
V 0.5 1

Binary Representation

• The basis of all digital data is binary representation.

• Binary - means ‘two’

– 1, 0

– True, False

– Hot, Cold

– On, Off

• We must be able to handle more than just values for

real world problems

– 1, 0, 56

– True, False, Maybe

– Hot, Cold, LukeWarm, Cool

– On, Off, Leaky

V 0.5 2

Number Systems

• To talk about binary data, we must first talk about

number systems

• The decimal number system (base 10) you should

be familiar with!

– A digit in base 10 ranges from 0 to 9.

– A digit in base 2 ranges from 0 to 1 (binary number

system). A digit in base 2 is also called a ‘bit’.

– A digit in base R can range from 0 to R-1

– A digit in Base 16 can range from 0 to 16-1

(0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F). Use letters A-F to

represent values 10 to 15. Base 16 is also called

Hexadecimal or just ‘Hex’.

V 0.5 3

Positional Notation

Value of number is determined by multiplying each digit by a

weight and then summing. The weight of each digit is a

POWER of the BASE and is determined by position.

953.78 = 9 * 102 + 5 * 101 + 3 * 100 + 7 * 10-1 + 8 * 10-2

= 900 + 50 + 3 + .7 + .08 = 953.78

0b1011.11 = 1*23 + 0*22 + 1*21 + 1*20 + 1*2-1 + 1*2-2

= 8 + 0 + 2 + 1 + 0.5 + 0.25

= 11.75

0xA2F = 10*162 + 2*161 + 15*160

= 10 * 256 + 2 * 16 + 15 * 1

= 2560 + 32 + 15 = 2607

V 0.5 4

Base 10, Base 2, Base 16
The textbook uses subscripts to represent different

bases (ie. A2F16, 953.7810, 1011.112)

I will use special symbols to represent the different bases.

The default base will be decimal, no special symbol for

base 10.

The ‘0x’ will be used for base 16 (0xA2F)

The ‘0b’ will be used for base 2 (0b10101111)

If ALL numbers on a page are the same base (ie, all in base

16 or base 2 or whatever) then no symbols will be used and

a statement will be present that will state the base (ie, all

numbers on this page are in base 16).

V 0.5 5

Common Powers

2-3 = 0.125

2-2 = 0.25

2-1 = 0.5

20 = 1

21 = 2

22 = 4

23 = 8

24 = 16

25 =32

26 = 64

27 = 128

28 = 256

29 = 512

210 = 1024

211 = 2048

212 = 4096

160 = 1 = 20

161 = 16 = 24

162 = 256 = 28

163 = 4096 = 212

210 = 1024 = 1 Ki (kilobinary)

220 = 1048576 = 1 Mi (1 megabinary) = 1024 K = 210 * 210

230 = 1073741824 = 1 Gi (1 gigabinary)

V 0.5 6

Conversion of Any Base to Decimal

Converting from ANY base to decimal is done by multiplying

each digit by its weight and summing.

0b1011.11 = 1*23 + 0*22 + 1*21 + 1*20 + 1*2-1 + 1*2-2

= 8 + 0 + 2 + 1 + 0.5 + 0.25

= 11.75

Binary to Decimal

Hex to Decimal

0xA2F = 10*162 + 2*161 + 15*160

= 10 * 256 + 2 * 16 + 15 * 1

= 2560 + 32 + 15 = 2607

V 0.5 7

Conversion of Decimal Integer

To ANY Base

Divide Number N by base R until quotient is 0. Remainder at

EACH step is a digit in base R, from Least Significant digit to

Most significant digit.

Convert 53 to binary
53/2 = 26, rem = 1

26/2 = 13, rem = 0

13/2 = 6 , rem = 1

6 /2 = 3, rem = 0

3/2 = 1, rem = 1

1/2 = 0, rem = 1

53 = 0b 110101

= 1*25 + 1*24 + 0*23 + 1*22 + 0*21 + 1*20

= 32 + 16 + 0 + 4 + 0 + 1 = 53

Least Significant Digit

Most Significant Digit

V 0.5 8

Least Significant Digit

Most Significant Digit

53 = 0b 110101

Least Significant Digit
(has weight of 2 0or 1).
For base 2, also called
Least Significant Bit
(LSb). Always
RIGHTMOST digit.

Most Significant Digit
(has weight of 2 5or
32). For base 2, also
called Most Significant
Bit (MSb). Always
LEFTMOST digit.

V 0.5 9

More Conversions

Convert 53 to Hex

53/16 = 3, rem = 5

3 /16 = 0, rem = 3

53 = 0x35

= 3 * 161 + 5 * 160

= 48 + 5 = 53

V 0.5 12

More Conversions

Convert 435 to Hex

435/16 = 27, rem = 3

27/16 = 1, rem = 11 = 0xB

1/16 = 0 , rem = 1

435 = 0x1B3

To check:

0x1B3 = 1*162 + 11*161 +

3*160 = 256+176+3 = 435.

V 0.5 13

Hex (base 16) to Binary Conversion

Each Hex digit represents 4 bits. To convert a Hex number to

Binary, simply convert each Hex digit to its four bit value.

Hex Digits to binary:
0x0 = 0b 0000

0x1 = 0b 0001

0x2 = 0b 0010

0x3 = 0b 0011

0x4 = 0b 0100

0x5 = 0b 0101

0x6 = 0b 0110

0x7 = 0b 0111

0x8 = 0b 1000

Hex Digits to binary (cont):
0x9 = 0b 1001

0xA = 0b 1010

0xB = 0b 1011

0xC = 0b 1100

0xD = 0b 1101

0xE = 0b 1110

0xF = 0b 1111

V 0.5 14

Hex to Binary, Binary to Hex

0xA2F = 0b 1010 0010 1111

0x345 = 0b 0011 0100 0101

Binary to Hex is just the opposite, create groups of 4 bits

starting with least significant bits. If last group does not

have 4 bits, then pad with zeros for unsigned numbers.

0b 1010001 = 0b 0101 0001 = 0x51

Padded with a zero

V 0.5 15

A Trick!

If faced with a large binary number that has to be

converted to decimal, I first convert the binary number

to HEX, then convert the HEX to decimal. Less work!

0b 110111110011 = 0b 1101 1111 0011

= D F 3

= 13 * 162 + 15 * 161 + 3*160

= 13 * 256 + 15 * 16 + 3 * 1

= 3328 + 240 + 3

= 3571

V 0.5 16

Binary Numbers Again

Recall than N binary digits (N bits) can represent unsigned

integers from 0 to 2N-1.

4 bits = 0 to 15

8 bits = 0 to 255

16 bits = 0 to 65535

Besides simply representation, we would like to also do

arithmetic operations on numbers in binary form.

Principle operations are addition and subtraction.

V 0.5 17

Binary Arithmetic, Subtraction

The rules for binary arithmetic

are:

0 + 0 = 0, carry = 0

1 + 0 = 1, carry = 0

0 + 1 = 1, carry = 0

1 + 1 = 0, carry = 1

The rules for binary subtraction

are:

0 - 0 = 0, borrow = 0

1 - 0 = 1, borrow = 0

0 - 1 = 1, borrow = 1

1 - 1 = 0, borrow = 0

Borrows, Carries from digits to left of current of digit.

Binary subtraction, addition works just the same as

decimal addition, subtraction.

V 0.5 18

Binary, Decimal addition

34

+ 17

51

from LSD to MSD:

7+4 = 1; with carry out of 1

to next column

1 (carry) + 3 + 1 = 5.

answer = 51.

Decimal
0b 101011

1+1 = 0, carry of 1

1 (carry)+1+0 = 0, carry of 1

1 (carry)+0 + 0 = 1, no carry

1 +0 = 1

0 + 0 = 0

1 + 0 = 1

answer = 0b 101100

Binary

+ 0b 000001

 101100
From LSb to MSb:

Khaled Addowesh

V 0.5 19

Hex Addition

0x3A

+ 0x28

0x62

A+8 = 2; with carry out of

1 to next column

1 (carry) + 3 + 2 = 6.

answer = 0x62

0x3A = 3 * 16 + 10

= 58

0x28 = 2 * 16 + 8

= 40

58 + 40 = 98

0x62 = 6 * 16 + 2

= 96 + 2 = 98!!

Decimal check.

V 0.5 20

Hex addition again

Why is 0xA + 0x8 = 2 with a carry out of 1?

The carry out has a weight equal to the BASE (in this case

16). The digit that gets left is the excess (BASE - sum).

Ah + 8h = 10 + 8 = 18.

18 is GREATER than 16 (BASE), so need a carry out!

Excess is 18 - BASE = 18 - 16 = 2, so ‘2’ is digit.

Exactly the same thing happens in Decimal.

5 + 7 = 2, carry of 1.

5 + 7 = 12, this is greater than 10!.

So excess is 12 - 10 = 2, carry of 1.

V 0.5 21

Subtraction

Decimal

900

- 001

899

0-1 = 9; with borrow of 1

from next column

0 -1 (borrow) - 0 = 9, with

borrow of 1

9 - 1 (borrow) - 0 = 8.

Answer = 899.

Binary

0b 100

- 0b 001

011

0-1 = 1; with borrow of 1

from next column

0 -1 (borrow) - 0 = 1, with

borrow of 1

1 - 1 (borrow) - 0 = 0.

Answer = % 011.

V 0.5 22

Hex Subtraction

0x34

- 0x27

0x0D

4-7 = D; with borrow of 1

from next column

3 - 1 (borrow) - 2 = 0.

answer = 0x0D.

0x34 = 3 * 16 + 4

= 52

0x27 = 2 * 16 + 7

= 39

52 - 39 = 13

0x0D = 13 !!

Decimal check.

V 0.5 23

Hex subtraction again

Why is 0x4 – 0x7 = 0xD with a borrow of 1?

The borrow has a weight equal to the BASE (in this case

16).

BORROW +0x4 – 0x7 = 16 + 4 - 7 = 20 - 7 = 13 = 0xD.

0xD is the result of the subtraction with the borrow.

Exactly the same thing happens in decimal.

3 - 8 = 5 with borrow of 1

borrow + 3 - 8 = 10 + 3 - 8 = 13 - 8 = 5.

V 0.5 24

Fixed Precision
With paper and pencil, I can write a number with as many digits as

I want:

1,027,80,032,034,532,002,391,030,300,209,399,302,992,092,920

A microprocessor or computing system usually uses FIXED

PRECISION for integers; they limit the numbers to a fixed

number of bits:

0x AF4500239DEFA231 64 bit number, 16 hex digits

0x 9DEFA231 32 bit number, 8 hex digits

0x A231 16 bit number, 4 hex digits

0x 31 8 bit number, 2 hex digits

High end microprocessors use 64 or 32 bit precision; low end

microprocessors use 16 or 8 bit precision.

V 0.5 25

Unsigned Overflow

In this class I will use 8 bit precision most of the time, 16 bit

occasionally.

Overflow occurs when I add or subtract two numbers, and the

correct result is a number that is outside of the range of

allowable numbers for that precision. I can have both

unsigned and signed overflow (more on signed numbers later)

8 bits -- unsigned integers 0 to 28 -1 or 0 to 255.

16 bits -- unsigned integers 0 to 216-1 or 0 to 65535

N bit – unsigned numbers 0 to 2N-1

V 0.5 26

Unsigned Overflow Example

Assume 8 bit precision; i.e.. I can’t store any more than 8 bits

for each number.

Lets add 255 + 1 = 256. The number 256 is OUTSIDE the

range of 0 to 255! What happens during the addition?

255 = 0x FF

+ 1 = 0x 01

0xF + 1 = 0, carry out

0xF + 1 (carry) + 0 = 0, carry out

Carry out of MSB falls off end, No place to put it!!!

Final answer is WRONG because could not store carry out.

 256 0x00

V 0.5 27

Unsigned Overflow

A carry out of the Most Significant Digit (MSD) or Most

Significant Bit (MSB) is an OVERFLOW indicator for addition

of UNSIGNED numbers.

The correct result has overflowed the number range for that

precision, and thus the result is incorrect.

If we could STORE the carry out of the MSD, then the answer

would be correct. But we are assuming it is discarded because

of fixed precision, so the bits we have left are the incorrect

answer.

V 0.5 28

Codes for Characters

Also need to represent Characters as digital data.

The ASCII code (American Standard Code for

Information Interchange) is a 7-bit code for Character

data. Typically 8 bits are actually used with the 8th bit

being zero or used for error detection (parity checking).

8 bits = 1 Byte.

‘A’ = % 01000001 = 0x41

‘&’ = % 00100110 = 0x26

7 bits can only represent 27 different values (128). This

enough to represent the Latin alphabet (A-Z, a-z, 0-9,

punctuation marks, some symbols like $), but what about

other symbols or other languages?

V 0.5 29

ASCII
American Standard

Code for Information

Interchange

V 0.5 30

UNICODE
UNICODE is a 16-bit code for representing alphanumeric data.

With 16 bits, can represent 216 or 65536 different symbols.

16 bits = 2 Bytes per character (the extended version uses 32-bits

per character, or 4 bytes, for 4,294,967,296 different symbols).

0x0041-005A A-Z

0x0061-4007A a-z

Some other alphabet/symbol ranges

0x3400-3d2d Korean Hangul Symbols

0x3040-318F Hiranga, Katakana, Bopomofo, Hangul

0x4E00-9FFF Han (Chinese, Japanese, Korean)

UNICODE used by Web browsers, Java, most software these

days.

Number System Practice

V 0.5 31

What should you practice?

• Hex to decimal, decimal to hex conversion

• Hex to binary, binary to hex conversion

• Hex addition, subtraction

V 0.5 32

Basic Logic Gates

Copyright 2005. Thomson/Delmar Learning, All rights

reserved.

V 0.5 33

Majority Gate (and-or) form

Copyright 2005. Thomson/Delmar Learning, All rights

reserved.

V 0.5 34

DeMorgan’s Law

Copyright 2005. Thomson/Delmar Learning, All rights

reserved.

V 0.5 35

Majority Gate (nand-nand) form

Copyright 2005. Thomson/Delmar Learning, All rights

reserved.

V 0.5 36

Representing ‘1’ and ‘0’

• In the electrical world, two ways of representing ‘0’ and ‘1’

are (these are not the only ways):

– Presence or absence of electrical current

– Different Voltage levels

• Different voltage levels are the most common

> 3 volts)

• Can interface external sources to digital systems in many

ways

– Switches, buttons, other human controlled input devices

– Transducers (change a physical quantity like temperature into a

digital quantity).

– Usually 0v for logic ‘0’, some non-zero voltage for logic ‘1’ (i.e.

V 0.5 37

Switch Inputs

Vdd

Gnd

L

Vdd

Gnd

H

High True switch

Switch open

(negated), output is L

Switch closed (asserted),

output is H

Vdd is power

supply voltage,

typically 5V or

3.3V

Gnd is 0 V

V 0.5 38

Examples of high, low signals

Vdd

Gnd

H

Vdd

Gnd

L

Low True switch

Switch open (negated),

output is H

Switch closed (asserted),

output is L

V 0.5 39

CMOS transistors (P, N)

Copyright 2005. Thomson/Delmar Learning, All rights

reserved.

S: source

G: gate

D: drain

transistor

operation of P, N

types is

complementary

to each other

V 0.5 40

Inverter gate - takes 2 transistors

Copyright 2005. Thomson/Delmar Learning, All rights

reserved.

PMOS is open (off)

NMOS is Closed (on)

PMOS is closed (on)

NMOS is Open (off)

V 0.5 41

Buffer - takes 4 transistors

In digital logic, NMOS must be connected to ground, PMOS to

VDD.

Copyright 2005. Thomson/Delmar Learning, All rights

reserved.

V 0.5 42

Tri-State Buffer
There is another way to drive a line or bus from multiple

sources. Use a TRISTATE buffer.

A Y

EN

When EN = 1, then Y = A.

When EN = 0, then Y = ??????

Y is undriven, this is called the high impedance state.

Designate high impedance by a ‘Z’.

When EN = 0, then Y = ‘Z’ (high impedance)

A Y

EN

V 0.5 43

Tri-State Buffer
There is another way to drive a line or bus from multiple

sources. Use a TRISTATE buffer.

A Y

EN=L

A Y

EN=H

V 0.5 44

Using Tri-State Buffers (cont)

Only A or B is enabled at a time.

A

Y

B

S

Implements 2/1 Mux function

If S=0 then Y = A

If S=1 then Y = B

V 0.5 45

Combinational Building Blocks, Mux

Copyright 2005. Thomson/Delmar Learning, All rights

reserved.

V 0.5 46

Binary Adder

These equations look familiar. These define a Binary Full

Adder :

A B

S

CiCo
Cin

A B

Cout

Sum

Sum = A xor B xor Cin

Cout = AB + Cin A + Cin B

= AB + Cin (A + B)

Full Adder (FA)

Sum (A,B,C) = A xor B xor C Cout = AB + AC + BC

V 0.5 47

4 Bit Ripple Carry Adder

A B

S

CiCo

A B

S

CiCo

A B

S

CiCo

A B

S

CiCo Cin

A(0)

Cout

B(0)A(1) B(1)A(2) B(2)A(3) B(3)

C(0)C(1)C(2)C(3)C(4)

Sum(0)Sum(1)Sum(2)Sum(3)

A[3:0]

B[3:0]

SUM[3:0]
+

V 0.5 48

Understanding the shift operation

0x85 =

0x42 = 0 1 0 0 0 0 1 0

SI = 0

0x21 = 0 0 1 0 0 0 0 1

SI = 0

1st right shift

2nd right shift

0x10 = 0 0 0 1 0 0 0 0

SI = 0

3rd right shift

Etc….

MSB LSb
1 0 0 0 0 1 0 1

V 0.5 49

Right Shift vs. Left Shift

A right shift is MSB to LSB (divide by 2)

In: D7 D6 D5 D4 D3 D2 D1 D0

SIN

Out: SIN D7 D6 D5 D4 D3 D2 D1

A left shift is LSB to MSB (multiply by 2)

In: D7 D6 D5 D4 D3 D2 D1 D0

SI

Out: D6 D5 D4 D3 D2 D1 D0 SI

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

V 0.5 50

Recall Basic Memory Definition

M

E

M

Data[N-1:0]Address[log2(K)-1:0]

K x N

K locations, N bits per location

Address bus has log2(K) address lines, data bus has N data

lines.

Example:

16 x 8

(16 locations requires

log2(16) = 4 address lines,

each location stores 8 bits.

Address bus: A[3:0]

Data bus: D[7:0]

V 0.5 51

Clock Signal Review

time

voltage

f = 1/

Pw rising edge falling edge

 - period (in seconds) Pw - pulse width (in seconds)

f - frequency pulse width (in Hertz)

duty cycle - ratio of pulse width to period (in %) duty cycle = Pw /

millisecond (ms)
10

-3
Kilohertz (KHz)

10
3

microsecond (s)
10

-6
Megahertz (MHz)

10
6

nanosecond (ns)
10

-9
Gigahertz (GHz)

10
9

Slide by Prof Mitch Thornton

V 0.5 52

Storage Element: The D Flip-Flop

D: data input

CK: clock input

S : set input (asynchronous, low true)

R: reset input (asynchronous, low true)

