
Half-range expansions 

Let      be a function defined only for 

Then,     can be expanded in a trigonometric 

series in several ways: 

(1)In  a cosine series:  

Define     on 

by                     ,  then the new function is even 

on                   , hence it can be expanded in the 

cosine series 
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where 

 

 

 

 

(2) In a sine series: 

Define     on 

by                       , then the new function is odd 

on              , hence it can be expanded in the sine 

series 
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(3) In a Fourier series: 

Define     on              by                      , that is by considering   

as a periodic function 

 with period      Hence       

can be represented by the 

 Fourier series                                                
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where 

 

 

 

 

 

Example. Let                        

Expand    in   

(i) a cosine series 

(ii) a sine series 

(iii) a Fourier series. 
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Solution. 

(1) By extending     to an even function on            , 

with         , then we have 

 

 

 

 

 

Therefore the Fourier series of      is     

 

 

 

 

 

 

 

 

f

  .cos
)(

}1)1{(2
cos)(

1
2

1








 





 




















n

n

n

n xn
nL

xn
axf 





,12)(
2

1

00

0   dxxdxxf
L

a

L

)1,1(

1L

.
)(

}1)1{(2

)(

1cos
2

)(

cos
2

sin
2

sin
2

sin
2)cos(2cos)(

2

22

1

0

2

1

0

1

0

1

0

1

00
























nn

n

n

xn

n

xn
x

dx
n

xn

n

xn
xdxxnxdx

L

xn
xf

L
a

n

L

n
































 

f



(2) By extending     to an odd function on            , 

with        , we get  

 

 

 

 

 

Therefore the Fourier series of      is     
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(1) By extending     out              as a periodic 

function with period        , hence we have 

 

 

 

 

 

 

 

Therefore the Fourier series of      is     
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