Power Series Solutions

Recall, a power series in powers of $\left(x-x_{0}\right)$ is an infinite sum on the form

$$
\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}
$$

for example:

$$
\sum_{n=0}^{\infty} \frac{(x-2)^{n}}{3^{n+1}}, \sum_{n=1}^{\infty} \frac{(3 x+1)^{n-1}}{\sqrt{n+1}}, \sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!} .
$$

The set of all values of X for which a power series converges is called the interval of convergence of the series.

Suppose that the power series

$$
\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}
$$

has a positive radius of convergence, that is there is a positive number $\quad \rho_{\text {such }}$ that the power series converges for all
$x \in I=\left(x_{0}-\rho, x_{0}+\rho\right)$
If $\sum_{n=1}^{\infty} a_{n}\left(x-x_{0}\right)^{n}=0$ for all $\quad x \in I$, then

$$
a_{n}=0 \quad \text { for all } n=0,1, \ldots
$$

Two power series $\quad \sum_{n=i}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ and $\quad \sum_{m=j}^{\infty} b_{n}\left(x-x_{0}\right)^{m} \quad$ can be combined by addition or subtraction provided that:
(i) they start with the same power of x
(ii) their summation indices start at the same value.

Definition:

A function f is said to be analytic at a point x_{0} if it can be represented by a power series on the form $\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$, with a positive radius of convergence.
For example, $\sin x$ and e^{x} are analytic functions everywhere, while $\frac{1}{x}$ is analytic except at $x=0$.

Remark. Every polynomial is analytic everywhere, and every rational function is analytic except at the zeros of its denominator .
Consider the second order differential equation

$$
\begin{equation*}
a_{2}(x) \frac{d^{2} y}{d x^{2}}+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0 \tag{1}
\end{equation*}
$$

Dividing both sides by $a_{2}(x)$, Eq.(1) can be written as

$$
\begin{aligned}
& \frac{d^{2} y}{d x^{2}}+p(x) \frac{d y}{d x}+q(x) y=0 \\
& \text { where } p(x)=\frac{a_{1}(x)}{a_{2}(x)}, q(x)=\frac{a_{0}(x)}{a_{2}(x)}
\end{aligned}
$$

A point x_{0} is called an ordinary point of equation (1) if both $p(x)$ and $q(x)$ are analytic at x_{0}.

A point which is not an ordinary point of the differential equation is called a singular point of the equation.
The point $x_{0}=0$ is an ordinary point of the DE

$$
\frac{d^{2} y}{d x^{2}}+\left(e^{x}\right) \frac{d y}{d x}+(\sin x) y=0
$$

Because both functions $p(x)=e^{x}$ and $q(x)=\sin x$ are analytic at x_{0}
since $\quad e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \quad, \quad \sin x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}$
and these series have the interval of convergence $(-\infty, \infty)$, while $x_{0}=0$ is a singular point of the DE

$$
\frac{d^{2} y}{d x^{2}}+(\ln x) \frac{d y}{d x}+x^{2} y=0
$$

A singular point $x=x_{0}$ is called regular singular point of Eq.(1) if both $\left(x-x_{0}\right) p(x)$ and $\left(x-x_{0}\right)^{2} q(x)$ are analytic at x_{0}. A singular point which is not regular is said to be irregular singular point.

Example

Determine the ordinary points, the regular singular points and irregular singular points of the DE :

$$
\left(x^{4}-x^{2}\right) y^{\prime \prime}+(2 x+1) y^{\prime}+x^{2}(x+1) y=0
$$

Let us put the equation on the form

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0, \text { where }
$$

$$
\begin{aligned}
& p(x)=\frac{2 x+1}{x^{4}-x^{2}}=\frac{2 x+1}{x^{2}(x-1)(x+1)}, \text { and } \\
& q(x)=\frac{x^{2}(x+1)}{x^{4}-x^{2}}=\frac{x^{2}(x+1)}{x^{2}(x-1)(x+1)}=\frac{1}{x-1},
\end{aligned}
$$

after canceling common factors .

Thus all real numbers except $0,1,-1$ are ordinary points and $0,-1,1$ are singular points.
Now,

$$
\begin{aligned}
& \left(x-x_{0}\right) p(x)=\left(x-x_{0}\right) \frac{2 x+1}{x^{2}(x-1)(x+1)}, \text { and } \\
& \left(x-x_{0}\right)^{2} q(x)=\frac{\left(x-x_{0}\right)^{2}}{x-1}
\end{aligned}
$$

At $x_{0}=0$ we have

$$
\left(x-x_{0}\right) p(x)=\frac{2 x+1}{x(x-1)(x+1)}, \text { and }\left(x-x_{0}\right)^{2} q(x)=\frac{x^{2}}{x-1} .
$$

The first function is discontinuous at $x=0$, therefore this is irregular singular point.
At $x_{0}=1$ we have

$$
\left(x-x_{0}\right) p(x)=\frac{2 x+1}{x^{2}(x+1)}, \text { and }\left(x-x_{0}\right)^{2} q(x)=x-1
$$

Both functions are analytic at $x=1$, thus it is regular singular point. At $x_{0}=-1$ we have

$$
\left(x-x_{0}\right) p(x)=\frac{2 x+1}{x^{2}(x-1)}, \text { and }\left(x-x_{0}\right)^{2} q(x)=\frac{(x+1)^{2}}{x-1} .
$$

Both functions are analytic at $x=-1$, thus it is regular singular point.

Theorem:

If x_{0} is an ordinary point of the DE

$$
\frac{d^{2} y}{d x^{2}}+p(x) \frac{d y}{d x}+q(x) y=f(x)
$$

then there are two linearly independent power series solutions of this equation on the form

$$
y_{1}=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}, \quad y_{2}=\sum_{n=0}^{\infty} b_{n}\left(x-x_{0}\right)^{n},
$$

with an interval of convergence centered at x_{0} and has a positive radius of convergence.

Example

Find the general solution in power series form for the differential equation

$$
\begin{equation*}
y^{\prime}-2 x y=0 \tag{1}
\end{equation*}
$$

about the ordinary point $x_{0}=0$.
Solution. Assume that the solution is given by

$$
y=\sum_{n=0}^{\infty} c_{n} x^{n} \Rightarrow y^{\prime}=\sum_{n=1}^{\infty} n c_{n} x^{n-1},
$$

using the values of $\quad y$ and y^{\prime} in equation (1) we get

$$
\sum_{n=1}^{\infty} n c_{n} x^{n-1}-\sum_{n=0}^{\infty} 2 c_{n} x^{n+1}=0 .
$$

To make the powers of x similar in both series, put $n-1=k$ in the firs series and $n+1=k$ in the second one, to get

$$
\begin{aligned}
& \sum_{k=0}^{\infty}(k+1) c_{k+1} x^{k}-\sum_{k=1}^{\infty} 2 c_{k-1} x^{k}=0, \\
& \Rightarrow c_{1}+\sum_{k=1}^{\infty}(k+1) c_{k+1} x^{k}-\sum_{k=1}^{\infty} 2 c_{k-1} x^{k}=0, \\
& \Rightarrow c_{1}+\sum_{k=1}^{\infty}\left[(k+1) c_{k+1}-2 c_{k-1}\right] x^{k}=0 .
\end{aligned}
$$

Since this true for all values of x we get

$$
\begin{align*}
& c_{1}=0, \text { and } \\
& c_{k+1}=\frac{2}{k+1} c_{k-1}, \text { for all } k=1,2,3, \ldots \tag{2}
\end{align*}
$$

From the recurrence relation (2) we obtain

$$
\begin{aligned}
& k=1 \Rightarrow c_{2}=c_{0}, \\
& k=2 \Rightarrow c_{3}=\frac{2}{3} c_{1}=0, \\
& k=3 \Rightarrow c_{4}=\frac{1}{2} c_{2}=\frac{1}{2} c_{0}, \\
& k=4 \Rightarrow c_{5}=\frac{2}{5} c_{3}=0, \\
& k=5 \Rightarrow c_{6}=\frac{1}{3} c_{4}=\frac{1}{6} c_{0},
\end{aligned}
$$

Now, from the assumption we have

$$
y=\sum_{n=0}^{\infty} c_{n} x^{n}=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+c_{4} x^{4}+c_{5} x^{5}+c_{6} x^{6}+\ldots
$$

Or

$$
\begin{aligned}
y & =c_{0}+c_{0} x^{2}+\frac{1}{2} c_{0} x^{4}+\frac{1}{6} c_{0} x^{6}+\ldots \\
& =c_{0}\left[1+\frac{x^{2}}{1!}+\frac{x^{4}}{2!}+\frac{x^{6}}{3}+\ldots\right] \\
& =c_{0} \sum_{k=0}^{\infty} \frac{x^{2 k}}{k!}=e^{2 x}
\end{aligned}
$$

Example
Find the general solution of the differential equation

$$
\begin{equation*}
(x-1) y^{\prime}+y^{\prime}=0 \tag{1}
\end{equation*}
$$

about the ordinary point $x_{0}=0$.

Solution. First let us write equation (1) as

$$
\begin{equation*}
x y^{\prime \prime}-y^{\prime \prime}+y^{\prime}=0 \tag{2}
\end{equation*}
$$

Assume $y=\sum_{n=0}^{\infty} c_{n} x^{n} \Rightarrow y^{\prime}=\sum_{n=1}^{\infty} n c_{n} x^{n-1}, y^{\prime \prime}=\sum_{n=2}^{\infty} n(n-1) c_{n} x^{n-2}$,
using the values of y, y^{\prime} and $y^{\prime \prime}$ in equation (2) we get

$$
\sum_{n=2}^{\infty} n(n-1) c_{n} x^{n-1}-\sum_{n=2}^{\infty} n(n-1) c_{n} x^{n-2}+\sum_{n=1}^{\infty} n c_{n} x^{n-1}=0 .
$$

To make the powers of \boldsymbol{X} similar in all series, put $n-1=k$ in the firs series, $n-2=k$ in the second one, and $n-1=k$ in the last one, to get

$$
\begin{align*}
& \sum_{k=1}^{\infty} k(k+1) c_{k+1} x^{k}-\sum_{k=0}^{\infty}(k+1)(k+2) c_{k+2} x^{k}+\sum_{k=0}^{\infty}(k+1) c_{k+1} x^{k}=0, \\
& \Rightarrow \sum_{k=1}^{\infty} k(k+1) c_{k+1} x^{k}-2 c_{2}-\sum_{k=1}^{\infty}(k+1)(k+2) c_{k+2} x^{k}+c_{1}+\sum_{k=0}^{\infty}(k+1) c_{k+1} x^{k}=0, \\
& \Rightarrow c_{1}-2 c_{2}+\sum_{k=1}^{\infty}\left[(k+1)(k+1) c_{k+1}-(k+1)(k+2) c_{k+2}\right] x^{k}=0, \\
& c_{1}-2 c_{2}=0 \Rightarrow c_{2}=\frac{1}{2} c_{1}, \text { and } \\
& c_{k+2}=\frac{k+1}{k+2} c_{k+1}, \text { for all } k=1,2,3, \ldots \tag{3}
\end{align*}
$$

From the recurrence relation (3) we obtain

$$
k=1 \Rightarrow c_{3}=\frac{2}{3} c_{2}=\frac{1}{3} c_{1},
$$

$$
\begin{aligned}
& k=2 \Rightarrow c_{4}=\frac{3}{4} c_{3}=\frac{1}{4} c_{1}, \\
& k=3 \Rightarrow c_{5}=\frac{1}{5} c_{1},
\end{aligned}
$$

Now, from our assumption we have

$$
\begin{aligned}
y=\sum_{n=0}^{\infty} c_{n} x^{n} & =c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+c_{4} x^{4}+c_{5} x^{5}+\ldots \\
& =c_{0}+c_{1} x+\frac{1}{2} c_{1} x^{2}+\frac{1}{3} c_{1} x^{3}+\frac{1}{4} c_{1} x^{4}+\frac{1}{5} c_{1} x^{5}+\ldots \\
& =c_{0}+c_{1}\left[x+\frac{1}{2} x^{2}+\frac{1}{3} x^{3}+\frac{1}{4} x^{4}+\frac{1}{5} x^{5}+\ldots\right] \\
& =c_{0}+c_{1} \sum_{n=1}^{\infty} \frac{x^{k}}{k}
\end{aligned}
$$

Example

Find the general solution in power series form for the differential equation

$$
\begin{equation*}
y^{\prime \prime}-x y=2+3 x \tag{1}
\end{equation*}
$$

about the ordinary point $x_{0}=0$.
Solution. Assume that the solution is given by

$$
y=\sum_{n=0}^{\infty} c_{n} x^{n} \Rightarrow y^{\prime}=\sum_{n=1}^{\infty} n c_{n} x^{n-1}, y^{\prime \prime}=\sum_{n=2}^{\infty} n(n-1) c_{n} x^{n-2},
$$

using the values of y and $y^{\prime \prime}$ in equation (1) we get

$$
\sum_{n=2}^{\infty} n(n-1) c_{n} x^{n-2}-\sum_{n=0}^{\infty} c_{n} x^{n+1}=2+3 x
$$

Put $n-2=k$ in the firs series and $n+1=k$ in the second one, to get

$$
\sum_{n=0}^{\infty}(k+1)(k+2) c_{k+2} x^{k}-\sum_{k=1}^{\infty} c_{k-1} x^{k}=2+3 x
$$

Or
$c_{2}+\left(6 c_{3}-c_{0}\right) x+\sum_{k=2}^{\infty}\left[(k+1)(k+2) c_{k+2}-c_{k-1}\right] x^{k}=2+3 x$
Which implies that
$c_{2}=2$,
$6 c_{3}-c_{0}=3 \Rightarrow c_{3}=\frac{1}{6} c_{0}, \quad$ and
$(k+1)(k+2) c_{k+2}-c_{k-1}=0$, for $k \geq 2$.

From the recurrence relation (2) we obtain

$$
c_{k+2}=\frac{1}{(k+1)(k+2)} c_{k-1}, k=2,3,4, \ldots
$$

Which implies

$$
\begin{aligned}
& k=2 \Rightarrow c_{4}=\frac{1}{12} c_{1} \\
& k=3 \Rightarrow c_{5}=\frac{1}{20} c_{2}=\frac{1}{10} \\
& k=4 \Rightarrow c_{6}=\frac{1}{30} c_{3}=\frac{1}{180} c_{0}
\end{aligned}
$$

and so on. Now, from the assumption we have

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} c_{n} x^{n}=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+c_{4} x^{4}+c_{5} x^{5}+c_{6} x^{6}+\ldots \\
& =c_{0}+c_{1} x+2 x^{2}+\frac{1}{6} c_{0} x^{3}+\frac{1}{12} c_{1} x^{4}+\frac{1}{10} x^{5}+\frac{1}{180} c_{0} x^{6}+\ldots \\
& =c_{0}\left(1+\frac{1}{6} x^{3}+\frac{1}{180} x^{6}+\ldots\right)+c_{1}\left(x+\frac{1}{12} x^{4}+\ldots\right)+2 x^{2}+\frac{1}{10} x^{5}+\ldots
\end{aligned}
$$

Example

Find the general solution in power series form for the differential equation

$$
\begin{equation*}
y^{\prime \prime}-x y=0 \tag{1}
\end{equation*}
$$

about the ordinary point $\quad x_{0}=2$.
Solution. Assume that the solution is given by

$$
y=\sum_{n=0}^{\infty} c_{n}(x-2)^{n} \Rightarrow y^{\prime}=\sum_{n=1}^{\infty} n c_{n}(x-2)^{n-1}, y^{\prime \prime}=\sum_{n=2}^{\infty} n(n-1) c_{n}(x-2)^{n-2} .
$$

Now, let us write equation (1) as

$$
\begin{equation*}
y^{\prime \prime}-(x-2) y-2 y=0 \tag{2}
\end{equation*}
$$

using the values of $\quad y$ and $y^{\prime \prime}$ in (2) we get

$$
\sum_{n=2}^{\infty} n(n-1) c_{n}(x-2)^{n-2}-\sum_{n=0}^{\infty} c_{n}(x-2)^{n+1}-\sum_{n=0}^{\infty} 2 c_{n}(x-2)^{n}=0 .
$$

Putting $n-2=k$ in the firs series, $n+1=k$ in the second one and $n=k$ in the last one we get

$$
\sum_{n=0}^{\infty}(k+1)(k+2) c_{k+2}(x-2)^{k}-\sum_{k=1}^{\infty} c_{k-1}(x-2)^{k}-\sum_{k=0}^{\infty} 2 c_{k}(x-2)^{k}=0,
$$

or

$$
\begin{aligned}
& 2 c_{2}+\sum_{n=1}^{\infty}(k+1)(k+2) c_{k+2}(x-2)^{k}-\sum_{k=1}^{\infty} c_{k-1}(x-2)^{k}-2 c_{0}-\sum_{k=1}^{\infty} 2 c_{k}(x-2)^{k}=0, \\
& 2\left(c_{2}-c_{0}\right)+\sum_{n=1}^{\infty}\left[(k+1)(k+2) c_{k+2}-c_{k-1}-2 c_{k}\right](x-2)^{k}=0
\end{aligned}
$$

It follows that

$c_{2}=c_{0}$, and

$c_{k+2}=\frac{2 c_{k}-c_{k-1}}{(k+1)(k+2)}$, for $k=1,2,3, \ldots$
which implies that

$$
\begin{aligned}
& k=1 \Rightarrow c_{3}=\frac{2 c_{1}-c_{0}}{6} \\
& k=2 \Rightarrow c_{4}=\frac{2 c_{2}-c_{1}}{12}=\frac{2 c_{0}-c_{1}}{12},
\end{aligned}
$$

Using the values of these coefficients in the assumption we have

$$
y=\sum_{n=0}^{\infty} c_{n}(x-2)^{n}=c_{0}+c_{1}(x-2)+c_{2}(x-2)^{2}+c_{3}(x-2)^{3}+\ldots
$$

$$
\begin{aligned}
y & =c_{0}+c_{1}(x-2)+c_{0}(x-2)^{2}+\frac{1}{6}\left(2 c_{1}-c_{0}\right)(x-2)^{3}+\ldots \\
& =c_{0}\left[1+(x-2)^{2}-\frac{1}{6} c_{0}(x-2)^{3}+\ldots .\right]+c_{1}\left[(x-2)+\frac{1}{3}(x-2)+\ldots\right] .
\end{aligned}
$$

Remark

We can use the following change of variables to transform the ordinary point $x_{0}=2$ to the origin $t_{0}=0$ and proceed as before:

$$
\begin{aligned}
t=x-2 \Rightarrow & \frac{d y}{d x}=\frac{d y}{d t} \frac{d t}{d x}=\frac{d y}{d t} \\
& \frac{d^{2} y}{d x^{2}}=\frac{d^{2} y}{d t^{2}} \frac{d t}{d x}=\frac{d^{2} y}{d t^{2}} .
\end{aligned}
$$

Thus the differential equation becomes

$$
\frac{d^{2} y}{d t^{2}}-(t+2) y=0
$$

Example

Find the solution of the initial value problem

$$
\begin{equation*}
y^{\prime \prime}+x^{2} y^{\prime}-y=0, \quad y(0)=1, \quad y^{\prime}(0)=-2, \tag{1}
\end{equation*}
$$

using the power series method about the ordinary point $x_{0}=0$.
Solution. Assume that the solution is given by

$$
y=\sum_{n=0}^{\infty} c_{n} x^{n} \Rightarrow y^{\prime}=\sum_{n=1}^{\infty} n c_{n} x^{n-1}, y^{\prime \prime}=\sum_{n=2}^{\infty} n(n-1) c_{n} x^{n-2} .
$$

using the values of y, y^{\prime} and $y^{\prime \prime}$ in (1) we obtain:

$$
\sum_{n=2}^{\infty} n(n-1) c_{n} x^{n-2}+\sum_{n=1}^{\infty} n c_{n} x^{n+1}-\sum_{n=0}^{\infty} c_{n} x^{n}=0
$$

Put $n-2=k$ in the firs series, $n+1=k$ in the second, and $n=k$ in the last one, to get
$\sum_{k=0}^{\infty}(k+1)(k+2) c_{k+2} x^{k}+\sum_{k=2}^{\infty}(k-1) c_{k-1} x^{k}-\sum_{k=0}^{\infty} c_{k} x^{k}=0$,
$\Rightarrow 2 c_{2}+6 c_{3} x+\sum_{k=2}^{\infty}(k+1)(k+2) c_{k+2} x^{k}+\sum_{k=2}^{\infty}(k-1) c_{k-1} x^{k}-c_{0}-c_{1} x-\sum_{k=2}^{\infty} c_{k} x^{k}=0$,
$\Rightarrow\left(2 c_{2}-c_{0}\right)+\left(6 c_{3}-c_{1}\right) x+\sum_{k=1}^{\infty}\left[(k+1)(k+2) c_{k+2}+(k-1) c_{k-1}-c_{k}\right] x^{k}=0$,
$\Rightarrow 2 c_{2}-c_{0}=0 \Rightarrow c_{2}=\frac{1}{2} c_{0}$,
$6 c_{3}-c_{1} \Rightarrow c_{3}=\frac{1}{6} c_{1}$, and
$(k+1)(k+2) c_{k+2}+(k-1) c_{k-1}-c_{k}=0, \quad$ for $k \geq 2$,
$\Rightarrow c_{k+2}=\frac{c_{k}-(k-1) c_{k-1}}{(k+1)(k+2)}, k=2,3, \ldots .$.
Hence, $k=2 \Rightarrow c_{4}=\frac{1}{12}\left[c_{2}-c_{1}\right]=\frac{1}{12}\left[\frac{1}{2} c_{0}-c_{1}\right]$,

$$
K=3 \Rightarrow c_{5}=\frac{1}{20}\left[c_{3}-2 c_{2}\right]=\frac{1}{12}\left[\frac{1}{6} c_{1}-c_{0}\right]
$$

Now, from the assumption we have

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} c_{n} x^{n}=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+c_{4} x^{4}+c_{5} x^{5}+c_{6} x^{6}+\ldots \\
& =c_{0}+c_{1} x+\frac{1}{2} c_{0} x^{2}+\frac{1}{6} c_{1} x^{3}+\frac{1}{12}\left(\frac{1}{2} c_{0}-c_{1}\right) x^{4}+\ldots \\
& =c_{0}\left(1+\frac{1}{2} x^{2}+\frac{1}{24} x^{4}+\ldots\right)+c_{1}\left(x+\frac{1}{6} x^{3}-\frac{1}{12} x^{4}+\ldots\right) .
\end{aligned}
$$

Since $y(0)=1 \Rightarrow c_{0}=1$,
and $y^{\prime}(0)=-2 \Rightarrow c_{2}=-2$,
hence

$$
y=\left(1+\frac{1}{2} x^{2}+\frac{1}{24} x^{4}+\ldots\right)-2\left(x+\frac{1}{6} x^{3}-\frac{1}{12} x^{4}+\ldots\right) .
$$

