
Definition 

Let    be a function in two variables    

and    , then the differential of     (    )  

is given by 
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Exact Equations 

A first order ODE of the form 

 

is said to be exact DE if there is a function                 satisfies:            

 

 

That is  

 

hence 

 

    or  

 

then the solution of the DE is given implicitly by 
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Suppose M , N ,           and            are continuous  on an open 

 

region R in the xy-plane.Then, the differential equation  

 

is an exact if and only if   
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Example 1 

The DE 

 is exact, since  

and   

While, the DE 

is not exact, because  
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Example 2 

Solve the differential equation  

 

 

Here 
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hence the solution is given implicitly by  
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Example 3 

Solve the following differential equation.  

 
 

 

Here we have 

 

hence  

 

Thus, the solution is given by          where 
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It follows that the solution is given by 
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Example 4 
Solve the IVP 

 

First, put the DE in the form 

  

Hence  
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Sometimes, it is possible to convert a non-exact DE into an exact 
DE equation by multiplying it by a suitable function (x, y) 
(called an integrating factor) :  

 

 

Case 1: If                                   that is it does not depend on y.  

 

Then   

 

Case 2: If                                   that is it does not depend on x.  

 

Then   

 

 

 

 

 

 

 

 

 

Integrating Factors 
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Example 5 

The following DE is not exact   

 

Here,   

 

 

 

 

 

Multiplying the DE by (x) = x  it becomes 

 

Which is an exact DE. 
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Example 6 

The following DE is not exact   

 

Here,   

 

 

 

 

 

Multiplying the DE by (y) = y  it becomes 

 

Which is an exact DE. 
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