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Life tables and selection 

3.1 Summary 

In this chapter we define a life table. For a life table tabulated at integer ages 
only, we show, using fractional age assumptions, how to calculate survival 
probabilities for all ages and durations. 

We discuss some features of national life tables from Australia, England & 
Wales and the United States. 

We then consider life tables appropriate to individuals who have purchased 
particular types of life insurance policy and discuss why the survival proba­
bilities differ from those in the corresponding national life table. We consider 
the effect of 'selection' of lives for insurance policies, for example through 
medical underwriting. We define a select survival model and we derive some 
formulae for such a model. 

We discuss briefly how mortality rates change over time, and illustrate one 
way to allow for mortality trends in a survival model. 

3.2 Life tables 

Given a survival model, with survival probabilities 1 Px, we can construct the 
life table for the model from some initial age xo to a maximum age w. 
We define a function {lx} for xo ::; x ::; w as follows. Let lx0 be an arbitrary 
positive number (called the radix of the table) and, for 0 ::; t ::; w - xo, define 

From this definition we see that for xo ::; x ::; x + t ::; w, 

lx+t = lxo x+t-xoPxo 

= lxo x-xoPxo t Px 

=lxtPx, 
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so that 

/ tPx = lx+t/ (,. / (3.1) 

For any x 2: xo, we can interpret lx+t as the expected number of survivors at 
age x + t from lx independent individuals aged x. This interpretation is more 
natural if lx is an integer, and follows because the number of survivors to age 
x +tis a random variable with a binomial distribution with parameters lx and 
tPx· That is, suppose we have lx independent lives aged x, and each life has a 
probability 1 Px of surviving to age x + t. Then the number of survivors to age 
x + t is a binomial random variable, Lt> say, with parameters lx and 1 Px. The 
expected value of the number of survivors is then 

E[LtJ = lx t Px = lx+t. 

We always use the table in the form ly/ lx which is why the radix of the table is 
arbitrary- it would make no difference to the survival model if all the lx values 
were multiplied by 100, for example. 

From (3.1) we can use the lx function to calculate survival probabilities. We 
can also calculate mortality probabilities. For example, 

(3.2) 

and 

155 ( ls5) 155 - ls5 
15l3oq40 = 15P40 3oq55 = -

1 
1 - -

1 
= l · 

40 55 40 
(3.3) 

In principle, a life table is defined for all x from the initial age, x0 , to the 
limiting age, w. In practice, it is very common for a life table to be presented, 
and in some cases even defined, at integer ages only. In this form, the life 
table is a useful way of summarizing a lifetime distribution since, with a single 
column of numbers, it allows us to calculate probabilities of surviving or dying 
over integer numbers of years starting from an integer age. 

It is usual for a life table, tabulated at integer ages, to show the values of dx, 
where 

(3.4) 

in addition to lx, as these are used to compute qx. From (3.4) we have 



3.2 Life tables 43 

Table 3.1 Extract from 

a life table. 

x lx dx 

30 10000.00 34.78 

31 9965.22 38.10 

32 9 927.12 41.76 

33 9 885.35 45.81 

34 9 839.55 50.26 

35 9789.29 55.17 

36 9 734.12 60.56 

37 9673.56 66.49 

38 9 607.07 72.99 

39 9 534.08 80.11 

We can also arrive at this relationship if we interpret dx as the expected number 
of deaths in the year of age x to x + 1 from a group of lx lives aged exactly x, 

so that, using the binomial distribution again 

Example 3.1 Table 3 .1 gives an extract from a life table. Calculate 

(a) 140, 

(b) 10p30, 

( c) q3s, 

(3.5) 

(d) 5q30, and 
(e) the probability that a life currently aged exactly 30 dies between ages 35 

and 36. 

Solution 3.1 (a) From equation (3.4), 

140=139 - d39 = 9453.97. 

(b) From equation (3.1), 

140 9 453.97 
10P30 = - = = 0.94540. 

130 10 000 

(c) From equation (3.5), 

d3s 55.17 
q3s = - = = 0.00564. 

135 9 789.29 
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(d) Following equation (3.2), 

130 - l35 
5q30 = = 0.02107. 

130 

(e) This probability is 5 I q30· Following equation (3.3), 

l35 -136 d35 
5 I q3o = = - = 0.00552. 

130 130 
D 

3.3 Fractional age assumptions 

A life table Ux }x::: xo provides exactly the same information as the correspond­
ing survival distribution, Sx0 • However, a life table tabulated at integer ages 
only does not contain all the information in the corresponding survival model, 
since values of lx at integer ages x are not sufficient to be able to calculate 
probabilities involving non-integer ages, such as o.75 P30.5. Given values of lx 

at integer ages only, we need an additional assumption or some further infor­
mation to calculate probabilities for non-integer ages or durations. Specifically, 
we need to make some assumption about the probability distribution for the 
future lifetime random variable between integer ages. 

We use the term fractional age assumption to describe such an assumption. 
It may be specified in terms of the force of mortality function or the survival 
or mortality probabilities. 

In this section we assume that a life table is specified at integer ages only 
and we describe the two most useful fractional age assumptions. 

3.3.1 Uniform distribution of deaths 

The uniform distribution of deaths (UDD) assumption is the most common 
fractional age assumption. It can be formulated in two different, but equivalent, 
ways as follows. 

UDDl 
For integer x, and for 0.::: s < 1, assume that 

(3.6) 

UDD2 
Recall from Chapter 2 that Kx is the integer part of Tx, and define a new 
random variable Rx such that 

The UDD2 assumption is that, for integer x, Rx ~U(O, 1), and Rx is inde­
pendent of K x. 
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The equivalence of these two assumptions is demonstrated as follows. First, 
assume that UDD 1 is true. Then for integer x, and for 0 ::: s < 1, 

00 

Pr[Rx :'.: s] = 2...:Pr[Rx :'.:sand Kx = k] 
k=O 
00 

= LPr[k::: Tx :'.: k + s] 
k=O 
00 

= L kPx sqx+k 
k=O 
00 

= L kPx s (qx+k) using UDDl 
k=O 

00 

=SL kPx qx+k 
k=O 
00 

= s L Pr[Kx = k] 
k=O 

=s. 

This proves that Rx~ U(O, 1). To prove the independence of Rx and Kx, note 
that 

Pr[Rx :'.: s and Kx = k] = Pr[k :'.: Tx :'.: k + s] 
= kPx sqx+k 

= S kPx qx+k 

= Pr[Rx :'.: s]Pr[Kx = k] 

since Rx~ U(O, 1). This proves that UDDl implies UDD2. 
To prove the reverse implication, assume that UDD2 is true. Then for inte­

ger x, and for 0::: s < 1, 

sqx = Pr[Tx :'.: s] 

= Pr[Kx = 0 and Rx :'.: s] 

= Pr[Rx :'.: s] Pr[Kx = O] 

as Kx and Rx are assumed independent. Thus, 

(3.7) 

Formulation UDD2 explains why this assumption is called the Uniform Distri­
bution of Deaths, but in practical applications of this assumption, formulation 
UDDl is the more useful of the two. 
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An immediate consequence is that 

I lx+s = lx - S dx I (3.8) 

for 0 s s < 1. This follows because 

and substituting s qx for sqx gives 

Hence 

lx+s = lx - S dx 

for 0 s s s 1. Thus, we assume that l x+s is a linearly decreasing function of s. 

Differentiating equation (3.6) with respect to s, we obtain 

and we know that the left-hand side is the probability density function for Tx 

at s, because we are differentiating the distribution function. The probability 
density function for Tx at s is s Px f.Lx+s so that under UDD 

I qx = sPx f.Lx+s I (3.9) 

for 0 ss < 1. 
The left-hand side does not depend on s, which means that the density func­

tion is a constant for 0 s s < 1, which also follows from the uniform distribu­
tion assumption for Rx. 

Since qx is constant with respect to s, and s Px is a decreasing function of 
s, we can see that f.Lx+s is an increasing function of s, which is appropriate 
for ages of interest to insurers. However, if we apply the approximation over 
successive ages, we obtain a discontinuous function for the force of mortality, 
with discontinuities occurring at integer ages, as illustrated in Example 3.4. 
Although this is undesirable, it is not a serious drawback. 

Example 3.2 Given that P4o = 0.999473, calculate o,4q40.2 under the 
assumption of a uniform distribution of deaths. 

Solution 3.2 We note that the fundamental result in equation (3.7), that for 
fractions of a years, sqx = s qx, requires x to be an integer. We can manipulate 
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the required probability o.4q40.2 to involve only probabilities from integer ages 

as follows 
l40,6 

o.4q40.2 = 1 - o.4P40.2 = 1 - -1 -40.2 

= l _ o.6P40 = l _ 1 - 0.6q40 

o.2P40 1 - 0.2q40 

= 2.108 x 10-4. D 

Example 3.3 Use the life table in Example 3.1 above, with the UDD assump­

tion, to calculate (a) 1.N33 and (b) 1.N33.5· 

Solution 3.3 (a) We note first that 

1.7q33 = 1 - 1.7 P33 = 1 - (p33) (o.7 p34) · 

We can calculate p33 directly from the life table as [34/ l33 = 0.995367 and 
o.7 p34 = 1 - 0.7 q34 = 0.996424 under UDD, so that 1.N33 = 0.008192. 

(b) To calculate 1.7q33.5 using UDD, we express this as 

1.N33.5 = 1 - 1.7 P33.5 

= 1 - [35,2 

[33,5 
[35 - 0.2d35 

=1----­
[33 - 0.5d33 

= 0.008537. D 

Example 3.4 Under the assumption of a uniform distribution of deaths, 

calculate lim /L40+t using P40 = 0.999473, and calculate lim /L41+t using 
t-+1- t-+O+ 

p41 = 0.999429. 

Solution 3.4 From formula (3.9), we have fLx+t = qx / 1 Px for 0 < t < 1. 

Setting x = 40 yields 

lim /L40+t = q40/p40 = 5.273 x 10-
4

, 
t-+I-

while setting x = 41 yields 

lim /L41+t = q41 = 5.71 x 10-
4

. 
t-+O+ 

D 

Example 3.5 Given that q7o = 0.010413 and q71=0.011670, calculate 

o.7q70.6 assuming a uniform distribution of deaths. 

Solution 3.5 As deaths are assumed to be uniformly distributed between ages 

70 and 71 and ages 71 and 72, we first write the probability as 

o.7q7o.6 = oAq?0.6 + (1 - o.4q7o.6) o.3q71. 
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Following the same arguments as in Solution 3.3, we obtain 

1 - q?o -3 
o.4q?o.6 = 1 - = 4.191 x 10 , 

1 - 0.6q70 

and as o,3q71 = 0.3q71 = 3.501x10-3, we obtain o.N70.6 = 7.678 x 10-3. D 

3.3.2 Constant force of mortality 

A second fractional age assumption is that the force of mortality is constant 
between integer ages. Thus, for integer x and 0 ::S s < 1, we assume that /J.,x+s 
does not depend on s, and we denote it µ,";;. We can obtain the value of µ,";; by 
using the fact that 

Px =exp {- fo
1 

/J.,x+sds}. 

Hence the assumption that /J.,x+s = µ,";; for 0 ::S s < 1 gives Px = e-µ,'; or 
µ,";; = - log Px. Further, under the assumption of a constant force of mortality, 
for 0:::; s < 1 we obtain 

- { r * d } - -µ,;s - ( )s sPx - exp - Jo µ,x u - e - Px . 

Similarly, fort, s > 0 and t + s < 1, 

sPx+t =exp {-lasµ,~ du} = (px)s. 

Thus, under the constant force assumption, the probability of surviving for a 
period of s < 1 years from age x + t is independent oft provided thats + t < 1. 

The assumption of a constant force of mortality between integer ages leads 
to a step function for the force of mortality over successive years of age, 
whereas we would expect the force of mortality to increase smoothly. How­
ever, if the true force of mortality increases slowly over the year of age, the 
constant force of mortality assumption is reasonable. 

Example 3.6 Given that P4o = 0. 9994 73, calculate o.4q40.2 under the assump­
tion of a constant force of mortality. 

Solution 3.6 We have o.4q40.2 = 1 - o.4 P40.2 = 1 - (p40)0.4 = 2.108 x 10-4. 
D 

Example 3.7 Given that q?o = 0.010413 and q71=0.011670, calculate 
o.N70.6 under the assumption of a constant force of mortality. 
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Solution 3.7 As in Solution 3.5 we write 

where o.4q7o.6 = 1 - (p70) 0.4 = 4.178 x 10-3 and o,3q71 = 1 
3.515 x 10-3, giving o.7q7o.6 = 7 .679 x 10-3. 

49 

Note that in Examples 3.2 and 3.5 and in Examples 3.6 and 3.7 we have used 
two different methods to solve the same problems, and the solutions agree 
to five decimal places. It is generally true that the assumptions of a uniform 
distribution of deaths and a constant force of mortality produce very simi­
lar solutions to problems. The reason for this can be seen from the following 
approximations. Under the constant force of mortality assumption 

provided that µ, * is small, and for 0 < t < 1, 

In other words, the approximation to 1qx is t times the approximation to qx, 
which is what we obtain under the uniform distribution of deaths assumption. 

3.4 National life tables 

Life tables based on the mortality experience of the whole population of a 
country are regularly produced for many countries in the world. Separate life 
tables are usually produced for males and for females and possibly for some 
other groups of individuals, for example on the basis of smoking habits. 

Table 3.2 shows values of qx x 105 , where qx is the probability of dying 
within one year, for selected ages x, separately for males and females, for the 
populations of Australia, England & Wales and the United States. These tables 
are constructed using records of deaths in a particular year, or a small number 
of consecutive years, and estimates of the population in the middle of that 
period. The relevant years are indicated in the column headings for each of the 
three life tables in Table 3.2. Data at the oldest ages are notoriously unreliable. 
For this reason, the United States Life Tables do not show values of qx for ages 
100 and higher. 

For all three national life tables and for both males and females, the val­
ues of qx follow exactly the same pattern as a function of age, x. Figure 3.1 
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Table 3.2 Values of qx x 105 from some national life tables. 

Australian Life Tables English Life Table 15 US Life Tables 
2000-02 1990-92 2002 

Males Females Males Females Males Females 

567 466 814 632 764 627 
44 43 62 55 53 42 
31 19 38 30 37 28 
13 8 18 13 18 13 
96 36 84 31 139 45 

119 45 91 43 141 63 
159 88 172 107 266 149 
315 202 464 294 570 319 
848 510 1392 830 1210 758 

2337 1308 3930 2190 2922 1899 
6399 4036 9616 5961 7028 4930 

15934 12579 20465 15 550 16 805 13 328 
24479 23 863 38705 32489 

0.1 

0.01 

0.001 

0.0001 -+--~------~-~------~--~-~ 
0 10 20 30 40 50 

Age 
60 70 80 90 100 

Figure 3.1 US 2002 mortality rates, male (dotted) and female (solid). 

shows the US 2002 mortality rates for males and females; the graphs for 
England & Wales and for Australia are similar. (Note that we have plotted these 
on a logarithmic scale in order to highlight the main features. Also, although 
the information plotted consists of values of qx for x = 0, 1, ... , 99, we have 
plotted a continuous line as this gives a clearer representation.) We note the 
following points from Table 3.2 and Figure 3.1. 
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• The value of qo is relatively high. Mortality rates immediately following 
birth, perinatal mortality, are high due to complications arising from the 
later stages of pregnancy and from the birth process itself. The value of qx 
does not reach this level again until about age 55. This can be seen from 
Figure 3.1. 

• The rate of mortality is much lower after the first year, less than 10% of its 
level in the first year, and declines until around age 10. 

• In Figure 3.1 we see that the pattern of male and female mortality in the 
late teenage years diverges significantly, with a steeper incline in male mor­
tality. Not only is this feature of mortality for young adult males common 
for different populations around the world, it is also a feature of historical 
populations in countries such as the UK where mortality data have been col­
lected for some time. It is sometimes called the accident hump, as many of 
the deaths causing the 'hump' are accidental. 

• Mortality rates increase from age 10, with the accident hump creating a rel­
atively large increase between ages 10 and 20 for males, a more modest 
increase from ages 20 to 40, and then steady increases from age 40. 

• For each age, all six values of qx are broadly comparable, with, for each 
country, the rate for a female almost always less than the rate for a male of 
the same age. The one exception is the Australian Life Table, where q100 

is slightly higher for a female than for a male. According to the Australian 
Government Actuary, Australian mortality data indicate that males are sub­
ject to lower mortality rates than females at very high ages, although there 
is some uncertainty as to where the cross-over occurs due to small amounts 
of data at very old ages. 

• The Gompertz model introduced in Chapter 2 is relatively simple, in that 
it requires only two parameters and has a force of mortality with a simple 
functional form, /Lx = Bex. We stated in Chapter 2 that this model does not 
provide a good fit across all ages. We can see from Figure 3.1 that the model 
cannot fit the perinatal mortality, nor the accident hump. However, the mor­
tality rates at later ages are rather better behaved, and the Gompertz model 
often proves useful over older age ranges. Figure 3.2 shows the older ages 
US 2002 Males mortality rate curve, along with a Gompertz curve fitted to 
the US 2002 Table mortality rates. The Gompertz curve provides a pretty 
close fit - which is a particularly impressive feat, considering that Gompertz 
proposed the model in 1825. 

A final point about Table 3.2 is that we have compared three national life tables 
using values of the probability of dying within one year, qx, rather than the 
force of mortality, J.Lx. This is because values of J.Lx are not published for any 
ages for the US Life Tables. Also, values of J.Lx are not published for age 0 for 
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Figure 3.2 US 2002 male mortality rates (solid), with fitted Gompertz mor­
tality rates (dotted). 

100 

the other two life tables - there are technical difficulties in the estimation of 
f-lx within a year in which the force of mortality is changing rapidly, as it does 
between ages 0 and 1. 

3.5 Survival models for life insurance policyholders 

Suppose we have to choose a survival model appropriate for a man, currently 
aged 50 and living in the UK, who has just purchased a 10-year term insurance 
policy. We could use a national life table, such as English Life Table 15, so 
that, for example, we could assume that the probability this man dies before 
age 51 is 0.00464, as shown in Table 3.2. However, in the UK, as in some other 
countries with well-developed life insurance markets, the mortality experience 
of people who purchase life insurance policies tends to be different from the 
population as a whole. The mortality of different types of life insurance policy­
holders is investigated separately, and life tables appropriate for these groups 
are published. 

Table 3.3 shows values of the force of mortality ( x 105) at two-year intervals 
from age 50 to age 60 taken from English Life Table 15, Males (ELTM 15), and 
from a life table prepared from data relating to term insurance policyholders 
in the UK in 1999--2002 and which assumes the policyholders purchased their 
policies at age 50. This second set of values comes from Table Al 4 of a 2006 
working paper of the Continuous Mortality Investigation in the UK. Hereafter 
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x 

50 
52 
54 
56 
58 
60 

Table 3.3 Values of the force of 
mortality x 105. 

ELTM 15 

440 
549 
679 
845 

1057 
1323 

CMI A14 

78 
152 
240 
360 
454 
573 

we refer to this working paper as CMI, and further details are given at the end 
of this chapter. The values of the force of mortality for ELTM 15 correspond 
to the values of qx shown in Table 3.2. 

The striking feature of Table 3.3 is the difference between the two sets of 
values. The values from the CMI table are very much lower than those from 
ELTM 15, by a factor of more than 5 at age 50 and by a factor of more than 2 
at age 60. There are at least three reasons for this difference. 

(a) The data on which the two life tables are based relate to different calendar 
years; 1990-92 in the case of ELTM 15 and 1999-2002 in the case of 
CMI. Mortality rates in the UK, as in many other countries, have been 
decreasing for some years so we might expect rates based on more recent 
data to be lower (see Section 3.11 for more discussion of mortality trends). 
However, this explains only a small part of the differences in Table 3.3. 
An interim life table for England & Wales, based on male population data 
from 2002-2004, gives µ50=391x10- 5 and /1,60 = 1008 x 10-5. Clearly, 
mortality in England & Wales has improved over the 12-year period, but 
not to the extent that it matches the CMI values shown in Table 3.3. Other 
explanations for the differences in Table 3.3 are needed. 

(b) A major reason for the difference between the values in Table 3.3 is that 
ELTM 15 is a life table based on the whole male population of England 
& Wales, whereas CMI Table A14 is based on the experience of males 
who are term insurance policyholders. Within any large group, there are 
likely to be variations in mortality rates between subgroups. This is true 
in the case of the population of England and Wales, where social class, 
defined in terms of occupation, has a significant effect on mortality. Put 
simply, the better your job, and hence the wealthier you are likely to be, the 
lower your mortality rates. Given that people who purchase term insurance 
policies are likely to be among the better paid people in the population, 
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we have an explanation for a large part of the difference between the values 
in Table 3.3. 

(c) The third reason, which is the most significant, arises from the selection 
process which policyholders must complete before the insurer will issue 
the insurance policy. The selection, or underwriting process ensures that 
people who purchase life insurance cover are healthy at the time of pur­
chase, so the CMI figures apply to lives who were all healthy at age 50, 
when the insurance was purchased. The ELT tables, on the other hand, 
are based on data from both healthy and unhealthy lives. This is an exam­
ple of selection, and we discuss it in more detail in the following 
section. 

3.6 Life insurance underwriting 

The values of the force of mortality in Table 3.3 are based on data for males 
who purchased term insurance at age 50. CMI Table A14 gives values for dif­
ferent ages at the purchase of the policy ranging from 17 to 90. Values for ages 
at purchase 50, 52, 54 and 56 are shown in Table 3.4. 

There are two significant features of the values in Table 3.4, which can be 
seen by considering the rows of values for ages 56 and 62. 

(a) Consider the row of values for age 56. Each of the four values in this row is 
the force of mortality at age 56 based on data from the UK over the period 
1999-2002 for males who are term insurance policyholders. The only dif­
ference is that they purchased their policies at different ages. The more 
recently the policy was purchased, the lower the force of mortality. For 

Table 3.4 Values of the force of mortality x 105 

from CM! Table Al 4. 

Age at purchase of policy 

x 50 52 54 56 

50 78 
52 152 94 
54 240 186 113 
56 360 295 227 136 
58 454 454 364 278 
60 573 573 573 448 
62 725 725 725 725 
64 917 917 917 917 
66 1159 1159 1159 1159 
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example, for a male who purchased his policy at age 56, the value is 
0.00136, whereas for someone of the same age who purchased his policy 
at age 50, the value is 0.00360. 

(b) Now consider the row of values for age 62. These values, all equal to 
0.00725, do not depend on whether the policy was purchased at age 50, 
52, 54 or 56. 

These features are due to life insurance underwriting, which we described in 
Chapter 1. Recall that the life insurance underwriting process evaluates med­
ical and lifestyle information to assess whether the policyholder is in normal 
health. 

The important point for this discussion is that the mortality rates in the CMI 
tables are based on individuals accepted for insurance at normal premium rates, 
that is, individuals who have passed the required health checks. This means, for 
example, that a man aged 50 who has just purchased a term insurance at the 
normal premium rate is known to be in good health (assuming the health checks 
are effective) and so is likely to be much healthier, and hence have a lower mor­
tality rate, than a man of age 50 picked randomly from the population. When 
this man reaches age 56, we can no longer be certain he is in good health -
all we know is that he was in good health six years ago. Hence, his mortality 
rate at age 56 is higher than that of a man of the same age who has just passed 
the health checks and been permitted to buy a term insurance policy at normal 
rates. This explains the differences between the values of the force of mortality 
at age 56 in Table 3.4. 

The effect of passing the health checks at issue eventually wears off, so that 
at age 62, the force of mortality does not depend on whether the policy was 
purchased at age 50, 52, 54 or 56. This is point (b) above. However, note that 
these rates, 0.00725, are still much lower than /L62 (= 0.01664) from ELTM 
15. This is because people who buy term life insurance in the UK tend to 
have lower mortality than the general population. In fact the population is made 
up of many heterogeneous lives, and the effect of initial selection is only one 
area where actuaries have tried to manage the heterogeneity. In the US, there 
has been a lot of activity recently developing tables for 'preferred lives', who 
are assumed to be even healthier than the standard insured population. These 
preferred lives tend to be from higher socio-economic groups. Mortality and 
wealth are closely linked. 

3.7 Select and ultimate survival models 

A feature of the slirvival models studied in Chapter 2 is that probabilities of 
future survival depend only on the individual's current age. For example, for a 
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given survival model and a given term t, t Px, the probability that an individual 
currently aged x will survive to age x + t, depends only on the current age x. 

Such survival models are called aggregate survival models, because lives are 
all aggregated together. 

The difference between an aggregate survival model and the survival model 
for term insurance policyholders discussed in Section 3.6 is that in the latter 
case, probabilities of future survival depend not only on current age but also 
on how long ago the individual entered the group of policyholders, i.e. when 
the policy was purchased. 

This leads us to the following definition. The mortality of a group of individ­
uals is described by a select and ultimate survival model, usually shortened 
to select survival model, if the following statements are true. 

(a) Future survival probabilities for an individual in the group depend on the 
individual's current age and on the age at which the individual joined the 
group. 

(b) There is a positive number (generally an integer), which we denote by d, 
such that if an individual joined the group more than d years ago, future 
survival probabilities depend only on current age. The initial selection 
effect is assumed to have worn off after d years. 

We use the following terminology for a select survival model. An individual 
who enters the group at, say, age x, is said to be selected, or just select, at 
age x. The period d after which the age at selection has no effect on future 
survival probabilities is called the select period for the model. The mortality 
that applies to lives after the select period is complete is called the ultimate 
mortality, so that the complete model comprises a select period followed by 
the ultimate period. 

Going back to the term insurance policyholders in Section 3.6, we can iden­
tify the 'group' as male term insurance policyholders in the UK. A select sur­
vival model is appropriate in this case because passing the health checks at age 
x indicates that the individual is in good health and so has lower mortality rates 
than someone of the same age who passed these checks some years ago. There 
are indications in Table 3.4 that the select period, d, for this group is less than 
or equal to six years. See point (b) in Section 3.6. In fact, the select period 
is five years for this particular model. Select periods typically range from one 
year to 15 years for life insurance mortality models. 

For the term insurance policyholders in Section 3.6, being selected at age x 

meant that the mortality rate for the individual was lower than that of a term 
insurance policyholder of the same age who had been selected some years 
earlier. Selection can occur in many different ways and does not always lead to 
lower mortality rates, as Example 3.8 shows. 
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Example 3.8 Consider men who need to undergo surgery because they are 
suffering from a particular disease. The surgery is complicated and there is a 
probability of only 50% that they will survive for a year following surgery. If 
they do survive for a year, then they are fully cured and their future mortality 
follows the Australian Life Tables 2000-02, Males, from which you are given 
the following values: 

l6o = 89777, 161 = 89015, ho= 77946. 

Calculate 

(a) the probability that a man aged 60 who is just about to have surgery will 
be alive at age 70, 

(b) the probability that a man aged 60 who had surgery at age 59 will be alive 
at age 70, and 

(c) the probability that a man aged 60 who had surgery at age 58 will be alive 
at age 70. 

Solution 3.8 In this example, the 'group' is all men who have had the opera­
tion. Being selected at age x means having surgery at age x. The select period 
of the survival model for this group is one year, since if they survive for one 
year after being 'selected', their future mortality depends only on their current 
age. 

(a) The probability of surviving to age 61 is 0.5. Given that he survives to age 
61, the probability of surviving to age 70 is 

ho/ 161=77946/89015 = 0.8757. 

Hence, the probability that this individual survives from age 60 to age 70 is 

0.5 x 0.8757 = 0.4378. 

(b) Since this individual has already survived for one year following surgery, 
his mortality follows the Australian Life Tables 2000-02, Males. Hence, 
his probability of surviving to age 70 is 

ho/l6o = 77946/89777 = 0.8682. 

(c) Since this individual's surgery was more than one year ago, his future mor­
tality is exactly the same, probabilistically, as the individual in part (b). 
Hence, his probability of surviving to age 70 is 0.8682. 0 

Selection is not a feature of national life tables since, ignoring immigration, an 
individual can enter the population only at age zero. It is an important feature 
of many survival models based on data from, and hence appropriate to, life 
insurance policyholders. We can see from Tables 3.3 and 3.4 that its effect on 
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the force of mortality can be considerable. For these reasons, select survival 

models are important in life insurance mathematics. 
The select period may be different for different survival models. For CMI 

Table Al4, which relates to term insurance policyholders, it is five years, as 
noted above; for CMI Table A2, which relates to whole life and endowment 
policyholders, the select period is two years. 

In the next section we introduce notation and develop some formulae for 
select survival models. 

3.8 Notation and formulae for select survival models 

A select survival model represents an extension of the ultimate survival model 

studied in Chapter 2. In Chapter 2, survival probabilities depended only on 
the current age of the individual. For a select survival model, probabilities of 
survival depend on current age and (within the select period) age at selection, 
i.e. age at joining the group. However, the survival model for those individuals 

all selected at the same age, say x, depends only on their current age and so fits 
the assumptions of Chapter 2. This means that, provided we fix and specify the 
age at selection, we can adapt the notation and formulae developed in Chapter 2 
to a select survival model. This leads to the following definitions: 

t P[x]+ s = Pr[a life currently aged x + s who was select at age x survives to 
agex +s +t], 

1q[xl+s = Pr[a life currently aged x + s who was select at age x dies before 

age x +s + t], 
µ[x]+s is the force of mortality at age x + s for an individual who was select 
at age x, . (1- hP[x]+s) 

µ[x]+s = hm . 
h-+O+ h 

From these definitions we can derive the following formula 

t P[xl+s = exp {- fo
1 

µ,[xJ+s+u du} . 
This formula is derived precisely as in Chapter 2. It is only the notation which 
has changed. 

For a select survival model with a select period d and for t 2:: d, that is, for 

durations at or beyond the select period, the values of µ,[x-t]+t, sP[x-t]+t 

and u Jsq[x _ tl+ 1 do not depend on t, they depend only on the current age x. 
So, for t 2:: d we drop the more detailed notation, µ[x _ t] + 1 , s P[x _ t] + 1 and 

uJsq[x-t] +t• and write µ,x, sPx and uJsqx. For values oft< d, we refer to, for 
example, µ[x _ tl+ 1 as being in the select part of the survival model and for 

t 2:: d we refer to µ[x -tl+ 1 (= µ,x) as being in the ultimate part of the survival 
model. 
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3.9 Select life tables 

For an ultimate survival model, as discussed in Chapter 2, the life table {l x} 

is useful since it can be used to calculate probabilities such as 1 \uqx for non­
negative values oft, u and x. We can construct a select life table in a similar 
way but we need the table to reflect duration as well as age, during the select 
period. Suppose we wish to construct this table for a select survival model for 
ages at selection from, say, xo (~ 0). Let d denote the select pe1iod, assumed 
to be an integer number of years. 

The construction in this section is for a select life table specified at all ages 
and not just at integer ages. However, select life tables are usually presented at 
integer ages only, as is the case for ultimate life tables. 

First we consider the survival probabilities of those individuals who were 
selected at least d years ago and hence are now subject to the ultimate part 
of the model. The minimum age of these people is xo + d. For these people, 
future survival probabilities depend only on their current age and so, as in 
Chapter 2, we can construct an ultimate life table, {ly}, for them from which 
we can calculate probabilities of surviving to any future age. 

Let lxo+d be an arbitrary positive number. For y ~ xo + d we define 

ly = (y-xo-d)Pxo+d lxo+d · (3.10) 

Note that (y-xo -d)Pxo +d = (y-xo-d)P[xo] +d, because d years after selection 
at age xo, the probability of future survival depends only on the current age, 
xo + d. From this definition we can show that for y > x ~ xo + d 

ly = y-xPx lx. 

This follows because 

ly = (Cy-xo-d)Pxo+d) lxo+d 

(y-x P[xol+x-xo) (cx-xo-d)PlxoJ+d) lxo+d 

(y-x Px) (cx-xo-d)Pxo+d) lxo+d 

= y-xPx lx. 

(3.11) 

This shows that within the ultimate part of the model we can interpret ly as the 
expected number of survivors to age y out of lx lives currently aged x ( < y), 

who were select at least d years ago. 
Formula (3.10) defines the life table within the ultimate part of the model. 

Next, we need to define the life table within the select period. We do this for a 
life select at age x by 'working backwards' from the value of lx +d· For x ~ xo 

and for 0 :S t :S d, we define 

lx+d 
l[x]+t = ----

d-t PlxJ+t 
(3.12) 
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which means that if we had l [x l + 1 lives aged x + t, selected t years ago, then 
the expected number of survivors to age x + d is lx + d. This defines the select 

part of the life table. 

Example 3.9 For y 2:: x + d > x + s > x + t ::::_ x ::::_ xo , show that 

ly 

and 

Solution 3.9 First, 

y-x-t P[x]+t = -
1 

-
[x]+t 

l[x]+s 
s-tP[x]+t = -

1
--. 
[x]+t 

y-x-t P[x]+t = y-x-d P[x]+d xd-t P[x]+t 

= y-x-dPx+dxd-tP[x]+t 

ly lx+d 
=----

lx+d l[x]+t 

ly 
=--, 

l[x]+t 

which proves (3.13). Second, 

which proves (3.14). 

d-tP[xJ+t 
s-tP[x]+t = 

d-sP[x]+s 

lx+d l[x]+s 
=-----

l[x]+t lx+d 

l[x]+s 
=--, 

l[xJ+t 

(3.13) 

(3.14) 

0 

This example, together with formula (3.11), shows that our construction pre­
serves the interpretation of the ls as expected numbers of survivors within both 
the ultimate and the select parts of the model. For example, suppose we have 
l[x]+t individuals currently aged x + t who were select at age x. Then, since 
y - x -

1
P[xl+ 1 is the probability that any one of them survives to age y, we can 

see from formula (3.13) that ly is the expected number of survivors to age y. 

For 0::: t::: s::: d, formula (3.14) shows that l[xJ+s can be interpreted as the 
expected number of survivors to age x + s out of l[x] + 1 lives currently aged 

x + t who were select at age x. 

Example 3.10 Write an expression for 2\6q[30J+2 in terms of l[x]+t and ly for 
appropriate x, t and y, assuming a select period of five years. 
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Solution 3.10 Note that 2 l6q[30J + 2 is the probability that a life currently aged 
32, who was select at age 30, will die between ages 34 and 40. We can write 
this probability as the product of the probabilities of the following events: 

• a life aged 32, who was select at age 30, will survive to age 34, and, 
• a life aged 34, who was select at age 30, will die before age 40. 

Hence, 

2 \6q[30l+2 = 2P[30J+2 6q[30J+4 

= l[30J+4 ( 1 _ l[30l+lO) 

l[30l+2 l[30J+4 

l[30J+4 - ho 
l[30l+2 

Note that 1[30]+10 = 140 since 10 years is longer than the select period for this 
survival model. D 

Table 3.5 Extract 

from US Life Tables, 

2002. 

x 

70 
71 
72 
73 
74 
75 

80556 
79026 
77 410 
75666 
73 802 
71800 

Example 3.11 A select survival model has a select period of three years. Its 
ultimate mortality is equivalent to the US Life Tables, 2002, Females. Some lx 

values for this table are shown in Table 3.5. 
You are given that for all ages x 2: 65, 

P[x] = 0.999, P[x-1]+1 = 0.998, Plx-2]+2 = 0.997. 

Calculate the probability that a woman currently aged 70 will survive to age 
7 5 given that 

(a) she was select at age 67, 
(b) she was select at age 68, 
(c) she was select at age 69, and 
(d) she is select at age 70. 
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Solution 3.11 (a) Since the woman was select three years ago and the select 
period for this model is three years, she is now subject to the ultimate 
part of the survival model. Hence the probability she survives to age 75 is 
/75/ l70, where the ls are taken from US Life Tables, 2002, Females. The 
required probability is 

(b) We have 

5P70 = 71800/80556 = 0.8913. 

1[68]+2+5 
5P[68J+2 = l 

[68]+2 

/75 71 800 
= 

1[68]+2 1[68]+2 

We calculate 1[68]+2 by noting that 

l[68l+2 x P[68J+2 = l[68J+3 = Zn = 79 026. 

We are given that P[68J+2 = 0.997. Hence, 1[68]+2 = 79 264 and so 

5P[68J+2 = 0.9058. 

(c) We have 

1[69J+1+5 h5 71 800 
5P[69J+l = l = 

[69]+1 1[69]+1 1[69]+1 

We calculate 1[69]+1 by noting that 

l[69J+l x P[69J+l x P[69J+2 = l[69l+3 =Zn = 77 410. 

We are given that P[69l+ 1 = 0.998 and P[69]+2 = 0.997. Hence, 1[69]+ 1 = 
77799 and so 

5P[69l+l = 0.9229. 

(d) We have 

1[70]+5 /75 71 800 
5P[70J = -- = - = --. 

l [70] l [70] l [70] 

Proceeding as in (b) and (c), 

l[7oJ x P[70J x P[70J+l x P[70J+2 = l[7oJ+3 = l73 = 75 666, 

giving 

1[70] = 75 666/(0.997 x 0.998 x 0.999) = 76122. 

Hence 

5P[70J = 0.9432. 

D 
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Table 3.6 CM! Table AS: male non-smokers who 

have whole life or endowment policies. 

Duration 0 Duration 1 Duration 2+ 
Age,x q[x] q[x-1]+1 qx 

60 0.003469 0.004539 0.004760 
61 0.003856 0.005059 0.005351 
62 0.004291 0.005644 0.006021 
63 0.004779 0.006304 0.006781 

70 0.010519 0.014068 0.015786 
71 0.011858 0.015868 0.017832 
72 0.013401 0.017931 0.020145 
73 0.015184 0.020302 0.022759 
74 0.017253 0.023034 0.025712 
75 0.019664 0.026196 0.029048 

Example 3.12 CMI Table AS is based on UK data from 1999 to 2002 for 
male non-smokers who are whole life or endowment insurance policyholders. 
It has a select period of two years. An extract from this table, showing values of 

q[x-t]+t, is given in Table 3.6. Use this survival model to calculate the following 
probabilities: 

(a) 4Pl70J, 

(b) 3q[60J+ 1, and 

(c) 2lqn 

Solution 3.12 Note that CMI Table AS gives values of q[x-tJ+t for t = 0 and 

t = 1 and also for t:::: 2. Since the select period is two years q[x-tJ+t = qx for 
t:::: 2. Note also that each row of the table relates to a man currently aged x, 

where x is given in the first column. Select life tables, tabulated at integer ages, 
can be set out in different ways - for example, each row could relate to a fixed 
age at selection - so care needs to be taken when using such tables. 

(a) We calculate 4P[70J as 

4P[70J = Pl70J Pl70l+l Pl70l+2 Pl70J+3 

= Pl70J Pl70l+l Pn P73 

= (1 - q[7oJ) (1 - q[70J+1) (1 - qn) (1 - q?3) 

= 0.989481 x 0.984132 x 0.9798SS x 0.977241 

= 0.932447. 
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(b) We calculate 3q[60J+l as 

W[60J+l = q[60J+l + P[60J+l q62 + P[60J+l P62q63 

= q[60]+1 + (1 - q[60]+1) q62 + (1 - q[60]+1) (1 - q62) q63 

= 0.005059 + 0.994941 x 0.006021 

+ 0.994941 x 0.993979 x 0.006781 

= 0.017756. 

(c) We calculate 2lq73 as 

2lq73 = 2p73 q?s 

= (1 - q73) (1 - q74) q?s 

= 0.977241 x 0.974288 x 0.029048 

= 0.027657. 
D 

Example 3.13 A select survival model has a two-year select period and is 
specified as follows. The ultimate part of the model follows Makeham's law, 
so that 

f.Lx =A+ Bex 

where A= 0.00022, B = 2.7 x 10-6 and c = 1.124. The select part of the 
model is such that for 0 ::: s ::: 2, 

0 92-s 
/L[x]+s = · f.Lx+s· 

Starting with ho = 100 000, calculate values of 

(a) lx for x =21, 22, ... , 82, 
(b) l[x]+l for x =20, 21, ... , 80, and, 
(c) l[x] for x = 20, 21, ... , 80. 

Solution 3.13 First, note that 

{ 
B x t } tPx =exp -At - --c (c - 1) 

log c 

and for 0 ::: t ::: 2, 

t P[x] = exp {-lot /L[x]+sds} 

=exp {0.92-t ( 1 - 0.9t A+ ct - 0.9t Bex)}. 
log(0.9) log(0.9/c) 

(a) Values of lx can be calculated recursively from 

lx = Px-llx-1 for x = 21, 22, ... , 82. 

(3.15) 
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Table 3.7 Select life table with a two-year select period, Example 3.13. 

x l[x] l[x]+l lx+2 x+2 x l[x] l[x]+l 1x+2 x+2 

100000.00 20 so 98SS2.S1 984S0.67 98 326.19 S2 
9997S.04 21 Sl 98430.98 98 318.9S 98181.77 S3 

20 99 99S.08 99 973.7S 99 949.71 22 S2 98 297.24 98 173.79 98022.38 S4 
21 99970.04 99 948.40 99 923.98 23 S3 98 149.81 98 013.S6 97 846.20 SS 
22 99944.63 99922.6S 99 897.79 24 S4 97 987.03 97 836.44 97 6Sl.21 S6 

47 98 8S6.38 98778.94 98 684.88 49 79 77 46S.70 7S S31.88 73 186.31 81 
48 98 764.09 98 679.44 98 S76.37 so 80 7S 1S3.97 73 OS0.22 70 S07.19 82 
49 98 663.lS 98 S70.40 984S7.24 Sl 

(b) Values of l[xJ+l can be calculated from 

l[x]+l = lx+2/ P[xJ+l for x = 20, 21, ... , 80. 

(c) Values of l[xJ can be calculated from 

l[x] = lx+2/2P[x] for X = 20, 21, ... , 80. 

Sample values are shown in Table 3.7. The full table up to age 100 is given in 
Table D.l in Appendix D. D 

This model is used extensively throughout this book for examples and exer­
cises. We call it the Standard Select Survival Model in future chapters. 

The ultimate part of the model, which is a Makeham model with 
A = 0. 00022, B = 2. 7 x 1 o-6 and c = 1.124, is also used in many examples 
and exercises where a select model is not required. We call this the Standard 
Ultimate Survival Model. 

3.10 Some comments on heterogeneity in mortality 

We noted in Section 3.5 the significant difference between the mortality of the 
population as a whole, and the mortality of insured lives. It is worth noting, 
further, that there is also considerable variability when we look at the mortality 
experience of different groups of insurance company customers and pension 
plan members. Of course, male and female mortality differs significantly, in 
shape and level. Actuaries will generally use separate survival models for men 
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and women when this does not breach discrimination laws. Smoker and non­
smoker mortality differences are very important in whole life and term insur­
ance; smoker mortality is substantially higher at all ages for both sexes, and 
separate smoker/non-smoker mortality tables are in common use. 

In addition, insurers will generally use product-specific mortality tables for 
different types of contracts. Individuals who purchase immediate or deferred 
annuities may have different mortality from those purchasing term insurance. 
Insurance is sometimes purchased under group contracts, for example by an 
employer to provide death-in-service insurance for employees. The mortality 
experience from these contracts will generally be different from the experience 
of policyholders holding individual contracts. The mortality experience of 
pension plan members may differ from the experience of lives who purchase 
individual pension policies from an insurance company. Interestingly, the dif­
ferences in mortality experience between these groups will depend signifi­
cantly on country. Studies of mortality have shown, though, that the following 
principles apply quite generally. 

<> Wealthier lives experience lighter mortality overall than less wealthy lives. 

<> There will be some impact on the mortality experience from self-selection; 
an individual will only purchase an annuity if he or she is confident of liv­
~ng long enough to benefit. An individual who has some reason to anticipate 
heavier mortality is more likely to purchase term insurance. While under­
writing can identify some selective factors, there may be other information 
that cannot be gleaned from the underwriting process (at least not without 
excessive cost). So those buying term insurance might be expected to have 
slightly heavier mortality than those buying whole life insurance, and those 
buying annuities might be expected to have lighter mortality. 

<> The more rigorous the underwriting, the lighter the resulting mortality expe­
rience. For group insurance, there will be minimal underwriting. Each per­
son hired by the employer will be covered by the insurance policy almost 
immediately; the insurer does not get to accept or reject the additional 
employee, and will rarely be given information sufficient for underwriting 
decisions. However, the employee must be healthy enough to be hired, which 
gives some selection information. 

All of these factors may be confounded by tax or legislative systems that 
encourage or require certain types of contracts. In the UK, it is very common 
for retirement savings proceeds to be converted to life annuities. In other coun­
tries, including the USA, this is much less common. Consequently, the type of 
person who buys an annuity in the USA might be quite a different (and more 
self-select) customer than the typical individual buying an annuity in the UK. 
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3.11 Mortality trends 

A challenge in developing and using survival models is that survival probabil­
ities are not constant over time. Commonly, mortality experience gets lighter 
over time. In most countries, for the period of reliable records, each generation, 

on average, lives longer than the previous generation. This can be explained by 
advances in health care and by improved standards of living. Of course, there 
are exceptions, such as mortality shocks from war or from disease, or declining 
life expectancy in countries where access to health care worsens, often because 

of civil upheaval. The changes in mortality over time are sometimes separated 
into three components: trend, shock and idiosyncratic. The trend describes the 
gradual reduction in mortality rates over time. The shock describes a short­

term jump in mortality rates from war or pandemic disease. The idiosyncratic 
risk describes year to year random variation that does not come from trend or 
shock, though it is often difficult to distinguish these changes. 

While the shock and idiosyncratic risks are inherently unpredictable, we can 

often identify trends in mortality by examining mortality patterns over a num­
ber of years. We can then allow for mortality improvement by using a survival 
model which depends on both age and calendar year. A common model for 

projecting mortality is to assume that mortality rates at each age are decreasing 
annually by a constant factor, which depends on the age and sex of the indi­
vidual. That is, suppose q (x, Y) denotes the mortality rate for a life aged x in 
year Y, so that q (x, 0) denotes the mortality rate at age x for a baseline year, 

Y = 0. Then, the estimated one-year mortality probability for a life aged x at 
time Y =sis 

q(x,s)=q(x,O)r~ where O<rx::Sl. 

The r x terms are called mortality reduction factors, and typical values are in 
the range 0.95 to 1, where the higher values (implying less reduction) tend 
to apply at older ages. Using rx = 1 for the oldest ages reflects the fact that, 

although many people are living longer than previous generations, there is lit­
tle or no increase in the maximum age attained; the change is that a greater 
proportion of lives survive to older ages. In practice, the reduction factors are 
applied for integer values of s. 

Figure 3.3 shows reduction factors for females based on mortality in 
Australia in the 25 years prior to the production of Australian Life Tables 
2000-02. This shows the greatest reduction in mortality rates has occurred at 
the youngest ages, that mortality rates have not fallen greatly from mid-teens 

to late thirties, and that as age increases from around age 60, reduction factors 
are increasing. 
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Given a baseline survival model, with mortality rates q (x, 0) = qx, say, and 
a set of age-based reduction factors, r x, we can calculate survival probabilities 
from the baseline year, tP(X, 0), say, as 

tP(x, 0) = p(x, 0) p(x + 1, 1) ... p(x + t - 1, t -1) 

= (1 - qx) (1 - qx+l rx+l) ( 1 - qx+2 r;+2) · .. ( 1 - qx+t-1 r~~~-1) · 
(3.16) 

Some survival models developed for actuarial applications implicitly contain 
some allowance for mortality improvement. When selecting a survival model 
to use for valuation and risk management, it is important to verify the projec­
tion assumptions. 

The use of reduction factors allows for predictable improvements in life 
expectancy. However, if the improvements are underestimated, then mortal­
ity experience will be lighter than expected, leading to losses on annuity and 
pension contracts. This risk, called longevity risk, is of great recent interest, 
as mortality rates have declined in many countries at a much faster rate than 
anticipated. As a result, there has been increased interest in stochastic mortal­
ity models, where the force of mortality in future years follows a stochastic 
process which incorporates both predictable and random changes in longevity, 
as well as pandemic-type shock effects. 

Table 3.8 shows the effect of reduction factors on the calculation of expec­
tation of life. In this table we show values of ex under two scenarios. The 
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Table 3.8 Values of ex without and with reduction factors. 

Scenario 1 Scenario 2 Scenario 1 Scenario 2 
x ex ex x ex ex 
0 82.36 94.97 50 34.01 38.80 

10 72.86 84.18 60 24.94 28.06 
20 63.00 72.84 70 16.57 18.26 
30 53.22 61.47 80 9.48 10.15 
40 43.51 50.06 90 4.83 5.03 

first scenario is that no reduction factors apply to the female mortality rates 
of Australian Life Tables 2000-02, and the second scenario is that the reduc­
tion factors shown in Figure 3.3 apply, with survival probabilities calculated 
according to formula (3.16). 

The values in Table 3.8 show that the application of reduction factors to 
mortality rates can have a significant effect on expected future lifetime, partic­
ularly at younger ages. However, the values in this table should be treated with 
caution. The key underlying assumption in the calculations is that mortality 
rates will continue to reduce in the future, and this assumption is questionable. 
Nevertheless, the table does illustrate the basic fact that allowing for mortality 
improvement may have a significant effect on expectation of life. 

3.12 Notes and further reading 

The mortality rates in Section 3.4 are drawn from the following sources: 

• Australian Life Tables 2000-02 were produced by the Australian Govern­
ment Actuary (2004). 

• English Life Table 15 was prepared by the UK Government Actuary and 
published by the Office for National Statistics (1997). 

• US Life Tables 2002 were prepared in the Division of Vital Statistics of the 
National Center for Health Statistics in the US - see Arias (2004). 

The Continuous Mortality Investigation in the UK has been ongoing for many 
years. Findings on mortality and morbidity experience of UK policyholders are 
published via a series of formal reports and working papers. In this chapter we 
have drawn on CMI (2006). 

In Section 3.5 we noted that there can be considerable variability in the mor­
tality experience of different groups in a national population. Coleman and 
Salt (1992) give a very good account of this variability in the UK population. 
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The paper by Gompertz (1825), who was the Actuary of the Alliance Insur­
ance Company of London, introduced the force of mortality concept. 

See, for example, Lee and Carter (1992), Li et al. (2010) or Cairns et al. 

(2009) for more detailed information about stochastic mortality models. 

3.13 Exercises 

Exercise 3.1 Sketch the following as functions of age x for a typical (human) 
population, and comment on the major features. 

(a) flx, 

(b) lx, and 

(c) dx. 

Exercise 3.2 You are given the following life table extract. 

Age,x lx 

52 89948 
53 89089 
54 88176 
55 87208 
56 86181 
57 85093 
58 83940 
59 82 719 
60 81429 

Calculate 

(a) o.2qs2.4 assuming UDD (fractional age assumption), 

(b) o.2qs2.4 assuming constant force of mortality (fractional age assumption), 

(c) 5.7P52.4 assuming UDD, 

( d) 5.7 P52.4 assuming constant force of mortality, 

(e) 3.2l2.sqs2.4 assuming UDD, and 

(f) 3.2 l2.sqs2.4 assuming constant force of mortality. 

Exercise 3.3 Table 3.9 is an extract from a (hypothetical) select life table with 
a select period of two years. Note carefully the layout - each row relates to a 
fixed age at selection. 
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Table 3.9 Extract from a (hypothetical) 
select life table. 

x Z[x] Z[xJ+l lx+2 x+2 

75 15 930 15 668 15286 77 
76 15508 15224 14816 78 
77 15050 14 744 14310 79 

80 12576 82 
81 11928 83 
82 11250 84 
83 10542 85 
84 9 812 86 
85 9064 87 

Table 3.10 Mortality rates for female non-smokers with term insurance. 

Age,x Duration 0 Duration 1 Duration 2 Duration 3 Duration4 Duration 5+ 

q[x] q[x-1]+1 q[x-2]+2 q[x-3]+3 q[x-4]+4 qx 

69 0.003974 0.004979 0.005984 0.006989 0.007994 0.009458 
70 0.004285 0.005411 0.006537 0.007663 0.008790 0.010599 
71 0.004704 0.005967 0.007229 0.008491 0.009754 0.011880 
72 0.005236 0.006651 0.008066 0.009481 0.010896 0.013318 
73 0.005870 0.007456 0.009043 0.010629 0.012216 0.014931 
74 0.006582 0.008361 0.010140 0.011919 0.013698 0.016742 
75 0.007381 0.009376 0.011370 0.013365 0.015360 0.018774 
76 0.008277 0.010514 0.012751 0.014988 0.017225 0.021053 
77 0.009281 0.011790 0.014299 0.016807 0.019316 0.023609 

Use this table to calculate 

(a) the probability that a life currently aged 75 who has just been selected will 
survive to age 85, 

(b) the probability that a life currently aged 76 who was selected one year ago 
will die between ages 85 and 87, and 

(c) 4/2q[77J+l. 

Exercise 3.4 CMI Table A23 is based on UK data from 1999 to 2002 for 
female non-smokers who are term insurance policyholders. It has a select 
period of five years. An extract from this table, showing values of q[x-t]+t. 

is given in Table 3.10. 
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Use this survival model to calculate 

(a) 2P[72l, 

(b) 3q[73]+2' 

(c) 1 lq[65J+4, and 

(d) 7 P[70J. 

Table 3.11 Mortality rates for female smokers with term insurance. 

Agex Duration 0 Duration 1 Duration 2 Duration 3 Duration4 Duration 5+ 

q[x] q[x-1]+1 q[x-2]+2 q[x-3]+3 q[x-4]+4 qx 

70 0.010373 0.013099 0.015826 0.018552 0.021279 0.026019 
71 0.011298 0.014330 0.017362 0.020393 0.023425 0.028932 
72 0.012458 0.015825 0.019192 0.022559 0.025926 0.032133 
73 0.013818 0.017553 0.021288 0.025023 0.028758 0.035643 
74 0.015308 0.019446 0.023584 0.027721 0.031859 0.039486 
75 0.016937 0.021514 0.026092 0.030670 0.035248 0.043686 
76 0.018714 0.023772 0.028830 0.033888 0.038946 0.048270 
77 0.020649 0.026230 0.031812 0.037393 0.042974 0.053262 

Exercise 3.5 CMI Table A21 is based on UK data from 1999 to 2002 for 
female smokers who are term insurance policyholders. It has a select period 
of five years. An extract from this table, showing values of q[x-t]+i. is given in 
Table 3 .11. Calculate 

(a) 7P[70J, 

(b) 1 l2q[70J+2, and 
(c) 3.8q[70J+0.2 assuming UDD. 

Exercise 3.6 A select survival model has a select period of three years. 
Calculate 3p53, given that 

q[SOJ = 0.01601, 2P[SOJ = 0.96411, 

2iq[SO] = 0.02410, 2i3q[50]+1 = 0.09272. 

Exercise 3.7 When posted overseas to country A at age x, the employees of a 
large company are subject to a force of mortality such that, at exact duration t 
years after arrival overseas (t = 0, 1, 2, 3, 4), 

qt]+t = (6 - t)qx+t 

where qx+t is on the basis of US Life Tables, 2002, Females. For those who 
have lived in country A for at least five years the force of mortality at each age 



3.13 Exercises 73 

Table 3.12 An extract 
from the United States 

Life Tables, 2002, 
Females. 

Age,x lx 

30 98424 
31 98362 
32 98296 
33 98225 
34 98148 
35 98064 

40 97500 

is 50% greater than that of US Life Tables, 2002, Females, at the same age. 

Some l x values for this table are shown in Table 3 .12. 
Calculate the probability that an employee posted to country A at age 30 will 

survive to age 40 if she remains in that country. 

Exercise 3.8 A special survival model has a select period of three years. Func­
tions for this model are denoted by an asterisk, *. Functions without an asterisk 

are taken from the Canada Life Tables 2000-02, Males. You are given that, for 

all values of x, 

P[x] = 4Px-s; * . P[xl+I = 3Px-J, 

A life table, tabulated at integer ages, is constructed on the basis of the special 

survival model and the value of 1~5 is taken as 98 363 (i.e. h6 for Canada Life 
Tables 2000-02, Males). Some l x values for this table are shown in Table 3 .13. 

(a) Construct the l[xl' l[xl+l' l[xJ+2 , and 1;+3 columns for x = 20, 21, 22. 

(b) Calculate 2l3sq~JJ+l' 4op[22i, 4oP[21J+l' 4oP[20l+2' and 40P~2· 

Exercise 3.9 (a) Show that a constant force of mortality between integer ages 
implies that the distribution of Rx, the fractional part of the future life time, 
conditional on Kx = k, has the following truncated exponential distribution 

for integer x, for 0:::: s < 1 and fork= 0, 1, ... 

l-exp{-11* s} 
Pr[Rx :S s I Kx = k] = f""x*+k 

1 - exp{-µ,x+k} 
(3.17) 

where µ,~+k = - log Px+k· 
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Table 3.13 Canada 
Life Tables 2000-02, 

Males. 

Age,x lx 

15 99 180 
16 99135 
17 99 079 
18 99 014 
19 98 942 
20 98 866 
21 98 785 
22 98 700 
23 98 615 
24 98 529 
25 98 444 
26 98 363 

62 87 503 
63 86 455 
64 85 313 
65 84 074 

(b) Show that if formula (3 .17) holds for k = 0, 1, 2, ... then the force of mor­
tality is constant between integer ages. 

Exercise 3.10 Verify formula (3.15). 

3.2 (a) 0.001917 
(b) 0.001917 
(c) 0.935422 
(d) 0.935423 
(e) 0.030957 

(f) 0.030950 
3.3 (a) 0.66177 

(b) 0.09433 
(c) 0.08993 

3.4 (a) 0.987347 
(b) 0.044998 
(c) 0.010514 

(d) 0.920271 
3.5 (a) 0.821929 

Answers to selected exercises 



(b) 0.055008 
(c) 0.065276 

3.6 0.90294 
3.7 0.977497 

3.13 Exercises 

3.8 (a) The values are as follows: 

x 

20 99180 98 942 
21 99 135 98 866 
22 99 079 98 785 

98700 
98615 
98529 

98529 
98444 
98363 

75 

(b) 0.121265, 0.872587, 0.874466, 0.875937' 0.876692. 




