Fourier series of even and odd functions

A function f is said to be even if $f(-x)=f(x)$ for all x in domain f. The graph of an even function is symmetric in the y-axis.

For example, the following functions are even functions:

$$
f(x)=\cos (x), f(x)=|x|, \quad f(x)=x^{2} .
$$

A function f is said to be odd if $f(-x)=-f(x)$
for all x in domain f. The graph of an odd function is symmetric in the origin.

For example, the following functions are odd functions: $f(x)=\sin (x)$,

$$
\begin{aligned}
& f(x)=x \\
& f(x)=x\left(x^{2}-|x|\right)
\end{aligned}
$$

Remarks

Even function \times even function $=$ even function, odd function \times odd function $=$ even function, even function \times odd function $=$ odd function.

If f is an even function, then $\int_{-p}^{p} f(x) d x=2 \int_{0}^{p} f(x) d x$.
If f is an odd function, then $\int_{-p}^{p} f(x) d x=0$.

The Fourier series of an even function f on the interval $(-p, p)$ is the cosine series

$$
f(x) \approx \frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left\{a_{n} \cos \left(\frac{n \pi x}{p}\right)\right\}
$$

where

$$
\begin{aligned}
& a_{0}=\frac{2}{p} \int_{0}^{p} f(x) d x \\
& a_{n}=\frac{2}{p} \int_{0}^{p} f(x) \cos \left(\frac{n \pi x}{p}\right) d x
\end{aligned}
$$

The Fourier series of an odd function f on the interval $(-p, p)$ is the sine series
where

$$
f(x) \approx \sum_{n=1}^{\infty}\left\{b_{n} \sin \left(\frac{n \pi x}{p}\right)\right\},
$$

$$
b_{n}=\frac{2}{p} \int_{0}^{p} f(x) \sin \left(\frac{n \pi x}{p}\right) d x
$$

Example. Let $f(x)=|x|, \quad-\pi<x<\pi$, and satisfies $f(x+2 \pi)=f(x)$ for $x \in R$. Expand f in Fourier series
Solution. f is even, since $f(-x)=|-x|=|x|=f(x)$.
Hence, the Fourier series of f is the cosine series

$$
f(x) \approx \frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left\{a_{n} \cos \left(\frac{n \pi x}{p}\right)\right\}
$$

Where $\quad a_{0}=\frac{2}{p} \int_{0}^{p} f(x) d x, a_{n}=\frac{2}{p} \int_{0}^{p} f(x) \cos \left(\frac{n \pi x}{p}\right) d x$.

Here $(-p, p)=(-\pi, \pi) \Rightarrow p=\pi$.
Hence $\quad a_{0}=\frac{2}{p} \int_{0}^{p} f(x) d x=\frac{2}{\pi} \int_{0}^{\pi}|x| d x=\frac{2}{\pi} \int_{0}^{\pi} x d x=\pi$,

$$
\begin{aligned}
a_{n} & =\frac{2}{p} \int_{0}^{p} f(x) \cos \left(\frac{n \pi x}{p}\right) d x=\frac{2}{\pi} \int_{0}^{\pi}|x| \cos (n x) d x=\frac{2}{\pi} \int_{0}^{\pi} x \cos (n x) d x \\
& \left.=\frac{2}{\pi}\left[\left.x \frac{\sin (n x)}{n}\right|_{0} ^{\pi}-\int_{0}^{\pi} \frac{\sin (n x)}{n} d x\right]=\frac{2}{\pi} \frac{\cos (n x)}{n^{2}}\right]_{0}^{\pi}=\frac{2\left\{(-1)^{n}-1\right\}}{n^{2} \pi}
\end{aligned}
$$

Therefore the Fourier series of f is

$$
f(x) \approx \frac{\pi}{2}+\sum_{n=1}^{\infty}\left[\frac{2\left\{(-1)^{n}-1\right\}}{n^{2} \pi} \cos (n x)\right] .
$$

Example. Let $f(x)=x,-1<x<1$, and satisfies $f(x+2)=f(x)$ for all $x \in R$. Expand f in a Fourier series.
Solution. f is odd, since $f(-x)=-x=-f(x)$. Hence, the Fourier series of f is the sine series

$$
f(x) \approx \sum_{n=1}^{\infty}\left\{b_{n} \sin \left(\frac{n \pi x}{p}\right)\right\},
$$

where $\quad b_{n}=\frac{2}{p} \int_{0}^{p} f(x) \sin \left(\frac{n \pi x}{p}\right) d x$.
Here

$$
(-p, p)=(-1,1) \Rightarrow p=1
$$

Hence

$$
\begin{aligned}
b_{n} & =\frac{2}{p} \int_{0}^{p} f(x) \sin \left(\frac{n \pi x}{p}\right) d x=2 \int_{0}^{1} x \sin (n \pi x) d x \\
& \left.=2\left[-x \frac{\cos (n \pi x)}{n \pi}\right]_{0}^{1}+\int_{0}^{1} \frac{\cos (n \pi x)}{n \pi} d x\right]=\frac{2(-1)^{n+1}}{n \pi} .
\end{aligned}
$$

Therefore, the Fourier series of f is

$$
f(x) \approx \sum_{n=1}^{\infty}\left[\frac{2(-1)^{n+1}}{n \pi} \sin (n \pi x)\right] .
$$

