Definition

Let f be a function in two variables x and y, then the differential of $f(d f)$ is given by

$$
d f=\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d x
$$

Exact Equations

A first order ODE of the form

$$
M(x, y) d x+N(x, y) d y=0
$$

is said to be exact DE if there is a function $f(x, y)$ satisfies:

$$
d f=M(x, y) d x+N(x, y) d y
$$

That is

$$
f_{x}(x, y)=M(x, y), f_{y}(x, y)=N(x, y)
$$

hence $\quad f(x, y)=\int M(x, y) d x$

$$
\text { or } \quad f(x, y)=\int N(x, y) d y
$$

then the solution of the DE is given implicitly by $f(x, y)=c$

Theorem

Suppose $M, N, \frac{\partial M}{\partial y}$ and $\frac{\partial N}{\partial x}$ are continuous on an open
region R in the $x y$-plane.Then, the differential equation

$$
M(x, y) d x+N(x, y) d y=0
$$

is an exact if and only if

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial X}, \forall(x, y) \in R
$$

Example 1

The DE $\left(x^{2}+5 y\right) d x+\left(y^{3}+5 x\right) d y=0$
is exact, since $M(x, y)=x^{2}+5 y, N(x, y)=y^{3}+5 x$
and $\frac{\partial M}{\partial y}=5=\frac{\partial N}{\partial x}$
While, the DE $\left(x^{2}+y^{2}\right) d x+(3 y+x) d y=0$
is not exact, because

$$
M(x, y)=x^{2}+y^{2}, N(x, y)=3 y+x
$$

and $\frac{\partial M}{\partial y}=2 y \neq 1=\frac{\partial N}{\partial x}$

Example 2

Solve the differential equation

$$
\left(y \cos x+2 x e^{y}\right) d x+\left(\sin x+x^{2} e^{y}-1\right) d y=0
$$

Here

$$
M(x, y)=y \cos x+2 x e^{y}, N(x, y)=\sin x+x^{2} e^{y}-1
$$

hence

$$
M_{y}(x, y)=\cos x+2 x e^{y}=N_{x}(x, y) \Rightarrow \text { ODE is exact }
$$

Thus $f(x, y)=\int f_{x}(x, y) d x=\int\left(y \cos x+2 x e^{y}\right) d x$

$$
=y \sin x+x^{2} e^{y}+g(y)
$$

But

$$
\begin{aligned}
& \frac{\partial f}{\partial y}=N \Rightarrow \frac{\partial}{\partial y}\left(y \sin x+x^{2} e^{y}+g(y)\right)=\sin x+x^{2} e^{y}-1 \\
& \Rightarrow \sin x+x^{2} y+g^{\prime}(y)=\sin x+x^{2} e^{y}-1 \\
& \Rightarrow g^{\prime}(y)=-1 \\
& \Rightarrow g(y)=-y+c_{1}
\end{aligned}
$$

Therefore, $\quad f(x, y)=y \sin x+x^{2} e^{y}-y+c_{1}$ hence the solution is given implicitly by

$$
y \sin x+x^{2} e^{y}-y+c_{1}=c
$$

or

$$
y \sin x+x^{2} e^{y}-y=k
$$

Example 3

Solve the following differential equation.

$$
\frac{d y}{d x}+\frac{x+4 y}{4 x-y}=0 \Leftrightarrow(x+4 y) d x+(4 x-y) d y=0
$$

Here we have

$$
M(x, y)=x+4 y, N(x, y)=4 x-y
$$

hence $M_{y}(x, y)=4=N_{x}(x, y) \Rightarrow$ the DE is exact
(Also, it is homogeneou s DE)
Thus, the solution is given by $f(x, y)=c$ where

$$
f_{x}(x, y)=x+4 y, f_{y}(x, y)=4 x-y
$$

Hence $\quad f(x, y)=\int f_{x}(x, y) d x=\int(x+4 y) d x=\frac{1}{2} x^{2}+4 x y+g(y)$

But

$$
\begin{aligned}
& \frac{\partial f}{\partial y}=N \Rightarrow \frac{\partial}{\partial y}\left(\frac{1}{2} x^{2}+4 x y+g(y)\right)=4 x-y \\
& \Rightarrow 4 x+g^{\prime}(y)=4 x-y \\
& \Rightarrow g^{\prime}(y)=-y \\
& \Rightarrow g(y)=-\frac{1}{2} y^{2}+c_{1}
\end{aligned}
$$

Hence

$$
f(x, y)=\frac{1}{2} x^{2}+4 x y-\frac{1}{2} y^{2}+c_{1}
$$

It follows that the solution is given by

$$
\frac{1}{2} x^{2}+4 x y-\frac{1}{2} y^{2}+c=c
$$

or

$$
\frac{1}{2} x^{2}+4 x y-\frac{1}{2} y^{2}=k
$$

Example 4

Solve the IVP

$\left(1+\ln x+\frac{y}{x}\right) d x=(1-\ln x) d y, \quad y(1)=2$
First, put the DE in the form

$$
\left(1+\ln x+\frac{y}{x}\right) d x+(\ln x-1) d y=0
$$

Hence

$$
\begin{aligned}
& M=\left(1+\ln x+\frac{y}{x}\right), N=(\ln x-1) \\
& \Rightarrow M_{y}=\frac{1}{x}=N_{x} \Rightarrow \text { the } D E \text { is Exact } \\
& \Rightarrow \exists a \text { function } f(x, y) \text { such that } \\
& f_{x}=M \text { and } f_{y}=N
\end{aligned}
$$

Therefore $f(x, y)=\int N d y=\int(\ln x-1) d y$

$$
=y \ln x-y+h(x)
$$

$$
\text { But } \begin{aligned}
& f_{x}=M \Rightarrow \frac{y}{x}+h^{\prime}(x)=1+\ln x+\frac{y}{x} \\
& \Rightarrow h^{\prime}(x)=1+\ln x \\
& \Rightarrow h(x)=\int(1+\ln x) d x \\
&=x \ln x+c_{1}
\end{aligned}
$$

$$
\Rightarrow f(x, y)=y \ln x-y+x \ln x+c_{1}
$$

thus, the solution is given by
$y \ln x-y+x \ln x=k$
Since $y(1)=2 \Rightarrow k=-2$
\Rightarrow the solution is : $y \ln x-y+x \ln x+2=0$

Integrating Factors

Sometimes, it is possible to convert a non-exact DE into an exact DE equation by multiplying it by a suitable function $\mu(x, y)$ (called an integrating factor) :

$$
M(x, y) d x+N(x, y) d y=0
$$

Case 1: If $\frac{1}{N}\left(M_{y}-N_{x}\right)=f(x)$, that is it does not depend on y .
Then $\mu(x)=e^{\int f(x) d x}$.
Case 2: If $\frac{1}{M}\left(M_{y}-N_{x}\right)=g(y)$, that is it does not depend on x .
Then $\mu(y)=e^{-\int g(y) d x}$.

Example 5

The following DE is not exact

$$
\left(3 x y+y^{2}\right) d x+\left(x^{2}+x y\right) d y=0
$$

Here, $M=3 x y+y^{2}+1, N=x^{2}+x y$

$$
\begin{aligned}
& \Rightarrow M_{y}=3 x+2 y, N_{x}=2 x+y \\
& \Rightarrow \frac{1}{N}\left(M_{y}-N_{x}\right)=\frac{x+y}{x^{2}+x y}=\frac{1}{x}, \text { function of xalone } \\
& \Rightarrow \text { I.F.is } \mu(x)=e^{\int \frac{1}{x} d x}=x
\end{aligned}
$$

Multiplying the DE by $\mu(x)=x$ it becomes

$$
\left(3 x^{2} y+x y^{2}\right) d x+\left(x^{3}+x^{2} y\right) d y=0
$$

Which is an exact DE.

Example 6

The following DE is not exact

$$
6 x y d x+\left(4 y+9 x^{2}\right) d y=0
$$

Here, $M=6 x y, N=4 y+9 x^{2}$

$$
\begin{aligned}
& \Rightarrow M_{y}=6 x, N_{x}=18 x \\
& \Rightarrow \frac{1}{M}\left(M_{y}-N_{x}\right)=\frac{-12 x}{6 x y}=\frac{-2}{y}, \text { function of yalone } \\
& \Rightarrow \text { I.F.is } \mu(y)=e^{\int \frac{2}{y} d y}=y^{2}
\end{aligned}
$$

Multiplying the DE by $\mu(y)=y$ it becomes

$$
6 x y^{3} d x+\left(4 y^{3}+9 x^{2} y^{2}\right) d y=0
$$

Which is an exact DE.

