Fourier series of even and odd functions

A function f is said to be even if f(—x) = f (x)
for all x indomain f. The graph of an even
function Is symmetric in the y-axis.
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For example, the following functions are even

functions:
f(x)=cos(x), f(x)= x|, F(x)=x".



A function T is said to be odd if f(-x)=—f(x)
for all x indomain f . The graph of an odd function
IS symmetric in the origin.

For example, the following functions are odd
functions: f(x) =sin(x),

f (X) =X,

f(x) =x(x"—|x]).



Remarks

Even functionx even function =even function,
odd function x odd function = even function,
even function x odd function = odd function.

If f isan even function, then | f(x) dx=2] f(x) dx.

If isan odd function, then | f() dx=o0.



The Fourier series of an even function f on the
interval (—p, P) is the cosine series
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where

:gff(x)dx,
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The Fourier series of an odd function f on the
Interval (—p, p) Is the sine series

f(x)~ > {b, sin[nTﬂXj},
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Example. Let f(x) =/ x|, —z <X <z, and satisfies

f(x+27)=f(x) for xeR. Expand T in Fourier
Series

Solution. f 1seven, since f(—x) = x| x|=  (x).
Hence, the Fourier series of f is the cosine series

where



f(X) = % + i{am Cos[nzxj},
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Where a, = EJ' f(x)dx, a, = E_f f (x) cos(n—ﬂxj dx.
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Here (—p, p) = (-7, 7)=p=7.
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Therefore the Fourier series of f is

f(x) = %+ i{Z{(—lz)” —4 cos(nx)}.
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Example. Let f(x)=x, —1<x<1, and satisfies

f(x+2)=f(x) forall xeR. Expand T ina
Fourier series.

Solution. T is odd, since f(—x)=—x=—f(x).
Hence, the Fourier series of f IS the sine series
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where p_ ——jf(x)sm[ : ]dx

Here p,p)=(11)= p=1.



Hence

P 1
b, = Ej f (x)sin(22)dx = 2jxsin(nnx) dx
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Therefore, the Fourier series of T is

f(x) =~ i{z(_l)nﬂ sin(nzx }

n=1 nzx




