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Insurance benefits 

4.1 Summary 

In this chapter we develop formulae for the valuation of traditional insurance 
benefits. In particular, we consider whole life, term and endowment insurance. 
For each of these benefits we identify the random variables representing the 
present values of the benefits and we derive expressions for moments of these 
random variables. The functions we develop for traditional benefits will also 
be useful when we move to modern variable contracts. 

We develop valuation functions for benefits based on the continuous future 
lifetime random variable, Tx, and the curtate future lifetime random variable, 
Kx, from Chapter 2. We introduce a new random variable, Klm), which we use 
to value benefits which depend on the number of complete periods of length 
I/m years lived by a life (x). We explore relationships between the expected 
present values of different insurance benefits. 

We also introduce the actuarial notation for the expected values of the present 
value of insurance benefits. 

4.2 Introduction 

In the previous two chapters, we have looked at models for future lifetime. 
The main reason that we need these models is to apply them to the valuation 
of payments which are dependent on the death or survival of a policyholder or 
pension plan member. Because of the dependence on death or survival, the tim­
ing and possibly the amount of the benefit are uncertain, so the present value of 
the benefit can be modelled as a random variable. In this chapter we combine 
survival models with time value of money functions to derive the distribution 
of the present value of an uncertain, life contingent future benefit. 

We generally assume in this chapter (and in the following five chapters) that 
the interest rate is constant and fixed. This is appropriate, for example, if the 
premiums for an insurance policy are invested in risk-free bonds, all yielding 
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the same interest rate, so that the term structure is flat. In Chapter 11 we intro­
duce more realistic term structures, and consider some models of interest that 
allow for uncertainty. 

For the development of present value functions, it is generally easier, math­
ematically, to work in continuous time. In the case of a death benefit, working 
in continuous time means that we assume that the death payment is paid at the 
exact time of death. In the case of an annuity, a continuous benefit of, say, $1 
per year would be paid in infinitesimal units of $d t in every interval (t, t + dt). 

Clearly both assumptions are impractical; it will take time to process a pay­
ment after death, and annuities will be paid at most weekly, not every moment 
(though the valuation of weekly payments is usually treated as if the payments 
were continuous, as the difference is very small). In practice, insurers and pen­
sion plan actuaries work in discrete time, often with cash flow projections that 
are, perhaps, monthly or quarterly. In addition, when the survival model being 
used is in the form of a life table with annual increments (that is, lx for inte­
ger x), it is simplest to use annuity and insurance present value functions that 
assume payments are made at integer durations only. We work in continuous 
time in the first place because the mathematical development is more transpar­
ent, more complete and more flexible. It is then straightforward to adapt the 
results from continuous time analysis to discrete time problems. 

4.3 Assumptions 

To perform calculations in this chapter, we require assumptions about mortality 
and interest. We use the term basis to denote a set of assumptions used in life 
insurance or pension calculations, and we will meet further examples of bases 
when we discuss premium calculation in Chapter 6, policy values in Chapter 7 
and pension liability valuation in Chapter 10. 

Throughout this chapter we illustrate the results with examples using the 
following survival model which was introduced in Example 3.13. 

The Standard Ultimate Survival Model 
Makeham's law with A= 0.00022 

B = 2.7 x 10-6 

c = 1.124. 

We call this an ultimate model to differentiate it from the standard select model 
that we will use in later chapters. 

We also assume that interest rates are constant. As discussed above, this 
interest assumption can be criticized as unrealistic. However, it is a convenient 
assumption from a pedagogical point of view, is often accurate enough for 
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practical purposes (but not always) and we relax the assumption in later 
chapters. 

It is convenient to work with interest theory functions that are in common 
actuarial and financial use. We review some of these here. 

Given an effective annual rate of interest i, we use v = 1 / ( 1 + i), so that the 
present value of a payment of S which is to be paid int years' time is Sv 1• The 
force of interest per year is denoted 8 where 

o=log(l+i), l+i=e8, and v=e-8 ; 

8 is also known as the continuously compounded rate of interest. In financial 
mathematics and corporate finance contexts, and in particular if the rate of 
interest is assumed risk free, the common notation for the continuously com­
pounded rate of interest is r. 

The nominal rate of interest compounded p times per year is denoted i(P) 
where 

i<Pl = p ( (1 + i) 11P - 1) * 1 + i = ( 1 + i<Pl IP r. 
The effective rate of discount per year is d where 

d = 1 - v = iv = 1 - e - 8, 

and the nominal rate of discount compounded p times per year is d(P) where 

4.4 Valuation of insurance benefits 

4.4.1 Whole life insurance: the continuous case, Ax 
For a whole life insurance policy, the time at which the benefit will be paid is 
unknown until the policyholder actually dies and the policy becomes a claim. 
Since the present value of a future payment depends on the payment date, the 
present value of the benefit payment is a function of the time of death, and 
is therefore modelled as a random variable. Given a survival model and an 
interest rate we can derive the distribution of the present value random variable 
for a life contingent benefit, and can therefore compute quantities such as the 
mean and variance of the present value. 

We start by considering the value of a benefit of amount $1 payable fol­
lowing the death of a life currently aged x. Using a benefit of $1 allows us 
to develop valuation functions per unit of sum insured, then we can multiply 
these by the actual sum insured for different benefit amounts. 
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We first assume that the benefit is payable immediately on the death of (x). 
This is known as the continuous case since we work with the continuous future 
lifetime random variable Tx. Although in practice there would normally be 
a short delay between the date of a person's death and the time at which an 
insurance company would actually pay a death benefit (due to notification of 
death to the insurance company and legal formalities) the effect is slight and 
we will ignore that delay here. 

For our life (x), the present value of a benefit of $1 payable immediately on 
death is a random variable, Z, say, where 

We are generally most interested in the expected value of the present value 
random variable for some future payment. We refer to this as the Expected 
Present Value or EPV. It is also commonly referred to as the Actuarial Value or 
Actuarial Present Value. 

The EPV of the whole life insurance benefit payment with sum insured $1 
is E[e-8 1'.•]. In actuarial notation, we denote this expected value by Ax, where 
the bar above A denotes that the benefit is payable immediately on death. 

As Tx has probability density function fx(t) = 1 Px /Lx+t, we have 

- -8 T, -8 I 1
00 

Ax= E[e ·] = 
0 

e tPx /Lx+1dt. (4.1) 

It is worth looking at the intuition behind this formula. In Figure 4.1 we use 
the time-line format that was introduced in Section 2.4. 

Consider times, where x ::; x + s < w. The probability that (x) is alive 
at time s is s Px, and the probability that (x) dies between ages x + s and 
x + s + ds, having survived to age x + s, is, loosely, /Lx+s ds, provided that ds 
is very small. In this case, the present value of the death benefit of $1 is e-8s. 

Time 0 (x) survives s years s (x) s+ds 

I I 
dies 

I 
Age x x+s x+s+ds (1) 

Probability sPx fLx+s ds 

Present value e-8s 

Figure 4.1 Time-line diagram for continuous whole life insurance. 
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Now we can integrate (that is, sum the infinitesimal components of) the 
product of present value and probability over all the possible death intervals 
s to s + ds to obtain the EPV of the death benefit that will be paid in exactly 
one of these intervals. 

Similarly, the second moment (about zero) of the present value of the death 
benefit is 

where the superscript 2 indicates that the calculation is at force of interest 28, 
or, equivalently, at rate of interest j, where 1 + j = e28 = (1 + i) 2 . 

The variance of the present value of a unit benefit payable immediately on 
death is 

Now, if we introduce a more general sum insured, S, say, then the EPV of the 
death benefit is 

E[SZ] = E[se-oTx] = SAx 

and the variance is 

V[SZ] = V[Se-oTx] = S2 
( 2Ax -X;). 

In fact we can calculate any probabilities associated with the random variable 
Z from the probabilities associated with Tx. Suppose we are interested in the 
probability Pr[Z :S 0.5], for example. We can rearrange this into a probability 

for Tx: 

Pr [ Z :S 0.5] =Pr [ e-8 Tx :S 0.5] 

= Pr [ - 8 Tx :S log(0.5)] 

=Pr[8Tx > -log(0.5)] 

= Pr [ 8 Tx > log(2) J 
=Pr [Tx > log(2)/8] 

= uPx 

where u = log(2)/8. We note that low values of Z are associated with high 
values of Tx. This makes sense because the benefit is more expensive to the 
insurer if it is paid early, as there has been little opportunity to earn interest. It 
is less expensive if it is paid later. 

I 



---
4.4 Valuation of insurance benefits 81 

4.4.2 Whole life insurance: the annual case, Ax 

Suppose now that the benefit of $1 is payable at the end of the year of death of 
(x), rather than immediately on death. To value this we use the curtate future 
lifetime random variable, K x, introduced in Chapter 2. Recall that Kx measures 
the number of complete years of future life of (x). The time to the end of the 
year of death of (x) is then Kx + 1. For example, if (x) lived for 25.6 years 
from the issue of the insurance policy, the observed value of Kx would be 25, 
and the death benefit payable at the end of the year of death would be payable 
26 years from the policy's issue. 

We again use Z to denote the present value of the whole life insurance ben­
efit of $1, so that Z is the random variable 

The EPV of the benefit, E[Z], is denoted by Ax in actuarial notation. 
In Chapter 2 we derived the probability function for Kx, Pr[Kx = k] = k \qx, 

so the EPV of the benefit is 

00 

Ax = E[ vKx+l] = L vk+l k\qx = vqx + v2
1 \qx + v32\qx + · · · . (4.4) 

k=O 

Each term on the right-hand side of this equation represents the EPV of 
a death benefit of $1, payable at time k conditional on the death of (x) in 
(k - 1, k]. 

In fact, we can always express the EPV of a life contingent benefit by con­
sidering each time point at which the benefit can be paid, and summing over 
all possible payment times the product of 

( 1) the amount of the benefit, 

(2) the appropriate discount factor, and 

(3) the probability that the benefit will be paid at that time. 

We will justify this more rigorously in Section 4.6. We illustrate the process 
for the whole life insurance example in Figure 4.2. 

The second moment of the present value is 

00 00 

L v2
(k+l) k\qx = L(v2)(k+l) k\qx = (v2)qx + (v2

) 2 1\qx + (v2)
3

2\qx + · · · . 
k=O k=O 

Just as in the continuous case, we can calculate the second moment about zero 
of the present value by an adjustment in the rate of interest from i to (1 +i)2 - l. 
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Time 0 1 2 3 

I 

• 

I I 

Amount $1 $1 $1 

Discount v v2 v3 

Probability qx ilqx 2 lqx 

Figure 4.2 Time-line diagram for discrete whole life insurance. 

We define 
00 

2 Ax = L v2Ck+l) klqx, 
k=O 

(4.5) 

and so the variance of the present value of a benefit of S payable at the end of 
the year of death is 

(4.6) 

4.4.3 Whole life insurance: the 1/ mthly case, A¥n) 

In Chapter 2 we introduced the random variable Kx, representing the curtate 
future lifetime of (x), and we saw in Section 4.4.2 that the present value of an 
insurance benefit payable at the end of the year of death can be expressed in 
terms of Kx. 

We now define the 1/mthly curtate future lifetime random variable K~m>, 
where m > 1 is an integer, to be the future lifetime of (x) in years rounded 
to the lower ~th of a year. The most common values of m are 2, 4 and 12, 

corresponding to half years, quarter years and months. Thus, for example, K~4) 
represents the future lifetime of (x), rounded down to the lower 1/4. 

Symbolically, if we let L J denote the integer part (or floor) function, then 
1 - . 

K~m) = - LmTxJ . 
m 

For example, suppose (x) lives exactly 23.675 years. Then 

- (2) - (4) - (12) - 8 -Kx - 23, Kx - 23.5, Kx - 23.5, and Kx - 2312 - 23.6667. 

(4.7) 

Note that K~m) is a discrete random variable. K~m) = k indicates that the 

life (x) dies in the interval [k, k + 1/m), fork= 0, ~' ~ •... 

The probability function for K~m) can be derived from the associated prob­

abilities for Tx. Fork = 0, ~, ~, .. ., 



4.4 Valuation of insurance benefits 83 

Time 0 1/m 2/m 3/m 

I I I I 
Amount $1 $1 $1 

Discount vlfm v2fm v3fm 

Probability J_qx J. l_Hx 1-11.qx 
Ill m m m m 

Figure 4.3 Time-line diagram for 1/mthly whole life insurance. 

Pr[K~m) = k] =Pr [k :'.S Tx < k + i] = kll.qx = kPx - k+l.Px· 
1 m m 

In Figure 4.3 we show the time-line for the 1/mthly benefit. At the end of each 
1/m year period, we show the amount of benefit due, conditional on the death 

of the insured life in the previous 1 / m year interval, the probability that the 
insured life dies in the relevant interval, and the appropriate discount factor. 

Suppose, for example, that m = 12. A whole life insurance benefit payable 

at the end of the month of death has present value random variable Z where 

K(l2)+1/12 z = v x • 

We let A~12) denote the EPV of this benefit, so that 

E[Z] = A (12) = vl/12 J_ qx + v2/12 J_ I J_ qx + v3/12 1- I J_ qx 
x 12 12 12 12 12 

+ v4/12 2 I J_ qx + .... 
12 12 

Similarly, for any m, 

A~n) =vlfm 1.qx+v2fm 1.l1.qx+v3fm 1-l1.qx+v4fm 211.qx+··· (4.8) 
m m n1 m m m m 

00 
~ k+l 

= L..., V 111 fs_ I l qx · 
m m 

k=O 

(4.9) 

As for the continuous and annual cases, we can derive the variance of the 
present value of the 1/mthly whole life benefit by adjusting the interest rate 

for the first term in the variance. We have 

so the variance is 
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4.4.4 Recursions 

In practice, it would be very unusual for an insurance policy to provide the 
death benefit at the end of the year of death. Nevertheless, the annual insurance 
function Ax is still useful. We are often required to work with annual life tables, 
such as those in Chapter 3, in which case we would start by calculating the 
annual function Ax, then adjust for a more appropriate frequency using the 
relationships and assumptions we develop later in this chapter. 

Using the annual life table in a spreadsheet, we can calculate the values of 
Ax using backwards recursion. To do this, we start from the highest age in 
the table, cv. We assume all lives expire by age cv, so that qw-l = 1. If the 
life table does not have a limiting age, we choose a suitably high value for cv 
so that qw-1 is as close to 1 as we like. This means that any life attaining age 
cv - 1 may be treated as certain to die before age cv, in which case we know 
that Kw- l = 0 and so 

Now, working from the summation formula for Ax we have 

w-x-l 
A " k+l x = L., V kPx qx+k 

k=O 

= v qx + v2 Px qx+l + v3 2Px qx+2 + · · · 

= v qx + v Px ( v qx+l + v2 Px+l qx+2 + v3 
2Px+l qx+3 + · · ·) , 

giving the important recursion formula 

IAx=Vqx+VpxAx+l·I (4.10) 

This formula can be used in spreadsheet format to calculate Ax backwards 
from Aw-1 back to Ax0 , where xo is the minimum age in the table. 

The intuition for equation (4.10) is that we separate the EPV of the whole 
life insurance into the value of the benefit due in the first year, followed by 
the value at age x + 1 of all subsequent benefits, multiplied by Px to allow for 
the probability of surviving to age x + 1, and by v to discount the value back 
from age x + 1 to age x. 

We can use the same approach for l/mthly benefits; now the recursion will 
give A~m) in terms of A (m) 1 • Again, we split the benefit into the part payable 

x+m 
in the first period - now of length 1 / m years - followed by the EPV of the 
insurance beginning after 1/m years. We have 

A (m) = vlfm I qx + v2fm I Px I q 1 + v31111 2 Px I q 2 + ... 
x m m m x+m m m x+m 

=vlf1111qx+vlfm iPx(vlfm iq. 1 +v2fm ip I iq 2 +···), m m ~ m x+m Iii x+m Iii x+;n 
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Table 4.1 Sample values of Ax using the Standard Ultimate 

Survival Model, Example 4.1. 

x Ax x Ax x Ax 

30 0.07698 50 0.18931 98 0.85177 
31 0.08054 51 0.19780 99 0.86153 
32 0.08427 52 0.20664 100 0.87068 

giving the recursion formula 

A (m) _ vlfm q + vlfm p A(m) x - 1-x 1-x 1· 
111 m x+m 

Example 4.1 Using the Standard Ultimate Survival Model from Section 4.3, 
and an interest rate of 5% per year effective, construct a spreadsheet of values 
of Ax for x = 20, 21, ... , 100. Assume that A129 = v. 

Solution 4.1 The survival model for the Standard Ultimate Survival Model is 
the ultimate part of the model used in Example 3 .13 and so values of 1 Px can 
be calculated as explained in the solution to that example. The value of q129 is 
0.99996, which is indeed close to 1. We can use the formula 

to calculate recursively A12s, A121, ... , A20, starting from A129 = v. Values 
for x = 20, 21, ... , 80, are given in Appendix D, Table D.3. Some excerpts 
are shown in Table 4.1. D 

Example 4.2 Using the Standard Ultimate Survival Model from Section 4.3, 
and an interest rate of 5% per year effective, develop a spreadsheet of values 
of A,~12) for x starting at age 20, in steps of 1/12. 

Solution 4.2 For this example, we follow exactly the same process as for the 
previous example, except that we let the ages increase by 1/12 year in each 
row. We construct a column of values of 1- Px using 

12 

-tzPx =exp {-A/12 - Bcx(c1112 
- 1)/log(c)}. 

We again use 130 as the limiting age of the table. Then set A <12l11 = v1112 , 
129u: 

and for all the other values of A~12) use the recursion 

A (12) = v 1;12 1- qx + v 1;12 1- Px A (12) . 
x 12 12 x+tz 
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Table 4.2 Sample values of A1
12

) using the Standard 

Ultimate Survival Model, Example 4.2. 

x l..Px .lqx 
A(12) 

x 
12 12 

20 0.999979 0.000021 0.05033 

20tz 0.999979 0.000021 0.05051 

2of2 0.999979 0.000021 0.05070 

20-f2 0.999979 0.000021 0.05089 

50 0.999904 0.000096 0.19357 

50tz 0.999903 0.000097 0.19429 

129.1.Q 
12 0.413955 0.586045 0.99427 

12911 12 0.99594 

The first and last few lines of the spreadsheet are reproduced in Table 4.2. D 

It is worth making a remark about the calculations in Examples 4.1 and 4.2. In 
Example 4.1 we saw that ql29 = 0.99996, which is sufficiently close to 1 to 
justify us starting our recursive calculation by setting A129 = v. In Example 
4.2, our recursive calculation started from A 129.u. = v1112. If we calculate 
.lq129 .u. we find its value is 0.58960, which is ceifainly not close to 1. 
12 12 . . . . . 

What is happenmg m these calculations is that, for Example 4.1, we are 
replacing the exact calculation 

A129 = v (q129 + P129 A13o) 

by A129 = v, which is justifiable because A13o is close to 1, meaning that 
v(q129 + Pl29 A13o) is very close to v. Similarly, for Example 4.2, we replace 
the exact calculation 

Ac12\1 = vl/12 (.lq129l!. + .lP129l!. Ai~~) 
12912 12 12 12 12 

by A (1
2
2
9

).Ll. = v 1112 . As the value of Ai~~ is very close to 1, it follows that 
1 12 

1/12 ( (12)) v .lq129l!. + .lP129l!. A13o 12 12 12 12 

can by approximated by v 1112 . 

Example 4.3 Using the Standard Ultimate Survival Model, and an interest rate 
of 5% per year effective, calculate the mean and standard deviation of the 
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Table 4.3 Mean and standard deviation of the present value of a whole life 
insurance benefit of $100 000,for Example 4.3. 

Continuous (a) Monthly (b) Annual (c) 

Age,x Mean St. Dev. Mean St. Dev. Mean St. Dev. 

20 5043 5954 5033 5942 4922 5 810 
40 12404 9619 12379 9600 12106 9389 
60 29743 15 897 29683 15 865 29028 15 517 
80 60764 17 685 60641 17649 59293 17255 

100 89341 8127 89158 8110 87068 7860 

present value of a benefit of $100000 payable (a) immediately on death, (b) 
at the end of the month of death, and ( c) at the end of the year of death for lives 
aged 20, 40, 60, 80 and 100, and comment on the results. 

Solution 4.3 For part (a), we must calculate 100 OOOAx and 

for x = 20, 40, 60 and 80, where 2 Ax is calculated at effective rate of inter-
- (12) est j = 10.25%. For parts (b) and (c) we replace each Ax by Ax and Ax, 

respectively. The values are shown in Table 4.3. The continuous benefit val­
ues in the first column are calculated by numerical integration, and the annual 
and monthly benefit values are calculated using the spreadsheets from Exam­
ples 4.1 and 4.2. 

We can make the following observations about these values. First, values for 
the continuous benefit are larger than the monthly benefit, which are larger than 
the annual benefit. This is because the death benefit is payable soonest under 
(a) and latest under (c). Second, as x increases the mean increases for all three 
cases. This occurs because the smaller the value of x, the longer the expected 
time until payment of the death benefit. Third, as x increases, the standard 
deviation decreases relative to the mean, in all three cases. And further, as we 
get to very old ages, the standard deviation decreases in absolute terms, as the 
possible range of payout dates is reduced significantly. 

It is also interesting to note that the continuous and monthly versions of the 
whole life benefit are very close. That is to be expected, as the difference arises 
from the change in the value of money in the period between the moment of 
death and the end of the month of death, a relatively short period. 0 
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4.4.5 Term insurance 
- 1 

The continuous case, Ax:iil 
Under a term insurance policy, the death benefit is payable only if the policy­
holder dies within a fixed term of, say, n years. 

In the continuous case, the benefit is payable immediately on death. The 
present value of a benefit of $1, which we again denote by Z, is 

if r~ :::: n, 
if Tx > n. 

The EPV of this benefit is denoted A 1:iil in actuarial notation. The bar above A 
again denotes that the benefit is payable immediately on death, and the 1 above 
x indicates that the life (x) must die before the term of n years expires in order 
for the benefit to be payable. 

Then 

-1 -8t 

Io
n 

Ax:iil= 
0 

e tPxfi,x+rdt (4.11) 

and, similarly, the expected value of the square of the present value is 

which, as with the whole life case, is calculated by a change in the rate of 
interest used. 

The annual case, AI:iil 
Next, we consider the situation when a death benefit of 1 is payable at the end 
of the year of death, provided this occurs within n years. The present value 
random variable for the benefit is now 

if Kx ::Sn-1, 
if Kx 2: n. 

The EPV of the benefit is denoted A1:iil so that 

n-1 

A i ~ k+i I x:iil = L.., V k qx. 
k=O 

(4.12) 

T 
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Table 4.4 EPVs of term insurance benefits. 

x 

20 
40 
60 
80 

Jl 
x:lol 

0.00214 
0.00587 
0.04356 
0.34550 

A (4) 1 
x:lol 

0.00213 
0.00584 
0.04329 
0.34341 

The l/mthly case, A (m) ;:ll\ 

Al 
x:lol 

0.00209 
0.00573 
0.04252 
0.33722 

89 

We now consider the situation when a death benefit of 1 is payable at the end 
of the 1/mth year of death, provided this occurs within n years. The present 
value random variable for the benefit is 

if K(m) < n - l 
x - m' 

if K~m) 2:: n. 

The EPV of the benefit is denoted A (m~~iil so that 

mn-1 

A(m)i. = " vCk+l)/m !.l1-qx. 
x.lll ~ m m 

k=O 

(4.13) 

Example 4.4 Using the Standard Ultimate Survival Model as specified in 

Section 4.3, with interest at 5% per year effective, calculate A 1-,,;i, A C
4
)i -,,;i 

x:l01 x:l01 
and A 1-,,;i for x = 20, 40, 60 and 80 and comment on the values. 

x:l01 

Solution 4.4 We use formula ( 4.11) with n = 10 to calculate A 1-,,;i (using 
x:l01 

numericalintegration), and formulae (4.13) and (4.12), with m = 4 and n = 10 

to calculate A C
4
)i -,,;i and A 1 

-,,;i· 
x:l01 x:l01 

The values are shown in Table 4.4, and we observe that values in each case 
increase as x increases, reflecting the fact that the probability of death in a 
10-year period increases with age for the survival model we are using. The 
ordering of values at each age is the same as in Example 4.3, for the same 
reason - the ordering reflects the fact that any payment under the continuous 
benefit will be paid earlier than a payment under the quarterly benefit. The 
end year benefit is paid later than the quarterly benefit, except when the death 
occurs in the final quarter of the year, in which case the benefit is paid at the 
same time. 0 
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4.4. 6 Pure endowment 

Pure endowment benefits are conditional on the survival of the policyholder at a 
policy maturity date. For example, a 10-year pure endowment with sum insured 
$10 000, issued to (x), will pay $10 000 in 10 years if (x) is still alive at that 
time, and will pay nothing if (x) dies before age x + 10. Pure endowment ben­
efits are not sold as stand-alone policies, but may be sold in conjunction with 
term insurance benefits to create the endowment insurance benefit described in 
the following section. However, pure endowment valuation functions tum out 
to be very useful. 

The pure endowment benefit of $1, issued to a life aged x, with a term of n 
years has present value Z, say, where: 

z = {o vn 
if Tx < n, 
if Tx 2:: n. 

There are two ways to denote the EPV of the pure endowment benefit using 
actuarial notation. It may be denoted Ax:~· The 'l' over the term subscript 
indicates that the term must expire before the life does for the benefit to be 
paid. This notation is consistent with the term insurance notation, but it can 
be cumbersome, considering that this is a function which is used very often 
in actuarial calculations. A more convenient standard actuarial notation for the 
EPV of the pure endowment is 11 Ex. 

If we rewrite the definition of Z above, we have 

z = {o vn 
with probability 1 - 11 Px, 

with probability nPx· 

Then we can see that the EPV is 

(4.14) 

(4.15) 

Note that because the pure endowment will be paid only at time n, assuming the 
life survives, there is no need to specify continuous and discrete time versions; 
there is only a discrete time version. 

We will generally use the more direct notation vn nPx or 11 Ex for the pure 
endowment function, rather than the Ax:~ notation. 

4.4. 7 Endowment insurance 

An endowment insurance provides a combination of a term insurance and a 
pure endowment. The sum insured is payable on the death of (x) should (x) 
die within a fixed term, say n years, but if (x) survives for n years, the sum 
insured is payable at the end of the nth year. 
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Traditional endowment insurance policies were popular in Australia, North 
America and the UK up to the 1990s, but are rarely sold these days in these 

markets. However, as with the pure endowment, the valuation function turns 
out to be quite useful in other contexts. Also, companies operating in these 
territories will be managing the ongoing liabilities under the policies already 
written for some time to come. Furthermore, traditional endowment insurance 

is still relevant and popular in some other insurance markets. 
We first consider the case when the death benefit (of amount 1) is payable 

immediately on death. The present value of the benefit is Z, say, where 

Thus, the EPV of the benefit is 

if Tx < n, 
if Tx '.'.'.: n 

E[Z] = r e-81 tPxfLx+1dt+1
00 

e-
811 

1Px/Lx+1dt 
lo II 

rn -8t d -8n =lo e tPx/Lx+t t+e nPx 

- 1 1 
= Ax:iil + Ax:iil 

and in actuarial notation we write 

(4.16) 

Similarly, the expected value of the squared present value of the benefit is 

l
n 

-281 -2811 

0 
e 1Px/Lx+1dt+e nPx 

2 -
which we denote Ax:iil. 

In the situation when the death benefit is payable at the end of the year of 

death, the present value of the benefit is 

if Kx :'.Sn - 1, 

if Kx '.'.'.: n 

= Vmin(Kx+l,11). 

The EPV of the benefit is then 

n-1 L vk+l k\qx + V11 P[Kx '.'.'.: n] = A_~:iil + V11 
nPx, 

k=O 

(4.17) 
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x 

20 
40 
60 
80 

Insurance benefits 

Table 4.5 EPVs of endowment 

insurance benefits. 

0.61438 
0.61508 
0.62220 
0.68502 

0.61437 
0.61504 
0.62194 
0.68292 

0.61433 
0.61494 
0.62116 
0.67674 

and in actuarial notation we write 

(4.18) 

Similarly, the expected value of the squared present value of the benefit is 

n-l 
2A '°' 2ck+1i I 2n x:iil = ~ V k qx + V n Px · 

k=O 

Finally, when the death benefit is payable at the end of the 1 / mth year of death, 
the present value of the benefit is 

if K(m) < n - 1-
x - m' 

'f K(m) > 1 x _ n 

· (K(m) I ) == vrmn x +m,n . 

The EPV of the benefit is 

mn-1 '°' vCk+l)/m k I 1 q + vn P[K(m) > n] = A (m)1 + vn p 
L__; m m x x - x:ni n x' 
k=O 

and in actuarial notation we write 

A (ml = A Cml1 +A 1 . 
x:iil x:iil x:iil (4.19) 

Example 4.5 Using the Standard Ultimate Survival Model as specified in 
Section 4.3, with interest at 5% per year effective, calculate A ."'110 , A C4~ and 

X.lVI x:l01 
Ax:lol for x = 20, 40, 60 and 80 and comment on the values. 

Solution 4.5 We can obtain values of Ax:lol• A ~4;lol and Ax:lol by adding 
1 10 - 1 (4) 1 1 . A "'1 = v lOPx to the values of A "'1• A "'1• and A "'1 m Example 4.4. 

x:l01 x:l01 x:l01 x:l01 
The values are shown in Table 4.5. 
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The actuarial values of the 10-year endowment insurance functions do not 
vary greatly with x, unlike the values of the 10-year term insurance functions. 
The reason for this is that the probability of surviving 10 years is large (10p20 = 
0.9973, 10P60 = 0.9425) and so for each value of x, the benefit is payable after 
10 years with a high probability. Note that v10 = 0.6139, and as time 10 years 
is the latest possible payment date for the benefit, the values of Ax:I01 • A ;~k 
and Ax:I01 must be greater than this for any age x. 

D 

4.4.8 Deferred insurance benefits 

Deferred insurance refers to insurance which does not begin to offer death 
benefit cover until the end of a deferred period. Suppose a benefit of $1 is 
payable immediately on the death of (x) provided that (x) dies between ages 
x + u and x + u + n. The present value random variable is 

z = {0-8T e x 

if Tx < u or Tx ::'.'.: u + n, 
if u ::S Tx < u + n. 

This random variable describes the present value of a deferred term insurance. 
We can, similarly, develop random variables to value deferred whole life or 
endowment insurance. 

The actuarial notation for the EPV of the deferred term insurance benefit is 
- 1 

ulAx:ni· Thus 

_ 1 f,u+n _81 
ulAx:lil = u e tPx/Lx+idt. 

Changing the integration variable to s = t - u gives 

IA- 1 rn -8(s+u) d 
u x:lil = lo e s+uPx /Lx+s+u S 

-8u rn -8s d 
= e uPx lo e sPx+u /Lx+s+u S 

= e-8u uPx Ax~u:lil =Vu uPx Ax~u:lil = uEx Ax~u:lil' 

A further expression for ulA1:ni is 

\Ai =Ai -A: i u x:lil x:u+n I x:UI 

which follows from formula ( 4.20) since 

(4.20) 

(4.21) 

(4.22) 

lu+n e-8t tPx/Lx+tdt = lau+n e-8t tPx/Lx+idt - !au e-8t tPx/Lx+tdt. 

Thus, the EPV of a deferred term insurance benefit can be found by differenc­
ing the EPVs of term insurance benefits for terms u + n and u. 
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Note the role of the pure endowment term uEx = vu uPx in equation (4.21). 
This acts similarly to a discount function. If the life survives u years, to the end 
of the deferred period, then the EPV at that time of the term insurance is 
Ax~u:ni· Multiplying by vu uPx converts this to the EPV at the start of the 
deferred period. 

Our main interest in this EPV is as a building block. We observe, for exam­
ple, that an n-year term insurance can be decomposed as the sum of n deferred 
term insurance policies, each with a term of one year, and we can write 

-1 111 -8t Ax·nJ = e tPxMx+1dt 
. 0 

n-1 r+l 

= L f e-8
t tPxMx+tdt 

r=O r 

n-1 

" -1 = ~ rlAx:Tl. 
r=O 

(4.23) 

A similar decomposition applies to a whole life insurance policy and we can 
write 

00 

- " -1 Ax=~ rlAx:Tl · 
r=O 

We can derive simil~ deferred benefit payable at the end of the 
year of death, with EPV denoted u IA1:ni. 

In particular, it is useful to note that 

I Ax= A1:ni + nlAx I 
where n I Ax is the EPV of a benefit of 1 payable at the end of the year of death 
of (x) if death occurs after time n, so that 

A1:ni =Ax - nlAx 

This relationship can be used to calculate A1:ni for integer x and n given a table 
of values of Ax and lx. 

- (m) 4.5 Relating Ax, Ax and Ax 

We mentioned in the introduction to this chapter that, even though insurance 
contracts with death benefits payable at the end of the year of death are very 
unusual, functions like Ax are still useful. The reason for this is that we can 
approximate Ax or AY11

) from Ax, and we might wish to do this if the only 
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Table 4.6 Ratios of Ai4) to 

Ax and Ax to Ax, Standard 

Ultimate Survival Model. 

x 

20 
40 
60 
80 

100 
120 

Ai4) /Ax 

1.0184 
1.0184 
1.0184 
1.0186 
1.0198 
1.0296 

1.0246 
1.0246 
1.0246 
1.0248 
1.0261 
1.0368 

95 

information we had was a life table, with integer age functions only, rather 
than a formula for the force of mortality that could be applied for all ages. 

In Table 4.6 we show values of the ratios of Ai4) to Ax and Ax to Ax, using 
the Standard Ultimate Survival Model from Section 4.3, with interest at 5% 
per year effective. 

We see from Table 4.6 that, over a very wide range of ages, the ratios of 
Ai4) to Ax and Ax to Ax are remarkably stable, giving the appearance of being 
independent of x. In the following section we show how we can approximate 
values of Aim) and Ax using values of Ax. 

4.5.1 Using the uniform distribution of deaths assumption 

The difference between Ax and Ax depends on the lifetime distribution between 
ages y and y + 1 for all y :::: x. If we do not have information about this, for 
example, because we have mortality information only at integer ages, we can 
approximate the relationship between the continuous function Ax and the dis­
crete function Ax using the fractional age assumptions that we introduced in 
Section 3.3. The most convenient fractional age assumption for this purpose is 
the uniform distribution of deaths assumption, or UDD. 

Recall, from equation (3.9), that under UDD, we have for 0 ::; s < 1, and 
for integer y, sPy fhy+s = qy. Using this assumption 
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00 lol = L kPx qx+kVk+l e(l-s)o ds using UDD 
k=O O 

e8 - 1 
=Ax--

8 

Because e8 = 1 + i, under the assumption ofUDD we have 

- i 
Ax= 8Ax. (4.24) 

This exact result under the UDD assumption gives rise to the approximation 

~ 
~ 

(4.25) 

The same approximation applies to term insurance and deferred insurance, 
which we can show by changing the limits of integration in the proof above. 

We may also want to derive a 1/mthly death benefit EPV, such as A_~m), from 
the annual function Ax. 

Under the UDD assumption we find that 

A(m) = _i_A 
x i(m) x' (4.26) 

and the right-hand side is used as an approximation to AYn). The proof of 
formula ( 4.26) is left as an exercise for the reader. 

We stress that these approximations apply only to death benefits. The endow­
ment insurance combines the death and survival benefits, so we need to split 
off the death benefit before applying one of the approximations. That is, under 
the UDD approach, 

A- ~ 1A1 + 11 x:lil ~ 8 x:lil V 11 Px · (4.27) 

4.5.2 Using the claims acceleration approach 

The claims acceleration approach is a more heuristic way of deriving an approx­
imate relationship between the annual death benefit EPV, Ax, and the 1/mthly 
or continuous EPVs, A_~n) and Ax. The only difference between these benefits 
is the timing of the payment. Consider, for example, Ax and A~4). The insured 
life, (x), dies in the year of agex+Kx to x+Kx+ 1. Under the end year of death 
benefit (valued by Ax), the sum insured is paid at time Kx + 1. Under the end of 
quarter-year of death benefit (valued by A~4\ the benefit will be paid either at 
Kx+ 1/4, Kx+2/4, Kx+3/4 or Kx+ 1 depending on the quarter year in which 
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the death occurred. If the deaths occur evenly over the year (the same assump­
tion as we use in the UDD approach), then, on average, the benefit is paid at 
time Kx + 5/8, which is 3/8 years earlier than the end of year of death benefit. 

Similarly, suppose the benefit is paid at the end of the month of death. 
Assuming deaths occur uniformly over the year, then on average the benefit 
is paid at Kx + 13 /24, which is 11/24 years earlier than the end year of death 
benefit. 

In general, for an l/mthly death benefit, assuming deaths are uniformly dis­
tributed over the year of age, the average time of payment of the death benefit 
is (m + l)/2m in the year of death. 

So we have the resulting approximation 

That is 

(m) m-1 
Ax R:3 (1 + i) 2lil Ax. (4.28) 

For the continuous benefit EPV, Ax, we let m --+ oo in equation (4.28), to give 
the approximation 

I Ax R:3 (1 + i)112 Ax· I (4.29) 

This is explained by the fact that, if the benefit is paid immediately on death, 
and lives die uniformly through the year, then, on average, the benefit is paid 
half-way through the year of death, which is half a year earlier than the benefit 
valued by Ax. 

As with the UDD approach, these approximations apply only to death bene­
fits. Hence, for an endowment insurance using the claims acceleration approach 
we have 

A- ~ (l + ') 1;2A 1 + 11 x:iil ~ l x:iil V n Px · (4.30) 

Note that both the UDD and the claims acceleration approaches give values 
for A£11l or Ax such that the ratios A£11l /Ax and Ax/ Ax are independent of 
x. Note also that for i = 5%, i/i<4l = 1.0186 and i/8 = 1.0248, whilst 
(1 + i)318 = 1.0185 and (1 + i)112 = 1.0247. The values in Table 4.6 show 
that both approaches give good approximations"in these cases. 
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4.6 Variable insurance benefits 

For all the insurance benefits studied in this chapter the EPV of the benefit can 
be expressed as the sum over all the possible payment dates of the product of 
three terms: 

• the amount of benefit paid, 
• the appropriate discount factor for the payment date, and 
• the probability that the benefit will be paid at that payment date. 

This approach works for the EPV of any traditional benefit - that is, where 
the future lifetime is the sole source of uncertainty. It will not generate higher 
moments or probability distributions. 

The approach can be justified technically using indicator random vari­
ables. Consider a life contingent event E - for example, E is the event that a 
life aged x dies in the interval (k, k + l]. The indicator random variable is 

I(E) = g if Eis true, 
if E is false. 

In this example, Pr[E is True] = klqx, so the expected value of the indicator 
random variable is 

and, in general, the expected value of an indicator random variable is the prob­
ability of the indicator event. 

Consider, for example, an insurance that pays $1000 after 10 years if (x) has 
died by that time, and $2000 after 20 years if (x) dies in the second 10-year 
period, with no benefit otherwise. 

We can write the present value random variable as 

1 000 I (Tx ::S 10)v10 + 2000 I (10 < Tx ::S 20)v20 

and the EPV is then 

Indicator random variables can also be used for continuous benefits. Here we 
consider indicators of the form 

I(t < Tx ::St +dt) 

for infinitesimal dt, with associated probability 

E[I (t < Tx ::::; t + dt)] = Pr[t < Tx ::S t + dt] 

= Pr[Tx > t] Pr[Tx < t + dtlTx > t] 

R::! tPx /Lx+t dt. 

I 
I 
I 
! 

t 
& 

J 
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Consider, for example, an increasing insurance policy with a death benefit of 
Tx payable at the moment of death. That is, the benefit is exactly equal to the 
number of years lived by an insured life from age x to his or her death. This is a 
continuous whole life insurance under which the benefit is a linearly increasing 
function. 

To find the EPV of this benefit, we note that the payment may be made at 
any time, so we consider all the infinitesimal intervals (t, t + dt), and we sum 
over all these intervals by integrating from t = 0 tot = oo. 

First, we identify the amount, discount factor and probability for a benefit 
payable in the interval (t, t + dt). The amount is t, the discount factor is e-81 . 

The probability that the benefit is paid in the interval (t, t+dt) is the probability 
that the life survives from x to x + t, and then dies in the infinitesimal interval 

(t, t + dt), which gives an approximate probability of 1 Px f.lx+t dt. 

So, we can write the EPV of this benefit as 

la 00 

t e -8t t Px f.lx+tdt. (4.31) 

In actuarial notation we write this as (i A)x. The I here stands for 'increasing' 
and the bar over the I denotes that the increases are continuous. 

An alternative approach to deriving equation (4.31) is to identify the present 
value random variable for the benefit, denoted by Z, say, in terms of the future 
lifetime random variable, 

Then any moment of Z can be found from 

k {
00 

-8t k 
E[Z] =lo (te ) tPx f.lx+t dt. 

The advantage of the first approach is that it is very flexible and generally 
quick, even for very complex benefits. 

If the policy term ceases after a fixed term of n years, the EPV of the death 
benefit is 

- - 1 rn -8t 
(IA)x:ni= lo te tPxf.lx+1dt. 

There are a number of other increasing or decreasing benefit patterns that are 
fairly common. We present several in the following examples. 

Example 4.6 Consider an n-year term insurance policy issued to (x) under 
which the death benefit is k+ 1 if death occurs between ages x +k and x +k+ 1, 
fork = 0, 1, 2, ... , n - 1. Assume that the benefit is paid at the end of the year 
of death. 
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(a) Derive a formula for the EPV of the benefit using the first approach 
described, that is multiplying together the amount, the discount factor and 
the probability of payment, and summing for each possible payment date. 

(b) Derive a formula for the variance of the present value of the benefit. 

Solution 4.6 (a) If the benefit is paid at time k+ 1, the benefit amount is (k+ 1) 
and the discount factor is vk+ 1. The probability that the benefit is paid at 
that date is the probability that the policyholder died in the year (k, k + 1], 
which is k lqx, so the EPV of the death benefit is 

n-1 

L vk+1(k + 1) klqx. 
k=O 

In actuarial notation the above EPV is denoted (I A);:ill' 

If the term n is infinite, so that this is a whole life version of the increas­
ing annual policy, with benefit k + 1 following death in the year k to k + 1, 
the EPV of the death benefit is denoted (I A)x where 

00 

(I A)x = L vk+1(k + 1) klqx. 
k=O 

(b) We must go back to first principles. First, we identify the random vari­
able as 

So 

n-1 

if Kx < n, 
if Kx :=::. n. 

E[Z2] = L v2(k+l)(k + 1)2 klqx, 

k=O 

and the variance is 

n-1 

V[Z] = I:v2Ck+ll(k+ 1)2 klqx - (UA);:ill)
2

. 

k=O 

D 

Example 4.7 A \'{hole life insurance policy offers an increasing death benefit 
payable at the end of the quarter year of death. If (x) dies in the first year of 
the contract, then the benefit is 1, in the second year it is 2, and so on. Derive 
an expression for the EPV of the death benefit. 
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Solution 4.7 First, we note that the possible payment dates are 1/4, 2/4, 
3/4, .... Next, if (x) dies in the first year, then the benefit payable is 1, if 
death occurs in the second year the benefit payable is 2, and so on. Third, 
corresponding to the possible payment dates, the discount factors are v114 , 

v2f4, .... 

The probabilities associated with the payment dates are i qx, 1J1 qx, 2 J 1 qx, 
4 , 4 4 4 4 

;\ l1qx, · · · · 4 4 

Hence, the EPV, which is denoted (I A C4))x, can be calculated as 

0 

We now consider the case when the amount of the death benefit increases in 
geometric progression. This is important in practice because compound rever­
sionary bonuses will increase the sum insured as a geometric progression. 

Example 4.8 Consider an n-year term insurance issued to (x) under which the 
death benefit is paid at the end of the year of death. The benefit is 1 if death 
occurs between ages x and x + 1, 1 + j if death occurs between ages x + 1 and 
x + 2, (1 + j)2 if death occurs between ages x + 2 and x + 3, and so on. Thus, 
if death occurs between ages x + k and x + k + 1, the death benefit is (1 + j)k 

fork = 0, 1, 2, ... , n - 1. Derive a formula for the EPV of this death benefit. 

Solution 4.8 The amount of benefit is 1 if the benefit is paid at time 1, (1 + j) 
if the benefit is paid at time 2, (1 + j)2 if the benefit is paid at time 3, and so 
on, up to time n. The EPV of the death benefit is then 

V qx + (1 + j)v2
1 lqx + (1 + })2 v3 2Jqx + · · · + (1 + j)n-l V

11
11-1 Jqx 

(4.32) 
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where 

i* = 1 + i - 1 = i - j 
l+J l+J 

D 

The notation A 1 
::i .• indicates that the EPV is calculated using the rate of inter-x:n 11 

est i*, rather than i. In most practical situations, i > j so that i* > 0. 

Example 4.9 Consider an insurance policy issued to (x) under which the death 
benefit is (1 + j)t if death occurs at age x + t, with the death benefit being 
payable immediately on death. 

(a) Derive an expression for the EPV of the death benefit if the policy is an 
n-year term insurance. 

(b) Derive an expression for the EPV of the death benefit if the policy is a 
whole life insurance. 

Solution 4.9 (a) The present value of the death benefit is (1 + j)TxvTx if 
Tx < n, and is zero otherwise, so that the EPV of the death benefit is 

r . t t -1 Jo (1 + J) V tPx/J-x+tdt = Ax:/ili* 

where 

'* 1 + i 
I =---1. 

l+J 

(b) Similarly, if the policy is a whole life insurance rather than a term insur­
ance, then the EPV of the death benefit would be 

1
00 

. t t -

0 
(1 + J) V tPx/J-x+tdt = (AxL• 

where 

'* 1 + i 
l =---1. 

l+J 

D 

4. 7 Functions for select lives 

Throughout this chapter we have developed results in terms of lives subject to 
ultimate mortality. We have taken this approach simply for ease of presentation. 
All of the above development equally applies to lives subject to select mortality. 

For example, A[x] denotes the EPV of a benefit of 1 payable immediately 
on the death of a select life (x ). Similarly, A[x]:/il denotes the EPV of a benefit 
of 1 payable at the end of the year of death within n years, of a newly selected 
life age x, or at age x + n if (x) survives. 
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4.8 Notes and further reading 

The Standard Ultimate Survival Model incorporates Makeham's law as its sur­
vival model. A feature of Makeham's law is that we can integrate the force of 

mortality analytically and hence we can evaluate, for example, 1 Px analytically, 
as in Exercise 2.11. This in turn means that the EPV of an insurance benefit 
payable iIIlillediately on death, for example Ax, can be written as an integral 
where the integrand can be evaluated directly, as follows 

- -8t 1
00 

Ax= 
0 

e tPx /Lx+t dt. 

This integral cannot be evaluated analytically but can be evaluated numerically. 
In many practical situations, the force of mortality cannot be integrated analyt­
ically, for example if /Lx is a GM(r, s) function withs :'.".: 2, from Section 2.7. 
In such cases, 1 Px can be evaluated numerically but not analytically. Functions 

such as Ax can still be evaluated numerically but, since the integrand has to 
be evaluated numerically, the procedure may be a little more complicated. See 
Exercise 4.22 for an example. The survival model in Exercise 4.22 has been 

derived from data for UK whole life and endowment insurance policyholders 
(non-smokers), 1999-2002. See CMI (2006, Table 1). 

4.9 Exercises 

Exercise 4.1 You are given the following table of values for lx and Ax, assum­
ing an effective interest rate of 6% per year. 

Calculate 

(a) 5£35, 

(b) A 1 
35:51' 

(c) 5JA35, and 

x 

35 
36 
37 
38 
39 
40 

(d) A35:51 assuming UDD. 

lx Ax 

100000.00 0.151375 
99737.15 0.158245 
99455.91 0.165386 
99154.72 0.172804 
98831.91 0.180505 
98485.68 0.188492 
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Exercise 4.2 Using tables in Appendix D and interest at 5 % per year effective, 
calculate 

(a) A;o:201' 

(b) A4o:201 assuming UDD, 

(c) 10\A2s. 

Exercise 4.3 Assuming a uniform distribution of deaths over each year of age, 
show that A~m) = (i/i(ml)Ax. 

Exercise 4.4 A whole life insurance policy issued to a life aged exactly 30 
has an increasing sum insured. In the tth policy year, t = 1, 2, 3, ... , the sum 
insured is $100 000 (1.031- 1 ). Using the Standard Ultimate Survival Model, 
with interest at 5% per year, calculate the EPV of this benefit. 

Exercise 4.5 (a) Show that 

n-2 
A ""°' k+l I + n x:fil = L__, V k qx V n-lPx· 

k=O 

(b) Compare this formula with formula ( 4.17) and comment on the differ­
ences. 

Exercise 4.6 Show that 

(IA(m)) = A(m) + vp A(m) + v2 p A(m) + · · · x x x x+l 2 x x+2 

and explain this result intuitively. 

Exercise 4.7 (a) Derive the following recursion formula for an n-year 
increasing term insurance: 

(b) Give an intuitive explanation of the formula in part (a). 

(c) You are given that (I A)so = 4.99675, A 1 
,-i = 0.00558, As1 = 0.24905 

50:11 
and i = 0.06. Calculate (I A)s1 . 

Exercise 4.8 You are given that Ax = 0.25, Ax+20 = 0.40, Ax:W1 = 0.55 and 

i = 0.03. Calculate 10 000Ax:W1 using 

(a) claims acceleration, and 

(b) UDD. 
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Exercise 4.9 Show that 

n 

(I A)_J:ill = (n + l)A_J:ill - L A;:kl 
k=l 

and explain this result intuitively. 

Exercise 4.10 Assuming a uniform distribution of deaths over each year of 
age, find an expression for (i A)x in terms of Ax and (I A)x. 

Exercise 4.11 Show that Ax is a decreasing function of i, and explain this 
result by general reasoning. 

Exercise 4.12 Calculate A10 given that 

A50:Wl = 0.42247, A
5
1 

::w = 0.14996, 
0:201 

Aso = 0.31266. 

Exercise 4.13 Under an endowment insurance issued to a life aged x, let X 
denote the present value of a unit sum insured, payable at the moment of death 
or at the end of the n-year term. 

Under a term insurance issued to a life aged x, let Y denote the present value 
of a unit sum insured, payable at the moment of death within the n-year term. 

Given that 

V[X] = 0.0052, vn = 0.3, nPx = 0.8, E[Y] = 0.04, 

calculate V[Y]. 

Exercise 4.14 Show that if vy = - log Py for y = x, x + 1, x + 2, ... , then 
under the assumption of a constant force of mortality between integer ages, 

00 

A- """' t Vx+tU - VPx+t) 
x = L._..v tPx · 

t=O 8 + Vx+t 

Exercise 4.15 Let Z1 denote the present value of an n-year term insurance 
benefit, issued to (x). Let z2 denote the present value of a whole of life insur­
ance benefit, issued to the same life. 

Express the covariance of Z1 and Z2 in actuarial functions, simplified as far 
as possible. 

Exercise 4.16 You are given the following excerpt from a select life table. 
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[x] l[x] l[x]+l l[x]+2 l[x]+3 lx+4 x+4 

[40] 100000 99899 99724 99520 99288 44 
[41] 99802 99689 99502 99283 99033 45 
[42] 99597 99471 99268 99030 98752 46 
[43] 99365 99225 99007 98747 98435 47 
[44] 99120 98964 98726 98429 98067 48 

Assuming an interest rate of 6% per year, calculate 

(a) A[40J+I:41' 

(b) the standard deviation of the present value of a four-year term insurance, 
deferred one year, issued to a newly selected life aged 40, with sum insured 
$100 000, payable at the end of the year of death, and 

( c) the probability that the present value of the benefit described in (b) is less 

than or equal to $85 000. 

Exercise 4.17 (a) Descdbe in words the insurance benefits with the present 

values given below. 

(i) 

(ii) 

if Tx :S 15, 
if Tx > 15. 

if Tx :S 5, 
if 5 < r~ :s 15, 
if Tx > 15. 

(b) Write down in integral form the formula for the expected value for (i) Z1 

and (ii) Z2. 

( c) Derive expressions in terms of standard actuadal functions for the expected 

values of Z1 and Z2. 

( d) Derive an expression in terms of standard actuadal functions for the covari­

ance of Z1 and Z2. 

Exercise 4.18 (a) Describe in words the insurance benefits with present 
value given by 

if T30 :S 25, 

if T30 > 25. 

(b) Write down an expression in terms of standard actuarial functions for E[Z]. 

Exercise 4.19 Using the tables in Appendix D and interest at 5% per year 

effective, calculate the standard deviation of the present value of a payment of 
$100 000 at the end of the year of death of a life now aged 30 who is subject to 
ultimate mortality, if payment is contingent on death occurring 



(a) at any age, and 

(b) before age 50. 
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Exercise 4.20 Suppose that Makeham's law applies with A= 0.0001, 
B = 0.00035 and c = 1.075. Assume also that the effective rate of interest is 

6% per year. 

(a) Use Excel and backward recursion in parts (i) and (ii). 

(i) Construct a table of values of Ax for integer ages, starting at x = 50. 

(ii) Construct a table of values of A~4) for x = 50, 50.25, 50.5, .... (Do 

not use UDD for this.) 

(iii) Hence, write down the values of Aso, A100, A~~ and Ai~o· 
(b) Use your values for Aso and A100 to estimate A~~ and Ai~o using the UDD 

assumption. 

(c) Compare your estimated values for the A C4) functions (from (b)) with your 
accurate values (from (a)). Comment on the differences. 

Exercise 4.21 A life insurance policy issued to a life aged 50 pays $2000 at 
the end of the quarter year of death before age 65 and $1000 at the end of the 
quarter year of death after age 65. Use the Standard Ultimate Survival Model, 
with interest at 5% per year, in the following. 

(a) Calculate the EPV of the benefit. 

(b) Calculate the standard deviation of the present value of the benefit. 

(c) The insurer charges a single premium of $500. Assuming that the insurer 
invests all funds at exactly 5% per year effective, what is the probability 
that the policy benefit has greater value than the accumulation of the single 

premium? 

Exercise 4.22 The force of mortality for a survival model is given by 

where 

2 
/Lx = A + BCx Dx , 

A= 3.5 x 10-4 , B = 5.5 x 10-4 , C = 1.00085, D = 1.0005. 

(a) Calculate tP60 fort= 0, 1/40, 2/40, ... , 2. 
Hint: Use the repeated Simpson's rule. 

(b) Calculate A1 ;;-, using an effective rate of interest of 5% per year. 
60:21 

Hint: Use the repeated Simpson's rule. 
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Answers to selected exercises 

4.1 (a) 0.735942 
(b) 0.012656 
(c) 0.138719 
(d) 0.748974 

4.2 (a) 0.00645 
(b) 0.38163 
(c) 0.05907 

4.4 $33 569.47 
4.7 (c) 5.07307 
4.8 (a) 5 507.44 

(b) 5 507.46 
4.12 0.59704 
4.13 O.Ql 

4.16 (a) 0.79267 
(b) $7519.71 
(c) 0.99825 

4.19 (a) 7186 
(b) 6 226 

4.20 (a) (iii) 0.33587, 0.87508, 0.34330, 0.89647 
(b) 0.34333, 0.89453 

4.21 (a) $218.83 
(b) $239.73 
(c) 0.04054 

4.22 (a) Selected values are 1/4P60 

2P60 = 0.991903 
(b) 0.007725 

0.999031, P60 0.996049 and 




