
First order linear differential equation 

A linear first order DE has the general form   

 

 

Or equivalently , 

   

 

We seek a solution of (1) defined on some interval I on which p  

and  f  are continuous. 

It is easy to see that Equation (1) can be converted to an exact 

DE by using the integrating factor: 
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Multiplying both sides of Equation (1) by (x), we obtain 

 

 

Or 

 

 

That is  

 

Integrating both sides of (2) we get 
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Example1:Solve the DE 
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Example 2: Solve the DE: 

 

After rearranging, the equation becomes  
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Example 3 

Solve the initial value problem 

 

 First put the equation in the standard form: 

 
 

Then 

 
 

hence  
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Using the initial condition y (1) = 2 in the general solution 

 

it follows that 

 

 

The graphs below show several curves for different values of 

c, and a particular solution (in red) whose graph passes 

through the initial point (1,2). 
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Bernoulli’s D. Equation 

First order ODE of the form 

 

Where  n  is any real number different than 0 or  1 is  

called Bernoulli’s DE, which can be reduced to a first order 

linear DE using by a suitable substitution. 

Indeed, divide both sides of (1) by       to obtain  

 

 

 

 

Therefore (2) becomes 

 

Which is linear DE in  u 
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Example1 

Solve the DE 

 

Rewrite Equation (1) in the standard form 

 

Now, (2) is a Bernoulli’s equation. Dividing both sides of (2) by 

       we get  

 

 

 

 

Using these values in (3) we obtain 
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Dividing (4) by      we obtain 

 

 

which is LDE. 

 

 

Multiplying both sides of (5) by             we obtain 
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Example 2 

Solve the DE 

 

Rewrite Equation (1) in the standard form 

 

which is a Bernoulli’s DE. Multiplying both sides of (2) by 

       we get  

 

 

 

 

Using these values in (3) we obtain 
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Multiplying  (4) by  4  we obtain 

 

 

which is LDE. 

 

 

Multiplying both sides of (5) by             we obtain 
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Homework 

Solve the DEs 
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