MOMENTS AND MOMENT GENERATING FUNCTION(mgf)




MOMENTS AND MOMENT GENERATING FUNCTION(mgf)

Central Moments: the rth moment of a R.V. x about its mean p (called rth central moment) is defined as

» Central moments are the expected value of the difference of
a random variable and its expected value (or mean) to a
power. It is also called moment about the mean.

» Second central moment or variance E ((X — E(X))E)

» Third central moment E ((X — E(X))g) and so on.. |

Clearly,
Ho=1,

u,=0,
,=62, the variance value of random variable

Non- Central Moments: the rth moment of a R.V. x about 0 called r'™ moment or

called r'™ non-central moment is defined as
M =E(X")

Clearly, p,=1,
M, = Uy :the mean or expected value of random variable
6,>=1,-(4,)? :thevariance value of random variable




Moment Generating function MGF:

Definition
In and , the moment-generating function of a

IS
M(t) = Mx(t) = E(™Y).

Where The series expansion of eX is

; tEXE t&X& tﬂXﬂ
Ef'\:1_|_f_X_|_ + + 4 + .-
21 3! nl
Hence,
: t2m 3 m. t"m
My(t) = B(et®*)=1 +1 2 3. n
x(1) = E(e”) =1+1tm; + sttt
where m,, is the nth = MU, =E(X")

Notes a bout mgf’s

- Moment generating function uniquely determine a distribution.

- If X and Y are independent r.v.’s then  My,y ()=My (t) My, (t)

and if XandY arei.i.d. r.v.’sthen My,y ()=[M (t)]?> where M (t) is the common mgf
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Example

The following example shows how the mgf of an exponential random variable is calculated:

Example Let X be a continuous random variable with support
Ry =1[0,mx)

and probability density function

Fx) = { Aexp(—Ax) I.fx € Ry
0 ifx e Ry

where A is a strictly positive number. The expected value E[exp(£X)] can be computed as follows:
Efexp(e)] = | exp(ex)fx(x)ax
= | ep(ee)2 exp(-2)dx

) j': exp((t— A)yx)dx  (which is finite only if ¢ < 1)
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Deriving moments with the mgf

If a moment-generating function of a random variable X does exist, it can be used to
generate all the moments of that variable

Proposition If a random variable X possesses a mgf Mx{¢), then the »-th moment of X, denoted by ux(#),

exists and is finite for any » = K. Furthermore:

() = ELX"] = d";lﬁ{ﬂ

=]

where % |,:.u IS the »-th derivative of M () with respect to ¢, evaluated at the point r = 0.

Proof:
The intuition, however, is straightforward: since the expected value is a linear operator and
differentiation is a linear operation, under appropriate conditions one can differentiate through

the expected value, as follows:

d"Mx(t)  gr
dr” dr”

Elexp(£X)] = E| L exp(eX) | = ELX" exp(e)]

which, evaluated at the point ¢ = 0, yields:

d"Mx(t)
dt" =]

-, y

= E[A" exp(0 - A)] = E[X™ ] = px(n)




Example Continuing the example above, the mgf of an exponential random variable is:

My(e) = w4

The expected value of X can be computed by taking the first derivative of the mgf:

dMx(t) _ 3
at (A —1)°
and evaluating itat s = 0:
_ dMx(z) A

1
FL dd e (-0 4

The second moment of X can be computed by taking the second derivative of the magf.

a’:fmfx{rj _ 21
dt* (A—1)°
and evaluating itat s = 0:
d*Mx(t) _ oY) 2

E[X* ] =

a* |, (-03 2

-
-

And so on for the higher moments.
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Exercise




Moment generating function of a linear transformation

If the random variable X has a mgf , My(t), then the linear transform y =a+bX has the mgf

while ifY =bX, then gy (f) = E(e'")
_ E(Eib;{]
= gx(bt)

I ticular, if X —

n particular, 1 X L |

i
g (1) = e/ 7gx (-
* a

(-,




Exercise 1.1

Let X be a discrete random variable having a Bernoulli distribution. its support Ry 15:

Ry= 401}
and its probability mass function px{x) is:
r fx=1
px(x) = 1-p fx=0
0 Ifx e R_I

where p = (0.1) Is a constant. Derive the moment generating function of X, if it exists.

Solution

Using the definition of moment generating function:

Mx(¢) = E[exp(£X)]
= ) exp()px(x)

xef
=exp(f+1)-px(l)+exp(s-0)-px(0)
=exp(t)p+1-(1-p)
= 1-p+pexp(r)




Exercise 2.1:
Derive the variance of X, where X is a random variable with moment generating function

Mx(t) = %{1 + exp(z))

Solution:

We can use the following formula for computing the variance:

Var[X] = E[X? ] - E[X]?

The expected value of X is computed by taking the first derivative of the moment generating function:

dMx(t) 1
and evaluating itat z = 0:
dMx(t
Bx) - SO L)~ 1

d*Mxy(t) 1
S = —explr
o 5 exp(t)
and evaluatingitat = 0:
5 d*Mx(t
] 20 —lepo) -1
dr 0 Fa Fa

Therefore:




/Moment generating function of a sum of mutually independent random variable\s

Let, X1, ...Xn be mutualy independent random variables . Let be their sum

Then, the mgf of Z is the product of the mgfs of X7 |

|

Mz(t) = | [Mx)
=1

Proof?
Mz(t) = E[exp(tZ)]

RNE)

= | | Elexp(£X:)] (by mutual independence)

=] | Mx(z) (by the definition of mgf)




/Exercise 1.3

A random variable X is said to have a Chi-square distribution with » degrees of freedom if its moment generating function

Is defined for any ¢ < l and it is equal to:

My(t) = (1-2™""
Define
Fr=x1+X

where X; and X, are two independent random variables having Chi-square distributions with =, and =, degrees of
freedom respectively. Prove that ¥ has a Chi-square distribution with », + n, degrees of freedom.

Solution

The moment generating functions of X, and X, are:
My, (£) = (1= 27)™7
My, (t) = (1 - 25y
The moment generating function of a sum of independent random variables is just the product of their moment generating
functions:
My() = (1= 28)™3(1 = 2724

= (1- 2;)‘("11—": V2

Therefore, My(¢) is the moment generating function of a Chi-square random variable with », + n, degrees of freedom. As a
consequence, ¥ has a Chi-square distribution with », + n, degrees of freedom.

(- y




Example If X and Y are independent discrete random variables with the
non-negative integers {0, 1,2, 3,...} as range, and with geometric distribution func-

tion
px(d)=pv(j)=¢'p,
then
gx (t) = gy (t) = —2
= 1 —gqet’ -
and if Z =X +Y, then gz(t) = gx(t)gy(t) = P

1 — 2get + ¢%e?t -

Problem 3 The moment-generating functions are unique; that i1s, two random variables that
have the same moment-generating function have the same probability distributions as well. This
statement 1s

(a) True

(b) False

Problem 5 Let X has a gamma distribution with Mx (t) = (1 — t)™%. Then E(X) is

(a) a

(b) ap?

(c) o?B
) af
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