
Power Series Solutions 

Recall, a power series in powers of                is an infinite 

sum on the form 

 

                                          

 

for example:  

 

 

 

The set of all values of       for which a power series converges is  

called the interval of convergence of the series.  
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Suppose  that the power series                          

 

 

 

has a positive radius of convergence, that is there is  a positive 

number       such that  the power series converges for all                                 

 

                                             .   

 

If                                  for all                , then  
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Two power series                             and                                 can be 

 

combined  by addition or subtraction provided that: 

 

(i) they start with the same power of    

(ii) their summation indices start at the same value. 

 

Definition: 

A function      is said to be analytic at a point          if it can be  

represented  by a power series on the form                         ,     

with a positive radius of convergence. 

For example,               and           are analytic functions  everywhere, 

while         is analytic except at          . 
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Remark. Every polynomial is analytic everywhere, and every 

rational function is analytic except at the zeros of its  

denominator .  

Consider the second order differential equation  

                                              

                                                                  

Dividing both sides by          , Eq.(1) can be written as            

 

 

 

 

A point      is called an ordinary point of equation (1) if both                         

                             are analytic at     . 
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A point which is not an ordinary point of the differential equation is 

called a singular point of the equation. 

The point              is an ordinary point of the DE           

 
 

Because both functions                                             are analytic at   

 

since                       , 

 

and these series have the interval of  convergence                     , 

while               is a singular point of the DE 
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A singular point           is called regular singular point of Eq.(1) 

if both                     and                         are analytic at     . A 

singular point which is not regular is said to be irregular singular 

point. 

Example 
Determine the ordinary points, the regular singular points and 

irregular singular points of the DE: 

 

 

Let us put the equation on the form 
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Thus all real numbers except 0,1,-1 are ordinary points and 

0,-1,1 are singular points. 

Now, 
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At            we have 

 

 

The first function is discontinuous at              , therefore this is 

irregular singular point. 

At            we have 

 

 

Both functions are analytic at          , thus it is regular singular point. 

 At             we have 

 

 

Both functions are analytic at             , thus it is regular singular 

point. 
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Theorem: 

If        is an ordinary point of the DE 

 

 

then there are two linearly independent power series solutions of  

this equation on the form 

 

  

 with an interval of convergence centered  at      and has a  

positive radius of convergence.                                        

                                                                  

 

 

 

 

Suppose that                         are analytic at     . 
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Find the general solution in power series form for the differential 

equation 

 

 

about the ordinary point             

Solution. Assume that the solution is given by 

 

 

using the values of          and        in equation (1) we get   

  

Example  
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To make the powers of       similar in both series, put 

                 in the firs series and                in the second one , to get 

 

 

 

 

 

 

Since this true for all values of         we get 
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From the recurrence relation (2) we obtain 

 

 

 

 

 

 

 

 

Now, from the assumption we have 
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Or 

 

 

 

 

 

Example 

Find the general solution of the differential equation 

 

 

about the ordinary point             
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Solution. First let us write equation (1) as 

 

 

 

Assume  

 

using the values of            and        in equation (2) we get 

 

 

 

To make the powers of       similar in all series, put 

                 in the firs series,                in the second one , and 

                  in the last one, to get 
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From the recurrence relation (3) we obtain 
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Now, from our assumption we have 
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Example  

Find the general solution in power series form for the differential 

equation 

 

 

about the ordinary point             

Solution. Assume that the solution is given by 

 

 

using the values of          and        in equation (1) we get 

 

 

Put                in the firs series and                in the second one , to get 
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Which implies that 

 

 

 

 

 

From the recurrence relation (2) we obtain 
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Which implies 

 

 

 

 

and so on. Now, from the assumption we have 
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Example  

Find the general solution in power series form for the differential 

equation 

 

 

about the ordinary point             

Solution. Assume that the solution is given by 

 

 

Now, let us write equation   (1)  as 

 

 

using the values of             and             in (2) we get 
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Putting                in the firs series,                in the second one and                                

             in the last one  we get 

 

 

or 

 

 

 

 

 

It follows that 
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which implies that 
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Using the values of these coefficients in the assumption we have 
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Remark 
We can use the following change of variables to transform the 

ordinary point           to the origin         and proceed as before: 

  

 

 
 

Thus the differential equation becomes 
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Example  

Find the solution of the initial value problem 

 

using the power series method about the ordinary point             

Solution. Assume that the solution is given by 

 

 

using the values of           and             in (1) we obtain: 

 

 

 

Put                in the firs series,              in the second,   and                          

              in the last one , to get 
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Now, from the assumption we have 
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