

Outline

\checkmark Global Company Profile: Anheuser-Busch

V The Planning Process
\downarrow The Nature Of Aggregate Planning
\square Aggregate Planning Strategies
V Capacity Options
V Demand Options
V Mixing Options to Develop a Plan

Outline - Continued

च Methods For Aggregate Planning
Ø Graphical and Charting Methods
V Mathematical Approaches to Planning
\checkmark Comparison of Aggregate Planning Methods

Outline - Continued

■ Aggregate Planning In Services
マ Restaurants
V Hospital
V National Chains of Small Service Firms
\downarrow Miscellaneous Services
च Airline Industry
V Yield Management

Learning Objectives

When you complete this chapter, you should be able to:
Identify or Define:
च Aggregate planning
\boxtimes Tactical scheduling
V Graphic technique for aggregate planning
■ Mathematical techniques for aggregate planning

Learning Objectives

When you complete this chapter, you should be able to:
Describe or Explain:
\square How to do aggregate planning
■ How service firms develop aggregate plans

Anheuser－Busch

V Anheuser－Busch produces nearly 40\％of the beer consumed in the U．S．

『 Matches fluctuating demand by brand to plant，labor，and inventory capacity to achieve high facility utilization
\square High facility utilization requires
■ Meticulous cleaning between batches
\square Effective maintenance
\square Efficient employees
－Efficient facility scheduling

Aggregate Planning

Determine the quantity and timing of production for the immediate future

Objective is to minimize cost over the planning period by adjusting
マ Production rates
マ Labor levels
－Inventory levels
『 Overtime work
V Subcontracting
Ø Other controllable variables

Aggregate Planning

Required for aggregate planning

\square A logical overall unit for measuring sales and output
∇ A forecast of demand for intermediate planning period in these aggregate units
\square A method for determining costs
\square A model that combines forecasts and costs so that scheduling decisions can be made for the planning period

Aggregate Planning

Quarter 1			
Jan	Feb	Mar	
150,000	120,000	110,000	
	Quarter 2		
	Apr	May	Jun
	100,000	130,000	150,000
		Suarter 3	Aug
		180,000	150,000

Aggregate Planning

\boxtimes Combines appropriate resources into general terms
\square Part of a larger production planning system
V Disaggregation breaks the plan down into greater detail
\square Disaggregation results in a master production schedule

Aggregate Planning Strategies

1. Use inventories to absorb changes in demand
2. Accommodate changes by varying workforce size
3. Use part-timers, overtime, or idle time to absorb changes
4. Use subcontractors and maintain a stable workforce
5. Change prices or other factors to influence demand

Capacity Options

V Changing inventory levels
∇ Increase inventory in low demand periods to meet high demand in the future
\downarrow Increases costs associated with storage, insurance, handling, obsolescence, and capital investment
\downarrow Shortages can mean lost sales due to long lead times and poor customer service

Capacity Options

V Varying workforce size by hiring or layoffs

Match production rate to demand
Training and separation costs for hiring and laying off workers
∇ New workers may have lower productivity

చ Laying off workers may lower morale and productivity

Capacity Options

\square Varying production rate through overtime or idle time

च Allows constant workforce
\quad May be difficult to meet large increases in demand
∇ Overtime can be costly and may drive down productivity
∇ Absorbing idle time may be difficult

Capacity Options

\boxtimes Subcontracting
\square Temporary measure during periods of peak demand
\checkmark May be costly
च Assuring quality and timely delivery may be difficult
∇ Exposes your customers to a possible competitor

Capacity Options

■ Using part-time workers
マ Useful for filling unskilled or low skilled positions, especially in services

Demand Options

V Influencing demand
∇ Use advertising or promotion to increase demand in low periods
∇ Attempt to shift demand to slow periods
∇ May not be sufficient to balance demand and capacity

Demand Options

∇ Back ordering during highdemand periods
\checkmark Requires customers to wait for an order without loss of goodwill or the order
\checkmark Most effective when there are few if any substitutes for the product or service
\square Often results in lost sales

Demand Options

V Counterseasonal product and service mixing
\checkmark Develop a product mix of counterseasonal items
\checkmark May lead to products or services outside the company's areas of expertise

Aggregate Planning Options

Option	Advantages	Disadvantages	Some Comments
Changing inventory levels	Changes in human resources are gradual or none; no abrupt production changes	Inventory holding cost may increase. Shortages may result in lost sales.	Applies mainly to production, not service, operations
	Avoids the costs of other alternatives	Hiring, layoff, and training costs may be significant	Used where size of labor pool is large
workforce size by hiring or layoffs			

Aggregate Planning Options

Option	Advantages	Disadvantages	Some Comments
Varying production rates through overtime or idle time	Matches seasonal fluctuations without hiring/ training costs	Overtime premiums; tired workers; may not meet demand	Allows flexibility within the aggregate plan
Sub- contracting	Permits flexibility and smoothing of the firm's output	Loss of quality control; reduced profits; loss of future business	Applies mainly in production settings

Aggregate Planning Options

Option	Advantages	Disadvantages	Some Comments
Using part- time workers	Is less costly and more flexible than full-time workers	High turnover/ training costs; quality suffers; scheduling difficult	Good for unskilled jobs in areas with large temporary labor pools
Influencing demand	Tries to use excess capacity.	Uncertainty in demand. Hard to match demand to siscounts draw	Creates marketing ideas. new customers. superbooking
			used in some businesses.

Aggregate Planning Options

Option	Advantages	Disadvantages	Some Comments
Back ordering during highdemand periods	May avoid overtime. Keeps capacity constant.	Customer must be willing to wait, but goodwill is lost.	Allows flexibility within the aggregate plan
Counterseasonal product and service mixing	Fully utilizes resources; allows stable workforce	May require skills or equipment outside the firm's areas of expertise	Risky finding products or services with opposite demand patterns

Table 13.1

Methods for Aggregate Planning

\quad A mixed strategy may be the best way to achieve minimum costs
V There are many possible mixed strategies
\square Finding the optimal plan is not always possible

Mixing Options to Develop a Plan

Chase strategy
『 Match output rates to demand forecast for each period
\boxtimes Vary workforce levels or vary production rate
\square Favored by many service organizations

Mixing Options to Develop a Plan

マ Level strategy
∇ Daily production is uniform
∇ Use inventory or idle time as buffer
\checkmark Stable production leads to better quality and productivity
∇ Some combination of capacity options, a mixed strategy, might be the best solution

Graphical and Charting Methods

\square Popular techniques
\square Easy to understand and use
V Trial-and-error approaches that do not guarantee an optimal solution
\checkmark Require only limited computations

Graphical and Charting Methods

1. Determine the demand for each period
2. Determine the capacity for regular time, overtime, and subcontracting each period
3. Find labor costs, hiring and layoff costs, and inventory holding costs
4. Consider company policy on workers and stock levels
5. Develop alternative plans and examine their total costs

Planning Example 1

Month	Expected Demand	Production Days	Demand Per Day (computed)
Jan	900	22	41
Feb	700	18	39
Mar	800	21	38
Apr	1,200	21	57
May	1,500	22	68
June	$\underline{1,100}$	$\underline{20}$	55
	6,200	124	

Table 13.2

$$
\begin{aligned}
\begin{array}{c}
\text { Average } \\
\text { requirement }
\end{array} & =\frac{\text { Total expected demand }}{\text { Number of production days }} \\
& =\frac{6,200}{124}=50 \text { units per day }
\end{aligned}
$$

Planning Example 1

Cost Information	
Inventory carrying cost	\$ 5 per unit per month
Subcontracting cost per unit	$\$ 10$ per unit
Average pay rate	$\$ 5$ per hour (\$40 per day)
Overtime pay rate	\$ per hour (above 8 hours per day)
Labor-hours to produce a unit Cost of increasing daily production rate (hiring and training) Cost of decreasing daily production rate (layoffs)	$\$ 300$ per unit

Table 13.3

P/anning Example 1				
Month	Production at 50 Units per Day	Demand Forecast	Monthly Inventory Change	Ending Inventory
Jan	1,100	900	+200	200
Feb	900	700	+200	400
Mar	1,050	800	+250	650
Apr	1,050	1,200	-150	500
May	1,100	1,500	-400	100
June	1,000	1,100	-100	0
				1,850

Total units of inventory carried over from one month to the next $=1,850$ units
Workforce required to produce 50 units per day $=10$ workers

Figure 13.4

Month	Expected Demand	Production Days	Demand Per Day (computed)
Jan	900	22	41
Feb	700	18	39
Mar	800	21	38
Apr	1,200	21	57
May	1,500	22	68
June	1,100	$\underline{20}$	55
	6,200	124	

Table 13.2

Minimum requirement $=38$ units per day

Planning Example 2

Planning Example 2

Cost Information	
Inventory carrying cost	$\$ 5$ per unit per month
Subcontracting cost per unit	$\$ 10$ per unit
Average pay rate	$\$ 5$ per hour (\$40 per day)
Overtime pay rate	\$ per hour (above 8 hours per day)
Labor-hours to produce a unit Cost of increasing daily production rate (hiring and training) $\$ 300$ per unit Cost of decreasing daily production rate (layoffs) $\$ 600$ per unit	

Table 13.3

Planning Example 2

$$
\begin{aligned}
\text { In-house production }= & 38 \text { units per day } \\
& x 124 \text { days } \\
= & 4,712 \text { units } \\
\text { Subcontract units }= & 6,200-4,712 \\
= & 1,488 \text { units }
\end{aligned}
$$

Table 13.3

Planning Example 2

Planning Example 3

Month	Expected Demand	Production Days	Demand Per Day (computed)
Jan	900	22	41
Feb	700	18	39
Mar	800	21	38
Apr	1,200	21	57
May	1,500	22	68
June	1,100	20	55
	6,200	124	

Table 13.2

Production $=$ Expected Demand

Planning Example 3

Planning Example 3

Cost Information	
Inventory carrying cost	\$ 5 per unit per month
Subcontracting cost per unit	\$10 per unit
Average pay rate	\$ per hour (\$40 per day) O 7 per hour (above 8 hours per day)
Overtime pay rate	1.6 hours per unit
Labor-hours to produce a unit Cost of increasing daily production rate (hiring and training) Cost of decreasing daily production rate (layoffs)\$300 per unit	

Table 13.3

Planning Example 3

Month	Forecast (units)	Daily Prod Rate	Basic Production Cost (demand x 1.6 hrs/unit x \$5/hr)	Extra Cost of Increasing Production (hiring cost)	Extra Cost of Decreasing Production (layoff cost)	Total Cost
Jan	900	41	\$ 7,200	-	-	\$ 7,200
Feb	700	39	5,600	-	$\begin{gathered} \$ 1,200 \\ (=2 \times \$ 600) \end{gathered}$	6,800
Mar	800	38	6,400	-	$\begin{gathered} \$ 600 \\ (=1 \times \$ 600) \end{gathered}$	7,000
Apr	1,200	57	9,600	$\begin{gathered} \$ 5,700 \\ (=19 \times \$ 300) \end{gathered}$	-	15,300
May	1,500	68	12,000	$\begin{gathered} \$ 3,300 \\ (=11 \times \$ 300) \end{gathered}$	-	15,300
June	1,100	55	8,800	-	$\begin{gathered} \$ 7,800 \\ (=13 \times \$ 600) \\ \hline \end{gathered}$	16,600
			\$49,600	\$9,000	\$9,600	\$68,200

Comparison of Three Plans

Cost	Plan 1	Plan 2	Plan 3
Inventory carrying	$\$ 9,250$	$\$$	0
Regular labor	49,600	37,696	0
Overtime labor	0	0	49,600
Hiring	0	0	0
Layoffs	0	0	9,000
Subcontracting	0	0	9,600
Total cost	$\$ 58,850$	$\$ 52,576$	$\$ 68,200$

Plan 2 is the lowest cost option

Mathematical Approaches

\square Useful for generating strategies
\downarrow Transportation Method of Linear Programming
च Produces an optimal plan
∇ Management Coefficients Model
\square Model built around manager's experience and performance
\downarrow Other Models
V Linear Decision Rule
マ Simulation

Transportation Method

Sales Period

	Mar	Apr	May
Demand	800	1,000	750
Capacity:			
\quad Regular	500	700	700
Overtime	150	50	50
Subcontracting	150	130	
Beginning inventory	100	tires	

Costs	
Regular time	\$40 per tire
Overtime	\$50 per tire
Subcontracting	\$70 per tire
Carrying	$\$ 2$ per tire

Transportation Example

Important points

1. Carrying costs are $\$ 2 / t i r e / m o n t h$. If goods are made in one period and held over to the next, holding costs are incurred
2. Supply must equal demand, so a dummy column called "unused capacity" is added
3. Because back ordering is not viable in this example, cells that might be used to satisfy earlier demand are not available

Transportation Example

Important points

4. Quantities in each column designate the levels of inventory needed to meet demand requirements
5. In general, production should be allocated to the lowest cost cell available without exceeding unused capacity in the row or demand in the column

			DEMAND FOR				TOTAL CAPACITY AVAILABLE (supply)
			Period 1 (Mar.)	Period 2 (Apr.)	Period 3 (May)	Unused Capacity (dummy)	
			0	2	4	0	100
			100				
	P e e r i o o d 1		40	42	44	0	700
		Regular time	700				
			50	52	54	0	50
		Overtime		50			
			70	72	74	0	150
		Subcontract		150			
	P			40	42	0	700
	e	Regular time	\times	700			
	$\stackrel{\text { r }}{\text { i }}$			50	52	0	50
	${ }_{0}$	Overtime	\times	50			
	-			70	72	0	150
	2	Subcontract	\times	50		100	
	P				40	0	700
	e r	Regular time	\times	\times	700		
	i				50	0	50
	$\stackrel{o}{d}$	Overtime	\times	\times			
					70	0	
Table 13.7	3	Subcontract	\times	\times		130	130
		TAL DEMAND	800	1,000	750	230	2,780

Management Coefficients Model

∇ Builds a model based on manager's experience and performance
\square A regression model is constructed to define the relationships between decision variables
\downarrow Objective is to remove inconsistencies in decision making

Other Models

Linear Decision Rule

\square Minimizes costs using quadratic cost curves
\square Operates over a particular time period
Simulation
\square Uses a search procedure to try different combinations of variables

V Develops feasible but not necessarily optimal solutions

Summary of Aggregate Planning Methods

Techniques	Solution Approaches	Important Aspects
Graphical/charting methods	Trial and error	Simple to understand and easy to use. Many solutions; one chosen may not be optimal.
Transportation method of linear programming	Optimization	LP software available; permits sensitivity analysis and new constraints; linear functions may not be realistic
Management coefficients model	Heuristic	Simple, easy to implement; tries to mimic manager's decision process; uses regression

Aggregate Planning in Services

Controlling the cost of labor is critical

1. Close scheduling of labor-hours to assure quick response to customer demand
2. Some form of on-call labor resource
3. Flexibility of individual worker skills

4. Individual worker flexibility in rate of output or hours

Five Service Scenarios

∇ Restaurants
V Smoothing the production process
च Determining the workforce size
\square Hospitals
∇ Responding to patient demand

Five Service Scenarios

∇ National chains of small service firms
∇ Planning done at national level and at local level

V Miscellaneous services
\boxtimes Plan human resource requirements
\square Manage demand

Law Firm Example

(1) Category of	(2) Best Case (hours)	(3) Casely (hours)	(4) Worst Case (hours)	(5) Maximum Demand in People	(6) Number of Qualified Personnel
Trial work	1,800	1,500	1,200	3.6	4
Legal research	4,500	4,000	3,500	9.0	32
Corporate law	8,000	7,000	6,500	16.0	15
Real estate law	1,700	1,500	1,300	3.4	6
Criminal law	3,500	3,000	2,500	7.0	12
Total hours	19,500	17,000	15,000		
Lawyers needed	39	34	30		

Five Service Scenarios

\checkmark Airline industry

च Extremely complex planning problem
V Involves number of flights, number of passengers, air and ground personnel
\boxtimes Resources spread through the entire system

Yield Management

Allocating resources to customers at prices that will maximize yield or revenue

1. Service or product can be sold in advance of consumption
2. Demand fluctuates
3. Capacity is relatively fixed
4. Demand can be segmented
5. Variable costs are low and fixed costs are high

Yield Management Example

Yield Management Example

Yield Management Matrix

Figure 13.7

Making Yield Management Work

1. Multiple pricing structures must be feasible and appear logical to the customer
2. Forecasts of the use and duration of use
3. Changes in demand
