Definition

A function f in two variables x and y, is said to be homogeneous of degree n, if

$$
f(t x, t y)=t^{n} f(x, y)
$$

for any real number t.
For example:
$f(x, y)=\sqrt[3]{x^{2}+y^{2}}$ is homogenous of deg ree $n=\frac{2}{3}$
$f(x, y)=\frac{5 x y^{4}}{x^{2}+7 y^{2}}$ is homogenous of deg ree $n=3$

$$
f(x, y)=\frac{1}{x^{2}+7 y^{2}} \text { is homogenous of deg ree } n=-2
$$

$f(x, y)=3-\frac{2 x}{y}+e^{\frac{x^{2}}{3 y^{2}}}$ is homogenous of deg ree $n=0$
$f(x, y)=-8 x \sin \left(x y^{-1}\right)$ is homogenous of deg ree $n=1$
While $g(x, y)=1+x+x y^{3}$ is not homogeneous.
Here the function g is a polynomial.
Remark: a polynomial in two variables is homogeneous if all its terms are of the same degree.
For example $g(x, y)=x^{3}-5 x y^{2}-4 x^{2} y$

Homogeneous Differential Equation

A first order DE

$$
\frac{d y}{d x}=f(x, y)
$$

is said to be homogeneous DE if the function f is homogeneous of degree zero.

Equivalently, the $\operatorname{DE} M(x, y) d x+N(x, y) d y=0$
is homogeneous if both M and N are homogeneous functions of the same degree.

A homogeneous DE can be reduced to a separable DE using the substitution

$$
y=u x \text { or } x=v y
$$

Example 1

Solve the DE $x y d y+\left(x^{2}-3 y^{2}\right) d x=0$.
This is a homogeneous DE.
Let $y=u x \Rightarrow d y=u d x+x d u$

$$
\begin{aligned}
& \Rightarrow u x^{2}(u d x+x d u)+\left(x^{2}-u^{2} x^{2}\right) d x=0 \\
& \Rightarrow u x^{3} d u=-x^{2} d x
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow u d u=-\frac{1}{x} d x \\
& \Rightarrow \frac{1}{2} u^{2}=-\ln x+c_{1}
\end{aligned}
$$

Thus, the solution of the DE is given by

$$
y^{2}=-2 x^{2} \ln x+c x^{2}
$$

Example 2

Solve the following differential equation.

$$
x \frac{d y}{d x}-y=\sqrt{x^{2}+y^{2}}
$$

Solution
This is homogeneous DE
Thus, let $y=u x \Rightarrow d y=u d x+x d u$
Hence, we have

$$
\begin{aligned}
& x u d x+x^{2} d u=\left(x u+x \sqrt{1+u^{2}}\right) d x \\
& \Rightarrow \frac{1}{\sqrt{1+u^{2}}} d u=\frac{1}{x} d x
\end{aligned}
$$

Example 3

Solve the initial value problem

$$
x \frac{d y}{d x}=y+x e^{\frac{y}{x}}, \quad y(1)=1
$$

Solution
The DE is homogeneous, thus, let

$$
y=u x \Rightarrow d y=u d x+x d u
$$

Hence, we have

$$
\begin{aligned}
& x u d x+x^{2} d u=\left(x u+x e^{u}\right) d x \\
& \Rightarrow e^{-u} d u=\frac{1}{x} d x \\
& \Rightarrow-e^{-u}=\ln |x|+c
\end{aligned}
$$

$$
\Rightarrow-e^{\frac{-y}{x}}=\ln |x|+c
$$

Since $y(1)=1 \Rightarrow c=-e^{-1}$

Hence, the solution is

$$
\Rightarrow-e^{\frac{-y}{x}}=\ln |x|-e^{-1}
$$

Homework

Solve the following DE

$$
\frac{d y}{d x}+\frac{x+y}{x-y}=0
$$

Differential Equations with linear coefficients

Consider the first order DE

$$
\frac{d y}{d x}=\frac{a x+b y+c}{h x+k y+l}
$$

where a, b, c, h, k, l are constants and $c, l \neq 0$.
If $\frac{a}{h}=\frac{b}{k}$, then the above differential equation can be reduced to a separable DE using the substitution $u=a x+b y$ or $v=h x+k y$.

If $\frac{a}{h} \neq \frac{b}{k}$, then it can be converted to a homogeneous DE as
follows:

Put $a x+b y+c=0$

$$
h x+k y+l=0
$$

and solve these two equations simultaneously, assume that $x=x_{0}$ and $y=y_{0}$
Now, let

$$
\begin{aligned}
& x=X+x_{0} \text { and } y=Y+y_{0} \\
& \Rightarrow \frac{d y}{d x}=\frac{d Y}{d X}
\end{aligned}
$$

which will reduce the equation to a homogeneous DE , then it can be reduced to a separable DE .

Example 1

Solve the DE: $\frac{d y}{d x}=\frac{2+x+y}{1-2 x-2 y}$
Here $a=b=1, h=k=-2$. Hence $\frac{a}{h}=\frac{b}{k}=\frac{1}{-2}$, therefore put

$$
u=x+y \Rightarrow \frac{d y}{d x}=\frac{d u}{d x}-1
$$

Hence the DE becomes

$$
\frac{d u}{d x}-1=\frac{2+u}{1-2 u} \Rightarrow \frac{d u}{d x}=\frac{3-u}{1-2 u}
$$

Which is separable DE.

Example 2

Solve the DE: $\frac{d y}{d x}=\frac{3+x+y}{1-x+y}$
Here $a=b=1, h=-1, k=1$. Hence $\frac{a}{h} \neq \frac{b}{k}$, therefore solve the two equations $3+x+y=\mathbf{O}$ and $1-x+y=0$ to obtain $x=-1, y=-2$.
Now let $x=X+(-1)$ and $y=Y+(-2) \Rightarrow \frac{d y}{d x}=\frac{d Y}{d X}$
Hence the DE becomes

$$
\frac{d Y}{d X}=\frac{X+Y}{-X+Y}
$$

Which is a homogeneous DE.

