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Survival models 

2.1 Summary 

In this chapter we represent the future lifetime of an individual as a random 
variable, and show how probabilities of death or survival can be calculated 
under this framework. We then define an important quantity known as the force 
of mortality, introduce some actuarial notation, and discuss some properties of 
the distribution of future lifetime. We introduce the curtate future lifetime ran­
dom variable. This is a function of the future lifetime random variable which 
represents the number of complete years of future life. We explain why this 
function is useful and derive its probability function. 

2.2 The future lifetime random variable 

In Chapter 1 we saw that many insurance policies provide a benefit on the 
death of the policy holder. When an insurance company issues such a policy, the 
policyholder's date of death is unknown, so the insurer does not know exactly 
when the death benefit will be payable. In order to estimate the time at which 
a death benefit is payable, the insurer needs a model of human mortality, from 
which probabilities of death at particular ages can be calculated, and this is the 
topic of this chapter. 

We start with some notation. Let (x) denote a life aged x, where x '.'.".: 0. The 
death of (x) can occur at any age greater than x, and we model the future 
lifetime of (x) by a continuous random variable which we denote by Tx. This 
means that x + Tx represents the age-at-death random variable for (x). 

Let Fx be the distribution function of Tx, so that 

Fx(t) = Pr[Tx :S t]. 

Then Fx (t) represents the probability that (x) does not survive beyond age 
x + t, and we refer to Fx as the lifetime distribution from age x. In many life 
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insurance problems we are interested in the probability of survival rather than 
death, and so we define Sx as 

Sx(t) = 1- Fx(t) = Pr[Tx > t]. 

Thus, Sx (t) represents the probability that (x) survives for at least t years, and 
Sx is known as the survival function. 

Given our interpretation of the collection of random variables { Tx} x::: o as 
the future lifetimes of individuals, we need a connection between any pair of 
them. To see this, consider To and Tx for an individual who is now aged x. The 
random variable To represented the future lifetime at birth for this individual, 
so that, at birth, the individual's age at death would have been represented by 
To. This individual could have died before reaching age x - the probability of 
this was Pr[ To < x] - but has survived. Now that the individual has survived 
to age x, so that we know that To > x, her future lifetime is represented by Tx 

and her age at death is now x + Tx. If she dies within t years from now, then 
Tx:::; t and To:::; x + t. Loosely speaking, we require the events [Tx:::; t] and 
[To:::; x + t] to be equivalent, given that the individual survives to age x. We 
achieve this by making the following assumption for all x :::: 0 and for all t > 0 

j Pr[Tx :::; t] = Pr[To:::; x +ti To > x].1 
This is an important relationship. 

Now, recall from probability theory that for two events A and B 

Pr[A and B] 
Pr[AIB] = , 

Pr[B] 

(2.1) 

so, interpreting [To :::; x + t] as event A, and [To > x] as event B, we can rear­
range the right-hand side of (2.1) to give 

Pr[x < To :::; x + t] 
Pr[Tx :::; t] = Pr[To > x] , 

that is, 

Fo(x + t) - Fo(x) 
Fx(t) = . 

So(x) 
(2.2) 

Also, using Sx(t) = 1- Fx(t), 

S (t) = So(x + t) 
x So(x) ' 

(2.3) 

which can be written as 

I So(x + t) = So(x) Sx(t). I (2.4) 
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This is a very important result. It shows that we can interpret the probability 
of survival from birth to age x + t as the product of 

(1) the probability of survival to age x from birth, and 
(2) the probability, having survived to age x, of further surviving to age x + t. 

Note that Sx (t) can be thought of as the probability that (0) survives to at least 
age x + t given that (0) survives to age x, so this result can be derived from the 
standard probability relationship 

Pr[A and B] = Pr[AIB]Pr[B] 

where the events here are A= [To > x + t] and B =[To> x], so that 

Pr[AjB] = Pr[To > x + tJTo > x], 

which we know from (2.1) is equal to Pr[Tx > t]. 

Similarly, any survival probability for (x), for, say, t + u years can be split 
into the probability of surviving the first t years, and then, given survival to age 
x + t, subsequently surviving another u years. That is, 

So(x + t + u) 
Sx(t + u) = So(x) 

So(x + t) So(x + t + u) 
::::} Sx(t + u) = --------

So(x) So(x+t) 

::::} Sx(t + u) = Sx(t)Sx+1(u). (2.5) 

We have already seen that if we know survival probabilities from birth, then, 
using formula (2.4 ), we also know survival probabilities for our individual from 
any future age x. Formula (2.5) takes this a stage further. It shows that if we 
know survival probabilities from any age x ( ::=: 0), then we also know survival 
probabilities from any future age x + t ( ::=: x). 

Any survival function for a lifetime distribution must satisfy the following 
conditions to be valid. 

Condition 1 Sx(O) = 1; that is, the probability that a life currently aged x 

survives 0 years is 1. 

Condition 2 limt--+oo Sx (t) = O; that is, all lives eventually die. 

Condition 3 The survival function must be a non-increasing function oft; it 
cannot be more likely that (x) survives, say 10.5 years than 10 years, because 
in order to survive 10.5 years, (x) must first survive 10 years. 

These conditions are both necessary and sufficient, so that any function Sx 

which satisfies these three conditions as a function of t ( ::=: 0), for a fixed 
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x ( :=::: 0), defines a lifetime distribution from age x, and, using formula (2.5), 

for all ages greater than x. 
For all the distributions used in this book, we make three additional assump-

tions: 

Assumption 2.1 Sx(t) is differentiable for all t > 0. Note that together with 

Condition 3 above, this means that fr Sx (t) ::::; 0 for all t > 0. 

Assumption 2.2 limr--+oo t Sx (t) = 0. 

Assumption 2.3 limt---+oo t2 Sx (t) = 0. 

These last two assumptions ensure that the mean and variance of the distri­
bution of Tx exist. These are not particularly restrictive constraints - we do not 
need to worry about distributions with infinite mean or variance in the context 
of individuals' future lifetimes. These three extra assumptions are valid for all 
distributions that are feasible for human lifetime modelling. 

Example 2.1 Let 

{
1 - (1 - t/120) 116 

Fo(t) = 
1 

Calculate the probability that 

(a) a newborn life survives beyond age 30, 
(b) a life aged 30 dies before age 50, and 
(c) a life aged 40 survives beyond age 65. 

Solution 2.1 (a) The required probability is 

for 0 ::::; t ::::; 120 

fort > 120 

S0(30) = 1 - F0(30) = (1 - 30/120)116 = 0.9532. 

(b) From formula (2.2), the required probability is 

F (20) = F0(50) - Fo(30) = 0.0410. 
30 1 - Fo(30) 

(c) From formula (2.3), the required probability is 

S40(25) = So(
65

) = 0.9395. 
So(40) 0 

We remark that in the above example, So(120) = 0, which means that under 
this model, survival beyond age 120 is not possible. In this case we refer to 120 
as the limiting age of the model. In general, if there is a limiting age, we use 
the Greek letter w to denote it. In models where there is no limiting age, it is 
often practical to introduce a limiting age in calculations, as we will see later 

in this chapter. 
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2.3 The force of mortality 

The force of mortality is an important and fundamental concept in modelling 
future lifetime. We denote the force of mortality at age x by /J.,x and define it as 

1 
/J.,x = lim -Pr[To :::; x + dx I To > x]. 

dx--+O+ dx 

From equation (2.1) we see that an equivalent way of defining /J.,x is 

. 1 
/J.,x = hm -Pr[Tx :::; dx], 

dx--+O+ dx 

which can be written in terms of the survival function Sx as 

. 1 
/J.,x = hm - (1 - Sx(dx)). 

dx--+O+ dx 

(2.6) 

(2.7) 

Note that the force of mortality depends, numerically, on the unit of time; if we 
are measuring time in years, then /J.,x is measured per year. 

The force of mortality is best understood by noting that for very small dx, 

formula (2.6) gives the approximation 

/J.,x dx ~ Pr[To :::; x + dx I To > x]. (2.8) 

Thus, for very small dx, we can interpret /J.,x dx as the probability that a life 
who has attained age x dies before attaining age x + dx. For example, sup­
pose we have a life aged exactly 50, and that the force of mortality at age 
50 is 0.0044 per year. A small value of dx might be a single day, or 0.00274 
years. Then the approximate probability that the life dies on his 50th birthday 

is 0.0044 X 0.00274 = 1.2 X 10-5
• 

We can relate the force of mortality to the survival function from birth, 

So. As 

S (dx) = So(x + dx) 
x So(x) ' 

formula (2.7) gives 

1 . So(x) - So(x + dx) 
/J.,x = -- lim 

So(x) dx--+O+ dx 

= -
1 

(-!:__So(x)). 
So(x) dx 

Thus, 

(2.9) 
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From standard results in probability theory, we know that the probability 
density function for the random variable r., which we denote f,, is related 

to the distribution function F,, and the survival function Sx by 

d d 
fx (t) = dt Fx (t) = - dt Sx (t). 

So, it follows from equation (2.9) that 

fo(x) 
f.Lx = So(x) · 

We can also relate the force of mortality function at any age x + t, t > 0, 
to the lifetime distribution of Tx. Assume x is fixed and t is variable. Then 

d(x + t) =dt and so 

1 d 
f.Lx+t = - So(x + t) d(x + t) So(x + t) 

1 d 
=- -So(x+t) 

So(x + t) dt 

1 d 
= - So(x + t) dt (So(x)Sx(t)) 

So(x) d 
= - So(x + t) dt Sx(t) 

-1 d 
= ---Sx(t). 

Sx (t) dt 

Hence 

fx(t) 
f.Lx+t = Sx (t)' (2.10) 

This relationship gives a way of finding f.Lx+t given Sx(t). We can also use 
equation (2.9) to develop a formula for Sx (t) in terms of the force of mortality 
function. We use the fact that for a function h whose derivative exists, 

d 1 d 
-logh(x) = --h(x) 
dx h(x) dx ' 

so from equation (2.9) we have 

d 
f.Lx = -- log So(x), 

dx 

and integrating this identity over (0, y) yields 

lay f.Lxdx = - (log So(y) - log So(O)). 
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As log So (0) = log Pr[To > O] = log 1 = 0, we obtain 

So(Y) =exp {-lay /,lxdx} , 

from which it follows that 

So(x + t) { 1x+t } { lot } Sx (t) = =exp - µ,,.dr = exp - /,lx+sds . 
So(x) x o 
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(2.11) 

This means that if we know /,lx for all x :=:: 0, then we can calculate all the sur­
vival probabilities Sx (t), for any x and t. In other words, the force of mortality 
function fully describes the lifetime distribution, just as the function So does. 
In fact, it is often more convenient to describe the lifetime distribution using 
the force of mortality function than the smvival function. 

Example 2.2 As in Example 2.1, let 

Fo(x) = 1 - (1 - x/120) 116 

for 0 ~x ~ 120. Derive an expression for /,lx· 

Solution 2.2 As So(x) = (1 - x/120) 116 , it follows that 

:xSo(x) = tO -x/120)-
5
16 (-iio), 

and so 

-1 d 1 1 1 
/,lx = ---So(x) = 720 (1-x/120)- = ---

So(x) dx 720 - 6x 

As an alternative, we could use the relationship 

/,lx =-~log So(x) = -~ (~ log(l - x/120)) = ___ l __ 
dx dx 6 720(1-x/120) 

1 
=---

720- 6x 

D 

Example 2.3 Let /,lx =Bex, x > 0, where B and c are constants such that 
0 < B < 1andc>1. This model is called Gompertz' law of mortality. Derive 
an expression for Sx (t). 

Solution 2.3 From equation (2.11 ), 

Sx (t) =exp {- lx+t Ber dr} . 
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Writing er as exp{r log c}, 

giving 

1~+;,. dr = B lxe-+:.p{r log c }dr 

B lx+t 
= -- exp{r log c} 

loge x 

B = __ (cx+t _ex), 
loge 

Sx(t) =exp { -B cx(ct - 1)}. 
loge 

D 

The force of mortality under Gompertz' law increases exponentially with age. 
At first sight this seems reasonable, but as we will see in the next chapter, the 
force of mortality for most populations is not an increasing function of age 
over the entire age range. Nevertheless, the Gompertz model does provide a 
fairly good fit to mortality data over some age ranges, particularly from middle 
age to early old age. 

Example 2.4 Calculate the survival function and probability density function 
for Tx using Gompertz' law of mortality, with B = 0.0003 and c = 1.07, for 
x = 20, x = 50 and x = 80. Plot the results and comment on the features of the 
graphs. 

Solution 2.4 For x = 20, the force of mortality is µ 20+1 = Bc20+t and the 
survival function is 

S20(t) =exp --c (c - 1) . { 
-B 20 t } 

loge 

The probability density function is found from (2.10): 

f-l20+1 = -- =} ho(t) = f-l20+1 S20(t) = Be exp --c (c - 1) . ho(t) 20+1 { -B 20 t } 
~~) ~c 

Figure 2.1 shows the survival functions for ages 20, 50 and 80, and Figure 2.2 
shows the corresponding probability density functions. These figures illustrate 
some general points about lifetime distributions. 

First, we see an effective limiting age, even though, in principle, there is no 
age to which the survival probability is exactly zero. Looking at Figure 2.1, 
we see that although Sx(t) > 0 for all combinations of x and t, survival beyond 
age 120 is very unlikely. 
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Figure 2.1 Sx (t) for x = 20 (bold), 50 (solid) and 80 (dotted). 
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Figure 2.2 fx (t) for x = 20 (bold), 50 (solid) and 80 (dotted). 
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Second, we note that the survival functions are ordered according to age, 
with the probability of survival for any given value of t being highest for age 
20 and lowest for age 80. For survival functions that give a more realistic rep­
resentation of human mortality, this ordering can be violated, but it usually 



26 Survival models 

holds at ages of interest to insurers. An example of the violation of this order­

ing is that So(l) may be smaller than Sx(l) for x ~ 1, as a result of perinatal 
mortality. 

Looking at Figure 2.2, we see that the densities for ages 20 and 50 have 
similar shapes, but the density for age 80 has a quite different shape. For ages 
20 and 50, the densities have their respective maximums at (approximately) 

t = 60 and t = 30, indicating that death is most likely to occur around age 80. 
The decreasing form of the density for age 80 also indicates that death is more 
likely to occur at age 80 than at any other age for a life now aged 80. A fur­
ther point to note about these density functions is that although each density 

function is defined on (0, oo), the spread of values of fx(t) is much greater for 
x = 20 than for x = 50, which, as we will see in Table 2.1, results in a greater 
variance of future lifetime for x = 20 than for x = 50. D 

2.4 Actuarial notation 

The notation used in the previous sections, Sx(t), F,,(t) and fx(t), is standard 
in statistics. Actuarial science has developed its own notation, International 
Actuarial Notation, that encapsulates the probabilities and functions of great­
est interest and usefulness to actuaries. The force of mortality notation, /Lx, 

comes from International Actuarial Notation. We summarize the relevant actu­

arial notation in this section, and rewrite the important results developed so 
far in this chapter in terms of actuarial functions. The actuarial notation for 
survival and mortality probabilities is 

It Px = Pr[Tx > t] = Sx(t), I 

/ ultqx = Pr[u < Tx :Su+ t] = Sx(U) - Sx(u + t). j 

That is 

t Px is the probability that (x) survives to at least age x + t, 
tqx is the probability that (x) dies before age x + t, 

(2.12) 

(2.13) 

(2.14) 

u ltqx is the probability that (x) survives u years, and then dies in the sub­
sequent t years, that is, between ages x + u and x + u + t. 

We may drop the subscript t if its value is 1, so that Px represents the proba­
bility that (x) survives to at least age x + 1. Similarly, qx is the probability that 
(x) dies before age x + 1. In actuarial terminology qx is called the mortality 
rate at age x. We call ultqx a deferred mortality probability, because it is 
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the probability that death occurs in the interval oft years, following a deferred 

period of u years. 
The relationships below follow immediately from the definitions above and 

the previous results in this chapter: 

Similarly, 

tPx +tqx = 1, 

ultqx = uPx - u+t Px• 

t+uPx = t Px u Px+t from (2.5), 

1 d 
/Lx = -- -d xPO from (2.9). 

xPO X 

1 d d 
/Lx+t = -- -d tPx::::} -d tPx = -tPx /Lx+t• 

t Px t t 

fx(t) 
/Lx+t = Sx (t) ::::} fx (t) = t Px /Lx+t from (2.10), 

tPx =exp {-lat fLx+sds} from (2.11). 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

As Fx is a distribution function and f x is its density function, it follows that 

Fx(t) =lat fx(s)ds, 

which can be written in actuarial notation as 

(2.20) 

This is an important formula, which can be interpreted as follows. Consider 
time s, where 0 ~ s < t. The probability that (x) is alive at time s is s Px, 

and the probability that (x) dies between ages x + s and x + s + ds, having 
survived to age x + s, is (loosely) /Lx+sds, provided that ds is very small. Thus 
s Px fLx+sds can be interpreted as the probability that (x) dies between ages 
x + s and x + s + ds. Now, we can sum over all the possible death intervals s 
to s + ds - which requires integrating because these are infinitesimal intervals 

- to obtain the probability of death before age x + t. 
We can illustrate this event sequence using the time-line diagram shown in 

Figure 2.3. 
This type of interpretation is important as it can be applied to more compli­

cated situations, and we will employ the time-line again in later chapters. 
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Time 0 s s+ds 

I I I Age x x+s x+s+ds 
Event (x) survives s years (x) 

\_ ~ 
Probability sPx µx +sds 

Figure 2.3 Time-line diagram for 1qx. 

In the special case when t = 1, formula (2.20) becomes 

qx = fo
1 

sPx µx+sds. 

t 

I 
x+t 

When qx is small, it follows that Px is close to 1, and hence s Px is close to 1 
for 0 =:: s < 1. Thus 

qx ~ fo
1 

µx+sds ~ µx+l/2, 

where the second relationship follows by the mid-point rule for numerical inte­
gration. 

Example 2.5 As in Examples 2.1 and 2.2, let 

Fo(x) = 1 - (1 - x/120) 116 

for 0 :": x :": 120. Calculate both qx and µx+l/2 for x = 20 and for x = 110, 
and comment on these values. 

Solution 2.5 We have 

So(x + 1) ( 1 ) l/
6 

Px = So(x) = 1 - 120 - x ' 

giving q20 = 0.00167 and quo = 0.01741, and from the solution to Exam­
ple 2.2, µ 201=0.00168 and µ 1101 = 0.01754. We see that µx+l/2 is a good 
approximatibn to qx when the mohality rate is small, but is not such a good 
approximation, at least in absolute terms, when the mortality rate is not 
close to 0. 0 

2.5 Mean and standard deviation of Tx 

Next, we consider the expected future lifetime of (x), E[Tx], denoted in actu­

arial notation by ~ x. We call this the complete expectation of life. In order to 
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0 evaluate ex, we note from formulae (2.17) and (2.18) that 

d 
fx(t) = tPx /J.,x+t = - dt tPx· 

(2.21) 

From the definition of an expected value, we have 

~x = LXJ t fx(t)dt 

= loot t Px /J.,x+1dt. 

We can now use (2.21) to evaluate this integral using integration by parts as 

~x = - loot (:t tPx) dt 

= -(t1Px\~ - l

00

tPxdt). 

In Section 2.2 we stated the assumption that lim1--+oo t 1 Px = 0, which gives 

(2.22) 

Similarly, for E[T}J, we have 

E[T;] =loo t21Px /J.,x+tdt 

=-l

00

t
2

(:ttPx)dt 

= -(t2 tPx\: - loo tPx 2t dt) 

= 2 loo t1Px dt. (2.23) 

So we have integral expressions for E[Tx] and E[T}J. For some lifetime distri­
butions we are able to integrate directly. In other cases we have to use numer­
ical integration techniques to evaluate the integrals in (2.22) and (2.23). The 

variance of Tx can then be calculated as 

Example 2.6 As in Example 2.1, let 

Fo(x) = 1 - (1 - x/120)
1
1
6 

for 0 :S x :S 120. Calculate ~x and V[Tx] for (a) x = 30 and (b) x = 80. 
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Solution 2.6 As So(x) = (1 - x/120) 116, we have 

So(x+t) ( t ) 116 

tPx = So(x) = l - 120-x 

Now recall that this formula is valid for 0 :S t :S (120 - x), because, under this 
model, survival beyond age 120 is impossible. Technically, we have 

-I (1 - 126- ) 
116 

for x + t ::::: 120, tPx - x 
0 for x + t > 120. 

So the upper limit of integration in equation (2.22) is 120 - x, and 

0 1120-x ( t ) 1/6 
ex = 1 - dt. 

0 120 - x 

We make the substitution y = 1 - t/(120 - x), so that t = (120 - x)(l - y), 
giving 

~x = (120 - x) fo
1 

y 116dy 

= ~(120 - x). 

0 0 

Then e3o = 77 .143 and eso = 34.286. 

Under this model the expectation of life at any age x is 6/7 of the time to 
age 120. 

For the variance we require E[T}]. Using equation (2.23) we have 

{120-x 
E [r;] = 2 lo ftPxdt 

= 2 {120-x t (1- t )l/6 dt. 
lo 120 - x 

Again, we substitute y = 1 - t/(120 - x) giving 

Then 

E [ r}] = 2(120 - x)2 la1 (yl/6 - y7/6) dy 

= 2(120 - x )
2 

( ~ - 1
6
3) . 

V[Tx] = E[T}] - (~x r = (120 - x) 2 
( 2(6/7 - 6/13) - (6/7) 2) 

= (120 - x)
2 

(0.056515) = ((120 - x) (0.23773)) 2 . 

So V[T30] = 21.3962 and V[T80] = 9.5092. 
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Table 2.1 Values of ~x' SD[Tx] and expected age at death 

for the Gompertz model with B = 0.0003 and c = 1.07. 

0 

SD[Tx] 
0 

x ex x +ex 

0 71.938 18.074 71.938 
10 62.223 17.579 72.223 
20 52.703 16.857 72.703 
30 43.492 15.841 73.492 
40 34.752 14.477 74.752 
50 26.691 12.746 76.691 
60 19.550 10.693 79.550 
70 13.555 8.449 83.555 
80 8.848 6.224 88.848 
90 5.433 4.246 95.433 

100 3.152 2.682 103.152 

Since we know under this model that all lives will die before age 120, it 
makes sense that the uncertainty in the future lifetime should be greater for 
younger lives than for older lives. D 

A feature of the model used in Example 2.6 is that we can obtain formulae for 

quantities of interest such as ~x. but for many models this is not possible. For 
example, when we model mortality using Gompertz' law, there is no explicit 

formula for ~x and we must use numerical integration to calculate moments of 
Tx. In Appendix B we describe in detail how to do this. 

Table 2.1 shows values of ~x and the standard deviation of Tx (denoted 
SD[TxD for a range of values of x using Gompertz' law, f-Lx = BcX, where 
B = 0.0003 and c = 1.07. For this survival model, l30PO = 1.9 x 10-13 , so that 
using 130 as the maximum attainable age in our numerical integration is accu­
rate enough for practical purposes. 

We see that ~x is a decreasing function of x, as it was in Example 2.6. In 

that example ~x was a linear function of x, but we see that this is not true in 
Table 2.1. 

We are sometimes interested in the future lifetime random variable subject 
to a cap of n years, which is represented by the random variable min(Tx, n). 

For example, suppose that (x) is entitled to a benefit payable continuously 
for a maximum of n years, conditional on survival. Then min(Tx, n) would 
represent the payment period for the benefit. We derive the mean and variance 
of this random variable, using a similar approach to the derivation of the mean 
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and variance of Tx. The expected value of min(Tx, n) is denoted ~x:ii1' and is 
called the term expectation of life. 

E[min(Tx, n)] = ~x:/il =Ion t tPx µx+t dt + £00 

n tPx µx+t dt 

=font (-:ttPx)dt+nnPx 

= -(ttPxl~ -lantPxdt) +nnPx 

=:} ~x:/il = lantPx dt. 

The iil notation is used to denote a period of n years Gust as in annuity-certain 
notation), and is used extensively in later chapters. 

2.6 Curtate future lifetime 

2.6.1 Kx and ex 

In many insurance applications we are interested not only in the future lifetime 
of an individual, but also in what is known as the individual's curtate future 
lifetime. The curtate future lifetime random variable is defined as the integer 
part of future lifetime, and is denoted by Kx for a life aged x. If we let L j 
denote the floor function, we have 

We can think of the curtate future lifetime as the number of whole years lived 
in the future by an individual. As an illustration of the importance of curtate 
future lifetime, consider the situation where a life aged x at time 0 is entitled 
to payments of 1 at times 1, 2, 3, ... provided that (x) is alive at these times. 
Then the number of payments made equals the number of complete years lived 
after time 0 by (x). This is the curtate future lifetime. 

We can find the probability function of Kx by noting that fork= 0, 1, 2, ... , 
K x = k if and only if (x) dies between the ages of x + k and x + k + 1. Thus 
fork= 0, 1, 2, ... 

Pr[Kx = k] = Pr[k :S Tx < k + 1] 

= klqx 

= kPx - k+IPx 

= kPx - kPx Px+k 

= kPx qx+k· 
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The expected value of Kx is denoted by ex, so that ex= E[Kx], and is referred 
to as the curtate expectation of life (even though it represents the expected 
curtate lifetime). So 

E[Kx] =ex 
00 

= L)Pr[Kx = k] 
k=O 
00 

=I> (kPx - k+lPx) 
k=O 

= (1Px - 2Px) + 2(2Px - 3Px) + 3(3Px - 4Px) + · · · 
00 

= L kPx· 
k=l 

Note that the lower limit of summation is k = 1. 
Similarly, 

00 

E[K;] = Lk2 
( kPx - k+lPx) 

k=O 

(2.24) 

= (1Px - 2Px) + 4(2Px - 3Px) + 9(3Px - 4Px) + l6(4Px - 5Px) + · · · 
00 00 

= 2 L k kPx - L kPx 
k=l k=l 
00 

= 2 Lk kPx - ex. 
k=l 

As with the complete expectation of life, there are a few lifetime distributions 

that allow E[Kx] and E[K~] to be calculated analytically. For more realistic 
models, such as Gompertz', we can calculate the values easily using Excel or 
other suitable software. Although in principle we have to evaluate an infinite 
sum, at some age the survival probability will be sufficiently small that we can 

treat it as an effective limiting age. 
Analogous to the random variable min(Tx, n) we have the random variable 

min(Kx, n ). For example, if a life aged x is entitled to payments of 1 at times 
1, 2, 3, ... , n, where n is an integer, then min(Kx, n) represents the number of 

payments made. An important difference between these two random variables 
is that min(Tx, n) is a mixed random variable (with a density over (0, n) and 
a mass of probability at n), whereas min(Kx, n) is a discrete random variable 
since Kx is a discrete random variable. The expected value of min(Kx, n) is 
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denoted ex:lil• and when n is an integer is given by 

n 

ex:lil = L kPx · 
k=I 

The proof of this result is set as Exercise 2.16. 

2.6.2 The complete and curtate expected future lifetimes, ~x and ex 

As the curtate future lifetime is the integer part of future lifetime, it is natural 

to ask if there is a simple relationship between ~x and ex. We can obtain an 
approximate relationship by writing 

~x = f
00

tPx dt = f ~i+
1

tPx dt. 
lo l=O jl 

If we approximate each integral using the trapezium rule for numerical inte­
gration (see Appendix B), we obtain 

{}+! I 
jl tPx dt;::::; z (Jpx + J+lPx), 

and hence 

00 00 

~x;::::; L ~ (Jpx + J+!Px) = ~ + LiPx· 
1=0 l=l 

Thus, we have an approximation that is frequently applied in practice, namely 

(2.25) 

In Chapter 5 we will meet a refined version of this approximation. Table 2.2 

shows values of ~x and ex for a range of values of x when the survival model 
is Gompertz' law, with B = 0.0003 and c = 1.07. Values of ex were calculated 
by applying formula (2.24) with an upper limit of summation of 130 - x, and 

values of ~ x are as in Table 2.1. This table illustrates that formula (2.25) is a 
very good approximation in this particular case for younger ages, but is less 
accurate at very old ages. This observation is true for most realistic survival 
models. 

2.7 Notes and further reading 

Although laws of mortality such as Gompertz' law are appealing due to their 
simplicity, they rarely represent mortality over the whole span of human ages. 
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Table 2.2 Values of ex and ~x 
for Gompertz' law with 

B = 0.0003 and c = 1.07. 

0 

x ex ex 

0 71.438 71.938 
10 61.723 62.223 
20 52.203 52.703 
30 42.992 43.492 
40 34.252 34.752 
50 26.192 26.691 
60 19.052 19.550 
70 13.058 13.555 
80 8.354 8.848 
90 4.944 5.433 

100 2.673 3.152 

A simple extension of Gompertz' law is Makeham's law (Makeham, 1860), 
which models the force of mortality as 

(2.26) 

This is very similar to Gompertz' law, but adds a fixed term that is not age 
related, that allows better for accidental deaths. The extra term tends to improve 
the fit of the model to mortality data at younger ages. See Exercise 2.11. 

In recent times, the Gompertz-Makeham approach has been generalized fur­
ther to give the GM(r, s) (Gompertz-Makeham) formula, 

fLx = h;(x) + exp{h;(x)}, 

where h; and h; are polynomials in x of degree r and s, respectively. A dis­
cussion of this formula can be found in Forfar et al. (1988). Both Gompertz' 
law and Makeham's law are special cases of the GM formula. 

In Section 2.3, we noted the importance of the force of mortality. A further 
significant point is that when mortality data are analysed, the force of mortality 
is a natural quantity to estimate, whereas the lifetime distribution is not. The 
analysis of mortality data is a huge topic and is beyond the scope of this book. 
An excellent summary article on this topic is Macdonald (1996). For more 
general distributions, the quantity fo(x)/So(x), which actuaries call the force 
of mortality at age x, is known as the hazard rate in survival analysis and 
the failure rate in reliability theory. 
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2.8 Exercises 

Exercise 2.1 Let Fo(t) = 1 - (1 - t /105) 115 for 0 .::: t .::: 105. Calculate 

(a) the probability that a newborn life dies before age 60, 
(b) the probability that a life aged 30 survives to at least age 70, 
(c) the probability that a life aged 20 dies between ages 90 and 100, 
( d) the force of mortality at age 50, 
(e) the median future lifetime at age 50, 
(t) the complete expectation of life at age 50, 
(g) the curtate expectation of life at age 50. 

Exercise 2.2 The function 

18 000 - llOx - x 2 

G(x) = 18 000 

has been proposed as the survival function So(x) for a mortality model. 

(a) What is the implied limiting age w? 

(b) Verify that the function G satisfies the criteria for a survival function. 
( c) Calculate 20 po. 
(d) Determine the survival function for a life aged 20. 
( e) Calculate the probability that a life aged 20 will die between ages 30 

and 40. 
(t) Calculate the force of mortality at age 50. 

Exercise 2.3 Calculate the probability that a life aged 0 will die between ages 
19 and 36, given the survival function 

1 
So(x) = 

10 
.J100 - x, 0.::: x .::: 100 (= w). 

Exercise 2.4 Let 

So(x) =exp {-(Ax+ ~Bx2 + _E_Dx - _!!_)} 
2 log D log D 

where A, B, C and D are all positive. 

(a) Show that the function So is a survival function. 
(b) Derive a formula for Sx (t). 

(c) Derive a formula for /,lx· 

(d) Now suppose that 

A= 0.00005, B = 0.0000005, C = 0.0003, D = 1.07. 

(i) Calculate tP30 fort= 1, 5, 10, 20, 50, 90. 
(ii) Calculate tq40fort=1, 10, 20. 
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(iii) Calculate tl1oq30fort=1, 10, 20. 
(iv) Calculate ex for x =70, 71, 72, 73, 74, 75. 
(v) Calculate e0x for x = 70, 71, 72, 73, 74, 75, using numerical integration. 

Exercise 2.5 Let Fo(t) = 1 - e-M, where J... > 0. 

(a) ShowthatSx(t)=e-AI. 

(b) Show that f.1,x =A. 
(c) Show that ex= (e" - 1)-

1. 
( d) What conclusions do you draw about using this lifetime distribution to 

model human mortality? 

Exercise 2.6 Given Px =0.99, Px+l =0.985, 3Px+l =0.95 and 

qx+3 = 0.02, calculate 

(a) Px+3, 

(b)2Px• 
(c) 2Px+l, 

(d) 3Px, 

(e) 1i2qx. 

Exercise 2. 7 Given 
1 

Fo(x) = 1 - -- for x 2: 0, 
l+x 

find expressions for (a), (b), (c) below, simplifying as far as possible, 

(a) So(x), 
(b) fo(x), 

(c) Sx(t), 

and calculate: 

(d) pzo, and 
( e) 10 isq30. 

Exercise 2.8 Given 

So(x) =e-o.001x2 for x 2: 0, 

find expressions for (a) and (b ), simplifying as far as possible, 

(a) fo(x), and 

(b) f.1,x· 

Exercise 2.9 Show that 
d 
dx tPx =tPx (µ,x - f.1,x+t) · 
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Exercise 2.10 Suppose that Gompertz' law applies with µ,30 = 0.000130 and 

f..lso = 0.000344. Calculate 10P40· 

Exercise 2.11 A survival model follows Mak:eham's law, so that 

for x :=::: 0. 

(a) Show that under Mak:eham's law 

(2.27) 

wheres= e-A andg= exp{-B/logc}. 

(b) Suppose you are given the values of 10Pso, 10P60 and 10P70· Show that 

c = ( log(10P10) - log(10P60)) 0.1 

log(10P60) - log(10Pso) 

Exercise 2.12 (a) Construct a table of Px for Mak:eham's law with parame­

ters A= 0.0001, B = 0.00035 and c = 1.075, for integer x from age 0 to 
age 130, using Excel or other appropriate computer software. You should 
set the parameters so that they can be easily changed, and you should 
keep the table, as many exercises and examples in future chapters will use 
Mak:eham's law. 

(b) Use the table to determine the age last birthday at which a life currently 
aged 70 is most likely to die. 

(c) Use the table to calculate e10. 

(d) Using a numerical approach, calculate ~70· 

Exercise 2.13 A life insurer assumes that the force of mortality of smokers at 
all ages is twice the force of mortality of non-smokers. 

(a) Show that, if* represents smokers' mortality, and the 'unstarred' function 
represents non-smokers' mortality, then 

(b) Calculate the difference between the life expectancy of smokers and non­

smokers aged 50, assuming that non-smokers mortality follows Gompertz' 
law, with B = 0.0005 and c = 1.07. 

( c) Calculate the variance of the future lifetime for a non-smoker aged 50 and 
for a smoker aged 50 under Gompertz' law. 

Hint: You will need to use numerical integration for parts (b) and (c). 
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Exercise 2.14 (a) Show that 

~x < ~x+l + 1. 

(b) Show that 

(c) Explain (in words) why 

(d) Is ~x always a non-increasing function of x? 

Exercise 2.15 (a) Show that 

~x = -
1-100 

So(t)dt, 
So(x) x 

where So(t) = 1 - Fo(t), and hence, or otherwise, prove that 

d 0 0 

dx ex = /J.,x ex - 1. 

Hint: :x {ix g(t)dt} = g(x). What about :x lia g(t)dt}? 

(b) Deduce that 
0 

x +ex 

is an increasing function of x, and explain this result intuitively. 

Exercise 2.16 Show that for integer n, 

2.1 (a) 0.1559 
(b) 0.8586 

(c) 0.1394 

(d) 0.0036 

(e) 53.28 

(f) 45.83 

(g) 45.18 

n 

ex:iil = L kPx · 
k=l 

Answers to selected exercises 

39 



40 Survival models 

2.2 (a) 90 
(c) 0.8556 
(d) 1 - 3x/308 - x 2 /15 400 
(e) 0.1169 
(f) 0.021 

2.3 0.1 

2.4 (d) (i) 0.9976, 0.9862, 0.9672, 0.9064, 0.3812, 3.5 x 10-7 

(ii) 0.0047, 0.0629, 0.1747 
(iii) 0.0349, 0.0608, 0.1082 
(iv) 13.046, 12.517, 12.001, 11.499, 11.009, 10.533 
(v) 13.544, 13.014, 12.498, 11.995, 11.505, 11.029 

2.6 (a) 0.98 
(b) 0.97515 
(c) 0.96939 
(d) 0.95969 
(e) 0.03031 

2.7 (d) 0.95455 
(e) 0.08218 

2.10 0.9973 
2.12 (b) 73 

(c) 9.339 
(d) 9.834 

2.13 (b) 6.432 

(c) 125.89 (non-smokers), 80.11 (smokers) 




