First order linear differential equation

A linear first order DE has the general form

$$
a_{1}(x) \frac{d y}{d x}+a_{2}(x) y=g(x)
$$

Or equivalently,

$$
\begin{equation*}
\frac{d y}{d x}+p(x) y=f(x) \tag{1}
\end{equation*}
$$

We seek a solution of (1) defined on some interval I on which p and f are continuous.
It is easy to see that Equation (1) can be converted to an exact DE by using the integrating factor:

$$
\mu(x)=e^{\int p(x) d x}
$$

Multiplying both sides of Equation (1) by $\mu(\mathrm{x})$, we obtain

$$
e^{\int p(x) d x} \frac{d y}{d x}+e^{\int p(x) d x} p(x) y=e^{\int p(x) d x} f(x)
$$

Or

$$
\frac{d}{d x}\left\{e^{\int p(x) d x} y\right\}=e^{\int p(x) d x} f(x)
$$

That is $\quad \frac{d}{d x}\{\mu(x) y\}=\mu(x) f(x)$

Integrating both sides of (2) we get

$$
\mu(x) y=c+\int \mu(x) f(x) d x
$$

Or

$$
y=\frac{1}{\mu(x)}\left[c+\int \mu(x) f(x) d x\right\rfloor
$$

Example1:Solve the DE

$$
x \frac{d y}{d x}-4 y=x^{6} e^{x}, x>0 .
$$

Dividing both sides by x we get
$\frac{d y}{d x}-\frac{4}{x} y=x^{5} e^{x}$
$\Rightarrow p(x)=-\frac{4}{x} \Rightarrow \mu(x)=e^{\int-\frac{4}{x} d x}=x^{-4}$
Multiply both sides of (1) by x^{-4} to get
$\Rightarrow x^{-4} \frac{d y}{d x}+\left(-4 x^{-5}\right) y=x e^{x}$
Or $\frac{d}{d x}\left(x^{-4} y\right)=x e^{x}$
Which implies

$$
\begin{aligned}
x^{-4} y= & \int x e^{x} d x \\
& =x e^{x}-e^{x}+c
\end{aligned}
$$

Or $y=x^{4}\left(x e^{x}-e^{x}+c\right)$

Example 2: Solve the DE:

$(1-\cos x) d y+(2 y \sin x-\tan x) d x=0$
After rearranging, the equation becomes
$\frac{d y}{d x}+\frac{2 \sin x}{1-\cos x} y=\tan x$
(1).
$\Rightarrow p(x)=\frac{2 \sin x}{1-\cos x} \Rightarrow \mu(x)=e^{\int \frac{2 \sin x}{1-\cos x} d x}=(1-\cos x)^{2}$
Multiply both sides of (1) by $\mu(x)$ to get
$\Rightarrow(1-\cos x)^{2} \frac{d y}{d x}+2 \sin x(1-\cos x) y=\tan x(1-\cos x)^{2}$
Or $\frac{d}{d x}\left\{(1-\cos x)^{2} y\right\}=\tan x(1-\cos x)^{2}$
Which implies

$$
\begin{aligned}
& (1-\cos x)^{2} y=\int \tan x(1-\cos x)^{2} d x \\
& \quad=-\ln |\cos x|+2 \cos x+\frac{1}{2} \sin ^{2} x+c
\end{aligned}
$$

Example 3

Solve the initial value problem

$$
x y^{\prime}-2 y=5 x^{2}, \quad y(1)=2
$$

First put the equation in the standard form:

$$
y^{\prime}-\frac{2}{x} y=5 x, \text { for } x \neq 0
$$

Then

$$
p(x)=\frac{-2}{x} \Rightarrow \mu(x)=e^{-\int \frac{2}{x} d x}=e^{-2 \ln |x|}=e^{\ln \left(x^{-2}\right)}=\frac{1}{x^{2}}
$$

hence

$$
\begin{aligned}
& \frac{1}{x^{2}} y=\left[c+\int \frac{5}{x} d x\right] \\
& \Rightarrow y=5 x^{2} \ln |x|+c x^{2}
\end{aligned}
$$

Using the initial condition $y(1)=2$ in the general solution

$$
y=5 x^{2} \ln |x|+c x^{2}
$$

it follows that

$$
c=2 \Rightarrow y=5 x^{2} \ln |x|+2 x^{2}
$$

The graphs below show several curves for different values of c, and a particular solution (in red) whose graph passes through the initial point $(1,2)$.

Bernoulli's D. Equation

First order ODE of the form

$$
\begin{equation*}
\frac{d y}{d x}+p(x) y=f(x) y^{n} \tag{1}
\end{equation*}
$$

Where n is any real number different than 0 or 1 is called Bernoulli's DE, which can be reduced to a first order linear DE using by a suitable substitution.
Indeed, divide both sides of (1) by y^{n} to obtain

$$
\begin{gather*}
y^{-n} \frac{d y}{d x}+p(x) y^{1-n}=f(x) \tag{2}\\
\text { Let } u=y^{1-n} \Rightarrow \frac{d u}{d x}=(1-n) y^{-n} \frac{d y}{d x} \\
\Rightarrow y^{-n} \frac{d y}{d x}=(1-n) \frac{d u}{d x}
\end{gather*}
$$

Therefore (2) becomes

$$
(1-n) \frac{d u}{d x}+p(x) u=f(x)
$$

Which is linear DE in u

Example 1

Solve the DE

$$
\begin{equation*}
x \frac{d y}{d x}+y\left(1-x^{2} y\right)=0 \tag{1}
\end{equation*}
$$

Rewrite Equation (1) in the standard form

$$
\begin{equation*}
x \frac{d y}{d x}+y=x^{2} y^{2} \tag{2}
\end{equation*}
$$

Now, (2) is a Bernoulli's equation. Dividing both sides of (2) by
y^{2} we get

$$
\begin{gather*}
x y^{-2} \frac{d y}{d x}+y^{-1}=x^{2} \tag{3}\\
\text { Let } u=y^{-1} \Rightarrow \frac{d u}{d x}=-y^{-2} \frac{d y}{d x} \\
\Rightarrow y^{-2} \frac{d y}{d x}=-\frac{d u}{d x}
\end{gather*}
$$

Using these values in (3) we obtain

$$
\begin{equation*}
-x \frac{d u}{d x}+u=x^{2} \tag{4}
\end{equation*}
$$

Dividing (4) by $-x$ we obtain

$$
\begin{equation*}
\frac{d u}{d x}+\left(\frac{-1}{x}\right) u=-x \tag{5}
\end{equation*}
$$

which is LDE.
$\Rightarrow p(x)=\left(\frac{-1}{x}\right) \Rightarrow \mu(x)=e^{\int \frac{-1}{x} d x}=\frac{1}{x}$
Multiplying both sides of (5) by $\mu(x)=\frac{1}{x}$ we obtain

$$
\begin{aligned}
& \frac{1}{x} \frac{d u}{d x}+\left(\frac{-1}{x^{2}}\right) u=-1 \\
& \Rightarrow \frac{d}{d x}\left(\frac{1}{x} u\right)=-1 \Rightarrow \frac{1}{x} u=c-x \\
& \Rightarrow u=c x-x^{2} \Rightarrow y^{-1}=c x-x^{2}
\end{aligned}
$$

Or

$$
y\left(c x-x^{2}\right)=1
$$

Example 2

Solve the DE

$$
\begin{equation*}
y^{\prime}+x y-x e^{-x^{2}} y^{-3}=0 \tag{1}
\end{equation*}
$$

Rewrite Equation (1) in the standard form

$$
\begin{equation*}
y^{\prime}+x y=x e^{-x^{2}} y^{-3} \tag{2}
\end{equation*}
$$

which is a Bernoulli's DE. Multiplying both sides of (2) by
y^{3} we get

$$
\begin{equation*}
y^{3} y^{\prime}+x y^{4}=x e^{-x^{2}} \tag{3}
\end{equation*}
$$

$$
\text { Let } \begin{aligned}
u=y^{4} & \Rightarrow \frac{d u}{d x}=4 y^{3} \frac{d y}{d x} \\
& \Rightarrow y^{3} \frac{d y}{d x}=\frac{1}{4} \frac{d u}{d x}
\end{aligned}
$$

Using these values in (3) we obtain

$$
\begin{equation*}
\frac{1}{4} \frac{d u}{d x}+x u=x e^{-x^{2}} \tag{4}
\end{equation*}
$$

Multiplying (4) by 4 we obtain

$$
\begin{equation*}
\frac{d u}{d x}+4 x u=4 x e^{-x^{2}} \tag{5}
\end{equation*}
$$

which is LDE.
$\Rightarrow p(x)=4 x \Rightarrow \mu(x)=e^{\int 4 x d x}=e^{2 x^{2}}$
Multiplying both sides of (5) by $\mu(x)$ we obtain

$$
\begin{aligned}
& e^{2 x^{2}} \frac{d u}{d x}+4 x e^{2 x^{2}} u=4 x e^{x^{2}} \\
& \Rightarrow \frac{d}{d x}\left(e^{2 x^{2}} u\right)=4 x e^{2 x^{2}} \Rightarrow e^{2 x^{2}} u=c+\int 4 x e^{2 x^{2}} d x \\
& \Rightarrow u=e^{-2 x^{2}}\left(c+e^{2 x^{2}}\right) \\
& \text { Or } y^{4}=c e^{-2 x^{2}}+1 .
\end{aligned}
$$

Homework

Solve the DEs
(1) $\frac{x}{y} \frac{d y}{d x}+x y=1$
(2) $3\left(1+x^{3}\right) y^{\prime}=2 x y\left(y^{3}-1\right)$

