Cauchy-Euler Equation

An nth order linear DE

$$a_n x^n \frac{d^n y}{dx^n} + a_{n-1} x^{n-1} \frac{d^{n-1} y}{dx^{n-1}} + \dots + a_1 x \frac{dy}{dx} + a_0 y = g(x),$$

where $a_n, a_{n-1}, ..., a_0$ are constants, is called Cauchy-Euler equation.

Example: (i)
$$3x^2 \frac{d^2y}{dx^2} - x \frac{dy}{dx} + 5y = 0$$

(ii)
$$x^4 \frac{d^4 y}{dx^4} - x^2 \frac{d^2 y}{d^2 x} - 3y = \ln x$$

We shall confine our attention to finding the general solution of Cauchy-Euler equation on the interval $(0, \infty)$.

Method of solution

First consider a first order homogeneous Cauchy-Euler Equation:

$$ax\frac{dy}{dx} + by = 0.$$

It is easy to see that the solution is given by

$$y = cx^m$$
, where $m = \frac{-b}{a}$.

Now, consider a second order equation

$$ax^{2} \frac{d^{2}y}{dx^{2}} + b \frac{dy}{dx} + cy = 0 \tag{1}$$

and suppose that $y = x^m$ is a solution of (1), where m is a constant to be determined.

$$\Rightarrow y' = mx^{m-1}, y'' = m(m-1)x^{m-2}$$

Using the values of y, y', y'' in (1) we obtain

$$x^m [am(m-1) + bm + c] = 0$$

But $x^m \neq 0$, therefore

$$am(m-1)+bm+c=0$$

Or

$$am^2 + (b-a)m + c = 0.$$
 (2)

Thus, $y = x^m$ is a solution of (1) whenever m is a root of the the auxiliary equation (2).

In solving Eq.(2) we have three cases:

Case1:

Equation 2 has two distinct real roots, say m_1, m_2 , then $y_1 = x^{m_1}$, $y_2 = x^{m_2}$ are two linearly independent solutions of Eq.(1), and hence the general solution is $y = c_1 y_1 + c_2 y_2$

$$=c_1x^{m_1}+c_2x^{m_2}, c_1,c_2\in R.$$

Example:

Solve the DE $x^2y''-2xy'-4y=0$. (1) Let $y=x^m$, then $y'=mx^{m-1}$, $y''=m(m-1)x^{m-2}$ Using these values in (1) we obtain

or
$$x^m [m(m-1)-2m-4]=0$$

or $x^m [m^2-3m-4]=0$

But
$$x^m \neq 0 \Rightarrow m^2 - 3m - 4 = 0$$

$$\Rightarrow (m - 4)(m + 1) = 0$$

$$\Rightarrow m = 4, -1$$

Hence the general solution is

$$y = c_1 x^4 + c_2 x^{-1}, c_1, c_2 \in R.$$

Case 2:

Equation 2 has two repeated real roots, say $m_1 = m_2 = \lambda$, then $y_1 = x^{\lambda}$, $y_2 = x^{\lambda} \ln x$ are two linearly independent solutions of Eq.(1), and hence the general solution is

$$y = c_1 y_1 + c_2 y_2$$

$$= c_1 x^{\lambda} + c_2 x^{\lambda} \ln x, \ c_1, c_2 \in R.$$

Solve the DE
$$4x^2y''+8xy'+y=0$$
. (1)
Let $y=x^m$, then $y'=mx^{m-1}$, $y''=m(m-1)x^{m-2}$

Using these values in (1) we obtain

$$x^{m}[4m(m-1) + 8m + 1] = 0$$

or $x^{m}[4m^{2} + 4m + 1] = 0$
But $x^{m} \neq 0 \Rightarrow 4m^{2} + 4m + 1 = 0$

$$\Rightarrow (2m+1)(2m+1) = 0$$

$$\Rightarrow m = \frac{-1}{2}, \frac{-1}{2}$$

 $\Rightarrow m = \frac{-1}{2}, \frac{-1}{2}$ Therefore the general solution is $y = c_1 x^{\frac{-1}{2}} + c_2 x^{\frac{-1}{2}} \ln x$.

Case 3:

Equation 2 has two complex conjugate roots, say

$$m_1=\alpha+\beta i, \ m_2=\alpha-\beta i$$
, then $y_1=x^{\alpha+i\beta}, \ y_2=x^{\alpha-i\beta}$ are two linearly independent solutions of (1).

However, using Euler's formula $e^{i\theta} = \cos \theta + i \sin \theta$ the two independent solutions can be reformulated in the form $y_1 = x^{\alpha} \cos(\beta \ln x)$, $y_2 = x^{\alpha} \sin(\beta \ln x)$,

and hence the general solution of Eq.(1) is

$$y = x^{\alpha} [c_1 \cos(\beta \ln x) + c_2 \sin(\beta \ln x)], c_1, c_2 \in R.$$

Example:

Solve the DE
$$x^2y''+3xy'+3y=0$$
. (1)
Let $y=x^m$, then $y'=mx^{m-1}$, $y''=m(m-1)x^{m-2}$

Using these values in (1) we obtain

$$x^{m}[m(m-1)+3m+3]=0,$$

or $x^{m}[m^{2}+2m+3]=0.$

But $x^m \neq 0 \implies m^2 + 2m + 3 = 0$,

$$\Rightarrow m = -1 \pm \sqrt{2}i$$

$$\Rightarrow \alpha = -1, \ \beta = \sqrt{2}.$$

Therefore the general solution is

$$y = x^{-1} \left[c_1 \cos(\sqrt{2} \ln x) + c_2 \sin(\sqrt{2} \ln x) \right]$$

Example:

Solve the DE
$$y''' - \frac{6}{x^3} y = 0.$$
 (1)

Multiplying both sides by x^3 , we obtain

$$x^3y'''-6y=0.$$
 (2)

Now, let
$$y = x^m$$
, then $y''' = m(m-1)(m-2)x^{m-3}$

Using these values in (2) we get

$$x^{m}[m(m-1)(m-2)-6]=0.$$

or

$$x^{m}[m^{3}-3m^{2}+2m-6]=0,$$

But $x^m \neq 0 \Rightarrow m^3 + 3m^2 + 2m - 6 = 0$,

$$y = x^{-1} \left[c_1 \cos(\sqrt{2} \ln x) + c_2 \sin(\sqrt{2} \ln x) \right]$$

Therefore the independent solutions are

$$y_1 = x^3$$
, $y_2 = \cos(\sqrt{2} \ln x)$, $y_3 = \sin(\sqrt{2} \ln x)$

And the general solution is

$$y = c_1 x^3 + c_2 \cos(\sqrt{2} \ln x) + c_3 \sin(\sqrt{2} \ln x).$$

Example

Solve the DE
$$xy'' - y' + \frac{1}{x}y = 2$$
. (1)

Multiplying both sides by x, we obtain

$$x^2y''-xy'+y=2x.$$
 (2)

This is a nonhomogeneous Cauchy-Euler equation,

therefore the general solution is of the form $y = y_c + y_p$.

For
$$y_c$$
 let $y = x^m$, then $y' = mx^{m-1}$, $y'' = m(m-1)x^{m-2}$

Using these values in
$$x^2y''-xy'+y=0$$

Imply $x^m[m(m-1)-m+1]=0$,

or
$$x^m [m^2 - 2m + 1] = 0$$
.

But
$$x^m \neq 0 \Rightarrow m^2 - 2m + 1 = 0$$
,
 $\Rightarrow m = 1, 1$.

Hence, the independent solutions are $y_1 = x$, $y_2 = x \ln x$, and $y_c = c_1 x + c_2 x \ln x$.

For y_p , we apply the variation of parameter.

$$w = \begin{vmatrix} x & x \ln x \\ 1 & 1 + \ln x \end{vmatrix} = x, \ w_1 = \begin{vmatrix} 0 & x \ln x \\ \frac{2}{x} & 1 + \ln x \end{vmatrix} = -2\ln x, \ w_2 = \begin{vmatrix} x & 0 \\ 1 & \frac{2}{x} \end{vmatrix} = 2.$$

Hence,
$$u_1 = \int \frac{w_1}{w} dx = -(\ln x)^2$$

 $u_2 = \int \frac{w_2}{w} dx = 2(\ln x)$
 $\Rightarrow y_p = u_1 y_1 + u_2 y_2$
 $= -x(\ln x)^2 + 2x(\ln x)^2$
 $= x(\ln x)^2$.

Therefore the general solution is

$$y = y_c + y_p$$

= $c_1 x + c_2 x \ln x + x(\ln x) 2$.

Cauchy-Euler equation can be reduced to a linear D.E. with constant coefficients using the substitution

$$x = e^t$$
 or $t = \ln x$.

Example

Use the substitution $x = e^t$ or $t = \ln x$ to solve the D.E.

$$x^2y''-3xy'+3y=0.$$
 (1)

Solution. By the chain rule we have

$$y' = \frac{dy}{dt} \frac{dt}{dx} = \frac{1}{x} \frac{dy}{dt}$$
,

$$y'' = \frac{d}{dx}(y') = \frac{d}{dx}(\frac{1}{x}\frac{dy}{dt}) = \frac{1}{x^2}(\frac{d^2y}{dt^2} - \frac{dy}{dt}).$$

Using these values in Eq.(1) we get

$$\frac{d^2y}{dt^2} - 4\frac{dy}{dt} + 3y = 0, \quad (2)$$

Which is homogeneous L.D.E. with constant coefficients.

Hence the auxiliary equation is

$$m^2 - 4m + 3 = 0,$$

or
$$(m-1)(m-3) = 0 \Rightarrow m = 1$$
, or $m = 3$.

Hence the solution of Eq.(2) is

$$y = c_1 e^t + c_2 e^{3t}.$$

Therefore the solution of Eq.(1) is given by

$$y = c_1 e^{\ln x} + c_2 e^{3\ln x}$$
$$= c_1 x + c_2 x^3.$$

General form of Cauchy-Euler Equation

The general form of Cauchy-Euler equation is

$$a_n(\alpha x + \beta)^n \frac{d^n y}{dx^n} + a_{n-1}(\alpha x + \beta)^{n-1} \frac{d^{n-1} y}{dx^{n-1}} + \dots + a_1(\alpha x + \beta) \frac{dy}{dx} + a_0(\alpha x + \beta) y = g(x),$$

where $a_n, a_{n-1}, ..., a_0, \alpha, \beta, \beta \neq 0$ are constants.

Example. Solve the D.E.

$$(2x-1)^2 y''-(2x-1)y'-4y=0. (1)$$

Solution. Let

$$y = (2x-1)^m \Rightarrow y' = 2m(2x-1)^{m-1}, y'' = 4m(m-1)(2x-1)^{m-2}.$$

Using these values in Eq.(1) we obtain

$$(2x-1)^m[4m(m-1)-2m-4]=0$$

$$\Rightarrow 2m^2 - 3m - 2 = 0 \Rightarrow m = -\frac{1}{2} \text{ or } m = 2.$$

Hence the general solution is

$$y = c_1(2x-1)^2 + c_2(2x-1)^{\frac{-1}{2}}.$$

Homework

Solve the D.E.

$$(3x+2)^2 y''+10(3x+2)y'+9y=0.$$