First order ODEs

In this chapter we will consider first order ODEs , and we assume that the equation $F\left(x, y, \frac{d y}{d x}\right)=0$ can be written in the form $\frac{d y}{d x}=f(x, y)$.

Three questions may be raised:
Does a solution of a first order DE exist?. If yes, is it unique?.
And how can we obtain this solution?.

Initial Value Problem

Some times we are interested in solving a differential equation subject to some given conditions.

The problem
Solve the DE: $\frac{d y}{d x}=f(x, y)$
Subject to the condition: $y\left(x_{0}\right)=y_{0}$ is called a first order initial value problem.

Example 1

The DE $\frac{d y}{d x}=2 x y$ has the one-parameter family of solutions $y=c e^{p^{2}}$ on $(-\infty, \infty)$. Exactly one member of this family satisfies the condition $y(0)=2$. Namely, $y=2 e^{x^{2}}$, which is the unique member of this family whose curve passing through the point $(0,2)$.
Thus the IVP:

$$
\left\{\begin{array}{l}
\frac{d y}{d x}=2 x y, \\
y(0)=2,
\end{array}\right.
$$

has a unique solution $y=2 e^{x^{2}}$.

Figure 1.

$$
y=c e^{x^{2}}
$$

Example 2

The DE $\frac{d y}{d x}=x \sqrt{y}$ has the one-parameter family of solutions $\quad y=\left(\frac{x^{2}+c}{4}\right)^{2}$ on $(-\infty, \infty)$. Two members of this family satisfy the condition $y(0)=0$, namely, $y=\frac{x^{4}}{16}, y=0$, since their graphs pass through the point $(0,0)$, Thus the IVP:

$$
\left\{\begin{array}{l}
y^{\prime}=x \sqrt{y} \\
y(0)=0
\end{array}\right.
$$

has two solutions .

When does a solution of a given IVP exist and it is unique?

Theorem (Picard) (Existence and uniqueness)

Let R be a rectangular region in the $x y$-plane defined by $a \leq x \leq b, c \leq y \leq d$ and contains the point $\left(x_{0}, y_{0}\right)$ in its interior. If both $f(x, y)$ and $\frac{\partial f}{\partial y}$ are continuous on R, then there exists an interval I centered at x_{0} and a unique function $y(x)$ defined on I which satisfies the IVP:
$d y$

$$
=f(x, y), \quad y\left(x_{0}\right)=y_{0} .
$$

Figure 3

Example 1

Find and sketch the largest region in the $x y$-plane through which the IVP:

$$
\frac{d y}{d x}=\sqrt{x y}, \quad y(1)=1,
$$

has a unique solution.
Solution: $f(x, y)=\sqrt{x y}$ and $\frac{\partial f}{\partial y}=\frac{x}{2 \sqrt{x y}}$
both functions are continuous provided that
$x y>0$. Since $\left(x_{0}, y_{0}\right)=(1,1)$ lies in the first quadrant we have $R=\left\{(x, y) \in R^{2}: x>0, y>0\right\}$

- Figure 4

The region R

- (1,1)

Example 2

Find and sketch the largest region in the $x y$-plane through which the IVP:

$$
\frac{d y}{d x}=\sqrt{(x+y)^{2}-9}, \quad y(1)=4
$$

has a unique solution.

Solution:

$$
f(x, y)=\sqrt{(x+y)^{2}-9} \text { and } \frac{\partial f}{\partial y}=\frac{x+y}{\sqrt{(x+y)^{2}-9}}
$$

both are continuous provided that $|x+y|>3$ that is $x+y>3$ or $x+y<-3$. Thus the region R is given by $R=\left\{(x, y) \in R^{2}: x+y>3\right\}$.

- Figure 5

Example 3

Find and sketch the largest region in the $x y$ plane through which the IVP:

$$
\left(y^{2}+2 y+1\right) \frac{d y}{d x}-\ln \left(4-x^{2}\right)=0, \quad y(-1)=3,
$$

has a unique solution.
Solution: $f(x, y)=\frac{\ln \left(4-x^{2}\right)}{(y+1)^{2}}$ and $\frac{\partial f}{\partial y}=\frac{-2 \ln \left(4-x^{2}\right)}{(y+1)^{3}}$ both are continuous provided that $-2<x<2$ and $y \neq-1$.
Hence the region R is given by

$$
R=\left\{(x, y) \in R^{2}:-2<x<2, y>-1\right\}
$$

- Figure 6

y

Homework

Determine whether the existence and uniqueness theorem Guarantees that the differential equation:

$$
\frac{d y}{d x}=\sqrt{y^{2}-9}
$$

has a unique solution at any of the following points:
(i) $(5,3)$
(ii) $(2,-3)$
(iii) $(1,-1)$
(iv) $(3,4)$

