
First order ODEs 

In this chapter we will consider first order ODEs 

, and we assume that the equation               can be 

written in the form                

  

Three questions may be raised: 

Does a solution of a first order DE exist?. 

If yes, is it unique?. 

And how can we obtain this solution?. 
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Initial Value Problem 

Some times we are interested in solving a 

differential equation subject to some given 

conditions. 

The problem  

Solve the DE:  

 

Subject to the condition:  

is called a first order initial value problem. 
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Example 1 

The DE                  has the one-parameter 
family of solutions           on             .  Exactly 
one member of this family satisfies the 
condition            . Namely,            , which is the  
unique member of this family whose curve 
passing through the point (0,2). 

Thus the IVP: 

 

   

 

has a unique solution         .  

xy
dx

dy
2

),( 

2

2 xey 

2xecy 

2)0( y













,2)0(

,2

y

xy
dx

dy

2

2 xey 



Figure 1.  
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Example 2 

The DE                     has the one-parameter 
family of solutions                       on             .   

Two members of this family satisfy the 
condition              , namely, 

since their  graphs pass through the point 
(0,0), Thus the IVP: 

 

   

 

has two solutions .  
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When does a solution of a given IVP exist and 

it is unique? 



Theorem (Picard) (Existence and uniqueness) 

Let R be a rectangular region in the    -plane 

defined by                               and contains the 

point            in its interior. 

If both            and         are continuous on    , 

then there exists an interval   centered at    and a 

unique function        defined on    which  

satisfies the IVP: 
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Figure 3 
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Example 1 

Find and sketch the largest region in the    -plane 

through which the IVP: 

 

 

has a unique solution. 

Solution: 

 both functions are continuous provided that           

            . Since                     lies in the first 

quadrant we have   
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Example 2 

Find and sketch the largest region in the    -plane 

through which the IVP: 

 

has a unique solution. 

Solution:  

  

both are continuous provided that                that 

is                or                  . Thus the region R is 

given by                                    .  
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• Figure 5 
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Example 3 

Find and sketch the largest region in the     
plane through which the IVP: 

 

 

has a unique solution. 

Solution: 

 both are continuous provided that                   
and            .  

Hence the region R is given by             
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Homework 

Determine whether the existence and 

uniqueness theorem Guarantees that the 

differential equation: 

 

 

has a unique solution at any of the following 

points:  
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