Orthogonal Trajectories

Recall that two non-vertical lines l_{1} and l_{2} with slopes m_{1} and m_{2}, respectively, are orthogonal if and only if $m_{1}=\frac{-1}{m_{2}}$.
Let $F\left(x, y, c_{1}\right)=0$ and $G\left(x, y, c_{2}\right)=0$ be two families of curves in a plane such that their tangent lines are orthogonal at each point of intersection, then the two families are said to be orthogonal trajectories of each other.
If the $\mathrm{D} . \mathrm{E}$. of one family is $\frac{d y}{d x}=f(x, y)$, then the D. E. of the second is $\frac{d y}{d x}=\frac{-1}{f(x, y)}$.

Example 1

Find the orthogonal trajectories for the family of circles

$$
\begin{equation*}
x^{2}+(y-c)^{2}=c^{2} \tag{1}
\end{equation*}
$$

Solution. Let us rewrite equation (1) on the form

$$
\begin{equation*}
x^{2}+y^{2}-2 c y=0 \tag{2}
\end{equation*}
$$

Differentiating equation (2) with respect to x we get

$$
2 x+2 y y^{\prime}-2 c y^{\prime}=0 \Rightarrow \frac{d y}{d x}=\frac{x}{c-y}
$$

From (2) we have $c=\frac{x^{2}+y^{2}}{2 y}$, hence the differential equation of the given family is

$$
\frac{d y}{d x}=\frac{2 x y}{x^{2}-y^{2}}=f(x, y)
$$

Therefore the differential equation of the orthogonal family is $\frac{d y}{d x}=\frac{-1}{f(x, y)} \Rightarrow \frac{d y}{d x}=\frac{y^{2}-x^{2}}{2 x y}$

$$
\begin{equation*}
\text { or }\left(x^{2}-y^{2}\right) d x+2 x y d y=0 \tag{4}
\end{equation*}
$$

which is homogeneous D.E.
To solve equation (4)
let $y=u x \Rightarrow d y=u d x+x d u$ hence equation (4) becomes

$$
\begin{aligned}
& \left(x^{2}-x^{2} u^{2}\right) d x+2 x^{2} u(u d x+x d u)=0 \\
& \Rightarrow x^{2}\left(1+u^{2}\right) d x+2 x^{3} u d u=0 \\
& \Rightarrow x^{2}\left(1+u^{2}\right) d x=-2 x^{3} u d u \\
& \Rightarrow-\frac{1}{x} d x=\frac{2 u}{1+u^{2}} d u \text { which is separable D.E. }
\end{aligned}
$$

Integrating both sides we obtain
$\ln |x|+\ln \left(1+u^{2}\right)=c$
or $\ln \left[x\left(1+\frac{y^{2}}{x^{2}}\right)\right]=c \Rightarrow x^{2}+y^{2}=c_{1} x$,
where $c_{1}=e^{c}$.
Example 2.
Find the member of the orthogonal trajectories of the family of curves $y^{2}=c x^{3}$ which passes through the point $\mathrm{A}(2,0)$.
Solution. Since $y^{2}=c x^{3} \Rightarrow 2 y y^{\prime}=3 c x^{2}$.
But $c=\frac{y^{2}}{x^{3}} \Rightarrow \frac{d y}{d x}=\frac{3 y}{2 x}=f(x, y)$, this is the D. E. of the given family, hence the D . E. of the orthogonal family is $\frac{d y}{d x}=\frac{-1}{f(x, y)}$ or $\frac{d y}{d x}=\frac{-2 x}{3 y}$ which is separable D. E.

Integrating both sides we obtain

$$
x^{2}+\frac{3}{2} y^{2}=c
$$

Since the curve passes through $\mathrm{A}(2,0)$, substituting this point in the last equation implies $c=4$, hence the member is $x^{2}+\frac{3}{2} y^{2}=4$.

Example 3

Find the orthogonal trajectories for the family of the hyperbolas $x^{2}+2 x y-y^{2}+4 x-4 y=c$.
Example 4
Find the orthogonal trajectories for the family of the curves

$$
x^{3}+3 x y^{2}=c, \quad c \neq 0
$$

