (2) x’e® = 0.

(a) Find the Newton’s method for the solutions of the given equations.
(b) Explain why one of the sequences converges much faster than the other to the root a = 0.

Solution.
'n = n) — dn — - ! = 0,
({1) Tn1 = g1(xn) =2 fzn)  (1+m,) el
2 = 2
Toe™ Tn+T
n+l — In} = & — - - 3 » 2 0,
Tntl = 92(Tn) = Tn - G e = gy "
72 , r2 4 2z
(b) From the first sequence, we have gi(x) = m and g)(x) = (1+ :1:)2-
7 F 0
Thus |gi(a)| =|g1(0)] = ‘I‘ =0,

which shows that the first sequence converges to zero. Similarly, from the second sequence, we have

2 2
T4 x°+4xr + 2
g‘z(CC) — (2:_:1”) a’"d gg(T) — (2+T)2
2 )|
Thus / e —
$O)=|3| -3 <L

which shows that the second sequence is also converges to zero. Since the value of |g1(0)| is smaller

than |g5(0)|, therefore, the first sequence converges faster than the second one. IS
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Remark

Note that in the Example 2.30 the root @ = 0 is the simple root for the first equation because

fO)=0 and  f(0)=1#0,

and for the second equation it is a multiple root because

F0)=0 and  f/(0)=0.

Therefore, the Newton’s method converges very fast for the first equation and converges very slow
for the second equation. However, in some cases simple modifications can be made to the methods

to maintain the rate of convergence. Two such modified methods are considered here, called the
Newton modified methods.

First Newton’s Modified Method

If we wish to determine a root of known multiplicity m for the equation f(z) = 0, then the first
Newton’s modified method (also called the Schroeder’s method) may be used. It has the form

[ (zn)

Tpil = Ty — M=, =0 T B (2.25)
f'(xn)

Second Newton’s Modified Method

d(zn) _ @
) q(m)—f,(m). f(z) = (z — a)™h(z),

f(s":n)f’(mn)
[ (@n)]2 — [f(zn)][f*(zn)]’

T e

which gives T+l = Tn — e O T B
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2

&
Example 2.33 Show that the function f(x) = e* — g 1 has zero of multiplicity 3 at a = 0

and then, find the approrimate solution of the zero of the function with the help of the Newton’s
method, first and second modified Newton’s methods, by taking initial approximation xg = 1.5 within

an accuracy of 1074,

Solution. Since o =0 is a root of f(x),

172
i) = @—0p=ly f{l) =
flg) = @—m—1 F(0) =
fle) = &=1 70) =
f'(z) = e°, £(0)

0,

0,
0

140,

the function has zero of multiplicity 3. In Table 2.6 we showed the comparison of three methods. e

Newton’s Method | 1st. M.N. Method | 2nd. M.N. Method
n o T o
00 1.500000 1.500000 1.500000
01 1.067698 0.2030926 -0.297704
02 0.745468 3.482923e-03 -6.757677e-03
03 0.513126 1.010951e-06 -3.798399e-06
25 7.331582e-05
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2.7 Convergence of Iterative Methods

Definition 2.5 (Order of Convergence)

Suppose that the sequence {x,}2", converges to o, and let e, = o — xy, define the error of the nth
iterate. If two positive constants 8 # 0 and R > 0 exist, and

1 Ia =7 xn—i—l' g Ie'n+1|
e T B s Tea [ Py (2:27)

then the sequence is said to converge to a with order of convergence R. The number [3 is called the
asymptotic error constant. The cases R = 1,2 are given special consideration.

If R = 1, the convergence of the sequence {xn}o2, is called linear.

If R = 2, the convergence of the sequence {x,}52, is called quadratic.

n=—

If R is large, the sequence {z,} converges rapidly to «; that is, (2.27) implies that for large values
of n we have the approximation |e, 1| &~ Ble,|. For example, suppose that R = 2 and e, | ~ 1073;
then we could expect that |e,+1| = 8 X 107S. ®
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Example 2.34 Show that the following sequence

n=>0

?

i N
Intl = §$n 1+$_2 .

will converge quadratically to vV N.

Solution. Since the sequence

and o = N, then we have

LT+l — m

Thus

1§ given as

1 N
Ll — 53:71 1 e E

mﬂ.

= lﬂ?n(l—i—%)—\/ﬁ:%(mn—kﬂ—%/ﬁ)

2 i Tn

b2 | =

(==

2
1
o ) :g(mn_\/ﬁ)z-

2 ) 2
€nt+l = 5 €nsy O €Enil X €y,

‘T

which shows the quadratic convergence.
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Lemma 2.3 (Linear Convergence)

Let g is continuously differentiable on the interval [a,b] and suppose that g(xz) € [a,b] for all
x € [a,b]. Suppose that ¢ (x) is continuous on (a,b) with

Id(z)| < k<1; for all =z € (a,b).
If ¢ (a) # 0, then for any o € [a,b], the sequence zp41 = g(xn), for n >0, converges only linearly
to the unique fized-point cv in [a,b). ®
Example 2.36 Consider an iterative scheme
Tni1 = 0.4+, — 0.122, n > 0.

Will this scheme converge to the fived-point o = 27 If yes, find its rate of convergence.
Solution. Since
g(x) =044z —0.12%2 andg(2) =04+2—0.1(2)2 =2,
which shows that the scheme converges to a = 2. Also
g(x)=1—-02z, gives ¢g'(2)=1—-04=0.6#0.

Therefore, the scheme converges linearly.
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Lemma 2.4 (Quadratic Convergence)

Let o be a solution of the equation © = g(x). Suppose that ¢'(a) = 0 and g” is continuous on
an open interval (a,b) containing . Then there exists a & > 0 such that, for zo € [ — 6, + 8],
the sequence {x,}>2, defined by the iteration x,.1 = g(x,), for n > 0, converges at least
quadratically to a. °

Example 2.37 The iterative scheme
Tnt1 =2 — (14 a)z, + ax2, n >0,

converges to o = 1 for some values of a. Find the value of a for which the convergence is at least
quadratic.

Solution. Given
gx)=2—(1+a)z+ax? and g(1)=2—-(1+a)+a=1.
Thus, the given iterative scheme converges to 1. Also
g (z) = —(1+a)+ 2ax,

and so
¢d(1)=0=—(14+a)+2a, gives a=1.

Thus, the convergence of the given iterative scheme is at least quadratic for the value ofa =1. e
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Note 2.3 The sequence {x,}.°, defined by the iteration

n=0
Tnt+1 = g(zn), for n >0

converges only quadratically to o if

d(a)=0 but ¢'(a)#0.
and cubically (order three) to « if

g (a)=0 but ¢"(a)#0.
In the similar manner the higher order of convergence can be achieved.
Example 2.38 What is the order of convergence of the iteration

n(x; + 3k)

k>0, as it converges to the fired-point a = k.

Solution. T (3‘2 + 3k) :1‘.(:1"2 + 3k) 3(x% — k)z
Tpl = ——2 =77 — g(z,), which gives , r)=—-—>. {(z)=20

I . 3((%)2 - k)Q . I - 483:k(3:2 = k) . " . I
IR =L = @ gagr e (VB=0 et g"(VE) 20

Hence, the order of convergence for the given iteration is exactly cubic.
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Case 2.1 (Bisection Method)

Example 2.39 If « is the fived-point of the equation x = g(z) in [x.b]. Then show that rate of
convergence of the bisection method is linear.

Solution. Since the bisection iteration function is define in the interval [z,b], so by using the
bisection formula (2.2), we have

T+ b
2

1
g(x) = and g'(z) = 3.

So at x = a, we have
1
g(a)=35#0,

therefore, by the Lemma 2.3, the convergence is linear.
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Case 2.2 (Fixed-point Method)

The convergence rate of the fived-point iteration can be analyzed as follows. The general procedure
is given by
i = 9(Zn), B =01 (2.28)

Let x = « denote the solution to f(z) =0, so f(a) =0 and a = g(«a). Then

T+l — X =Epy1 = g(mn) —g(a), (229)

where eni1 denote the error of the (n+1)th iterate. Expressing g(«) in the Taylor series about xy,
gives:
g(a) =g(@n) + d(M(a—xn), an<n<a (2.30)

Solving (2.30) for g(x,) — g(a) and substituting into (2.29), we get
ent1 = g (n)en, (2.31)

or
lent1] = [g'(n)llen. (2.32)

Now suppose that |¢'(z)| < k < 1 for all values of x in an interval. If x1 is choose in this interval,
x2 will also be in the interval and the fired-point iteration method will converge, since

Entl| = |g'(m)] < 1. (2.33)

-1

Convergence is linear since e, is linearly dependent on e,. If |g'(n)| > 1, the procedure diverges.
If |d'(n)| < 1, but close to one, convergence is quite slow. ®
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Example 2.40 (a) Show that a =1 is a unique fized-point of

2 — 4z +7

9(x) = 1

(b) Find the rate of convergence of the sequence

‘T 4 ¥
Solution. (a) Firstly, we show that a = 1 is a fized-point of g(x) by showing that g(1) = 1 and it

happened because
1—-447

It is unique also because

2r — 4
d(zx)= T4 ., and |g'(1)|=05 < 1.

(b) To find the rate of convergence of the given sequence, we have

2
04— dx 2r — 4
o) = T and ) =20
4 4
Taking x = o = 1, gives
2—4 i
1) = —— =—=#0.

g(1)=— 57

Hence the rate of the convergence of the given sequence is linear. .
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Case 2.3 (Newton’s Method)

f(@)
f(@)

f
In+l =n — &7~ = g(mn)- r)=x —
+ F(zn) g(x)

i e F@)f(z) - fla)f'(x) _ fla)f" (=)

#iel = F@E @

Now we show that the Newton’s method is quadratically mnwmyeﬁt for the simple root. Let x = «
denote the solution to f(x) =0, so f(a) =0 and o = g(a). Since x,41 = g(x,), we can write

Tptl — O = €Epy1 = g(mn) - 9(0‘5), (235)

where e, denote the error of the nth iterate. Let us expand g(x,) as a Taylor series in terms of
(xy, — ) with the second derivative term as the remainder:

g(xn) = gla) + QI(Q)(QTH —a) + g”é??) (zn — (1')21 Tp <M< o
Since .
¢ (a) = % =0, because f(a) =0, we have
! i T
o) = 9(@) + L0, — 0. weget  enss = g(a) — glzn) =~ (en)?

This implies that each error is (in the limit) proportional to the square of the previous error, that
is, the Newton’s method is quadratically convergent.
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Example 2.42 If z = « is a simple root of f(x) = 0, then show that the rate of convergence of
the Newton’s method is at least quadratic.

Solution. Consider the Newton’s iteration function which is define as follows:

f(x)
fi(x)

Since « is a simple root of nonlinear equation f(x) =0, so

g(z) =z —

fl@)=0 and  f'(a) #0.
Thus taking derivative of g(x), we get

1 F@I@ — @ @) _ f@f @)
glz)=1 PP F@PF

At x = «, we know that f(a) =0 and f'(a) # 0, so at x = «, we get

o P@f ) — fe)f'(e)  fa)f"(a)
glap=1 PP P

Thus from Lemma 2.4, the rate of convergence of Newton’s method is at least quadratic.

=10.
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Example 2.44 If x = « is a root of multiplicity m of f(x) = 0, then show that the rate of conver-
gence of the Newton’s method is linear.

Solution. Consider the Newton’s iteration function which is define as follows:

W@
I =2= Fay

Since the function f(x) has multiple root, so

f(z) = (& — a)"h(z),

and its derivative is

f'(x) = m(z — &)™ h(z) + (x — )™k (z).
Substituting the values of the f(x) and f'(x) in the above equation, we get

. (z — a)"h(z)
g( ) & (m(:r _ (_y)"""lh(l‘) + (g- - a)"‘h’(.’l:))’

or

L (z — a)h(z)
gl@) == (mh(x) + (z — )l (z))

Then
g@=1 - {(mh)+ (= - )[h() + (& — A)(x)] ~ [z - a)h(a)]
[mhk(z) + K (@) + (& — ) (@)} /([mh () + (@ — )} @)]?).

At x = o, and since f(a) =0, we have

g'(a)=1—@{;;§—:}%?j£;—)]=l—%¢0, (m > 1).

Therefore, the Newton’s method converges to a multiple zero from any sufficiently close approxi-

1
mation and the convergence is linear (by the Lemma 2.3), with ration (1 — —). In particular for a
m

1
double root, the ration is —, which is comparable with the convergence of the bisection method. e
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Case 2.4 (Secant Method)

The convergence rate of the secant method can be analyzed as follows. The general procedure is

i f(@n)(@n — Tn—1) .
Tpn4l = T f(-'l»'n) o f(m‘n——l) (237)

As before, let xy_ 1 = a—ep_1,2p =a — ey, and Tpy1 = @ —epy1- Then

€n+1 = €n — fla—en)(en —en-1)
) T f((! = Cn) =< f(a - en—l)

1.61803
En—1| .

~ B

F"ﬂ.

Thus the error of the secant method is of order 1.61803, which is in-between 1 and 2. This shows
that the order of the secant method is better than the bisection method and fived-point method but
less than the Newton’s method.

Remember, however, that the secant method does not require the derivative of f(x) to be evaluated
at each step, so that in many ways the secant method is a very attractive alternative to the standard
Newton’s method. .

Solution of Nonlinear Equations Dr. Mohamed Abdelwahed 50



Example 2.45 If z = «a is a root of multiplicity m of f(x) = 0, then show that the rate of conver-
gence of the modified Newton’s method is at least quadratic.

Solution. The first modified Newton’s iteration function is define as follows:

f(x)
f'(x)

gx)=xz—m (2.39)

Since the function f(x) has multiple root, so

f(z) = (2 — a)"h(z),

and its derivative is
f'(x) = m(z — &)™ h(z) + (z — a)™H (z).

Substituting the values of the f(z) and f'(z) in (2.39), we get

g(z) =z — m(x —a)™h(z)
(m(z — a)m—1h(x) + (z — a)mh/(m))a

or
m(z — a)h(z)

(mh(x) + (x — ) (x))’

g(z) =z —

The
Y =1 = el e el e = e o i
[k (z) + K@) + (z — )R (@)} /([mh(@) + (= — )W (@)]2).

At x = «, and since f(a) =0, we have

Y )
g(e) =1~ Ch@R

it gives
g9'(a) =0.
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Therefore, the modified Newton’s method converges to a multiple root a and the convergence is at
least quadratically (by the Lemma 2.4).

Similarly, if x = a is a root of multiplicity m of f(x) = 0, then by using the Example 2.45 one can
easily show that the rate of convergence of the Newton’s method is linear. As the Newton iteration
function is defined by

f(x)

@)’

and proceeding in the same way as we did in the Example 2.45, one can get

g(x) =z —m

1
gd(a)=1——+#0, because m > 1.
m

Hence the Newton’s method converges to a multiple root a from any sufficiently close approximation

and the convergence is linear (by the Lemma 2.3) with ration (1 — —). In particular for a double
m

1
root, the ration is 3" which is comparable with the convergence of the bisection method. )
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2.8 Systems of Nonlinear Equations

fl('r:' y) =0, and fg(.’]?, y) =i}

Given the continuous functions fi(z,y) and fa(z,y), find the values z = a and y = 3 such that

file, ) =0 and fa(a,B) = 0.

Newton’s Method

oh

S| Ty Ox
Un+1 Un %
Ox

0fr
dy

af

dy

We call the following matrix J a Jacobian matriz

Solution of Nonlinear Equations

of
Oxr

os:
Oxr

0fi

dy

of
dy

J1
f2

(2.42)
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Example 2.46 For the following system of two equations

34+ 32 = 21
w24y = =2

Find the Jacobian matriz and its inverse using initial approzimation (1,—1), then find the first
approximation by using the Newton’s method.

Solution. Given

fl(:}:?y) = 95'3"'3?}2_21: f1$:3$23 flqzﬁy
At the given initial approzimation xg =1 and yo = —1, we have
dfi df1
1,-1) = 17, —/— = fi, = 3 === = _6
Hilly=1) ' B2 Jiz " By Juy
afl afz
1.—1 = — = = B == = = &
fﬁ( ? ) ? BLI' f2.’.[' 7 ay fzy
The Jacobian matriz J at the given initial approrimation can be calculated as
or 0y 3 —6 @ 1 5 i
J = = and J 1= Wl w9
ofa Of2 2 2
dr Jy

is the inverse of the Jacobian matriz.Now to find the first approzimation we have to solve the
following equation

6

6 )

zi\ _( 1Y 1 ( 26\ (-17\_( 255
y1 )\ —1 18\ -2 3 1/ \ =305

the required first approximation. .

(2 B |
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Similarly, for a large system of equations it is convenient to use vector notation. Consider the

system
f(x) =0,

where f = (f1, fo,. .., fn)! and x = (x1,22,...,7,)". Denoting the nth iterate by
x = (z} In] :;'"[2”]7 ["J? :TLIL )T, then the Newton’s method is defined by

1 = ) [ el e, (2.49)

where the Jacobian matrix J is defined as

( dfr 0f df1 \
Or1 Oxs  Ozn

8fn Ofn  Ofn
\ (3‘:?1 8332 Ba:n )

Since the iterative formula (2.49) involves the inverse of Jacobian J, in practice we do not attempt
to find this explicitly. In stead of using the form of (2.49) we use the following form

J(xMhz = _g(x), (2.50)

where Z[ = x[n+1] _ x[l,
This represents a system of linear equations for Z[ and can be solved by any methods described

in the next Chapter 3. Once Z[" has been found, the next iterate is calculated from

X[rH—l] _ Z[n] +X[n]_ (251)
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