Half-range expansions

Let f be a function defined only for $0<x<L$. Then, f can be expanded in a trigonometric series in several ways:
(1) In a cosine series:

Define f on $-L<x<0$
 by $f(x)=f(-x)$, then the new function is even on $-L<x<L$, hence it can be expanded in the cosine series

$$
f(x) \approx \frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left\{a_{n} \cos \left(\frac{n \pi x}{L}\right)\right\},
$$

where

$$
\begin{aligned}
& a_{0}=\frac{2}{L} \int_{0}^{L} f(x) d x \\
& a_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x
\end{aligned}
$$

(2) In a sine series:

Define f on $(-L, 0)$

by $f(x)=-f(-x)$, then the new function is odd on $(-L, L)$, hence it can be expanded in the sine series

$$
f(x) \approx \sum_{n=1}^{\infty}\left\{b_{n} \cos \left(\frac{n \pi x}{L}\right)\right\},
$$

where

$$
b_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x
$$

(3) In a Fourier series:

Define f on $(-L, 0)$ by $f(x)=f(x+L)$, that is by considering f as a periodic function with period L. Hence f can be represented by the Fourier series

$$
f(x) \approx \frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left\{a_{n} \cos \left(\frac{2 n \pi x}{L}\right)+b_{n} \sin \left(\frac{2 n \pi x}{L}\right)\right\}
$$

where

$$
\begin{aligned}
& a_{0}=\frac{2}{L} \int_{0}^{L} f(x) d x \\
& a_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos \left(\frac{2 n \pi x}{L}\right) d x \\
& b_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{2 n \pi x}{L}\right) d x
\end{aligned}
$$

Example. Let $f(x)=x, 0<x<1$.
Expand f in
(i) a cosine series
(ii) a sine series
(iii) a Fourier series.

Solution.

(1) By extending f to an even function on $(-1,1)$, with $L=1$, then we have

$$
\begin{aligned}
a_{0} & =\frac{2}{L} \int_{0}^{L} f(x) d x=2 \int_{0}^{1} x d x=1, \\
a_{n} & \left.=\frac{2}{L} \int_{0}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x=2 \int_{0}^{1} x \cos (n \pi x) d x=2 x \frac{\sin n \pi x}{n \pi}\right]_{0}^{1}-\int_{0}^{1} 2 \frac{\sin n \pi x}{n \pi} d x \\
& \left.\left.=2 x \frac{\sin n \pi x}{n \pi}\right]_{0}^{1}+2 \frac{\cos n \pi x}{(n \pi)^{2}}\right]_{0}^{1}=2 \frac{\cos n \pi-1}{(n \pi)^{2}}=\frac{2\left\{(-1)^{n}-1\right\}}{(n \pi)^{2}} .
\end{aligned}
$$

Therefore the Fourier series of f is

$$
f(x) \approx \sum_{n=1}^{\infty}\left\{a_{n} \cos \left(\frac{n \pi x}{L}\right)\right\}=\sum_{n=1}^{\infty}\left\{\frac{2\left\{(-1)^{n}-1\right\}}{(n \pi)^{2}} \cos (n \pi x)\right\} .
$$

(2) By extending f to an odd function on $(-1,1)$, with $L=1$, we get

$$
\begin{aligned}
b_{n} & =\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x=2 \int_{0}^{1} x \sin (n \pi x) d x \\
& \left.=-2 x \frac{\cos n \pi x}{n \pi}\right]_{0}^{1}+\int_{0}^{1} 2 \frac{\cos n \pi x}{n \pi} d x \\
& \left.\left.=-2 x \frac{\cos n \pi x}{n \pi}\right]_{0}^{1}+2 \frac{\sin n \pi x}{(n \pi)^{2}}\right]_{0}^{1}=-2 \frac{\cos n \pi-1}{f_{n \pi}}=\frac{2\left\{1-(-1)^{n}\right\}}{n \pi} .
\end{aligned}
$$

Therefore the Fourier series of is

$$
f(x) \approx \sum_{n=1}^{\infty}\left\{b_{n} \sin \left(\frac{n \pi x}{L}\right)\right\}=\sum_{n=1}^{\infty}\left\{\frac{2\left\{1-(-1)^{n}\right\}}{n \pi} \sin (n \pi x)\right\} .
$$

(1) By extending f out $(0,1)$ as a periodic function with period $L=1$, hence we have

$$
\begin{aligned}
a_{0} & =\frac{2}{L} \int_{0}^{L} f(x) d x=2 \int_{0}^{1} x d x=1, \\
a_{n} & =\frac{2}{L} \int_{0}^{L} f(x) \cos \left(\frac{2 n \pi x}{L}\right) d x=2 \int_{0}^{1} x \cos (2 n \pi x) d x \\
& \left.\left.=x \frac{\sin 2 n \pi x}{n \pi}\right]_{0}^{1}+\frac{\cos 2 n \pi x}{2(n \pi)^{2}}\right]_{0}^{1}=0, \\
b_{n} & =\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{2 n \pi x}{L}\right) d x=2 \int_{0}^{1} x \sin (2 n \pi x) d x \\
& \left.\left.=-x \frac{\cos 2 n \pi x}{n \pi}\right]_{0}^{1}-\frac{\sin 2 n \pi x}{2(n \pi)^{2}}\right]_{0}^{1}=\frac{-1}{n \pi} .
\end{aligned}
$$

Therefore the Fourier series of f is

$$
f(x) \approx \frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left\{a_{n} \cos \left(\frac{2 n \pi x}{L}\right)+b_{n} \sin \left(\frac{2 n \pi x}{L}\right)\right\}=\frac{1}{2}-\sum_{n=1}^{\infty}\left\{\frac{1}{n \pi} \sin (2 n \pi x)\right\}
$$

