(10.2)

Assume that you have a sample of n1=8, with the sample mean \bar{X}_1 = 42, and a sample standard deviation S_1 =4, and you have an independent sample of n_2 =15 from another population with a sample mean of \bar{X}_2 =34 and a sample deviation S_2 =5.

$$n_1=8$$
 , $\bar{X}_1=42$, $S_1=4$

$$n_2 = 15$$
 , $\bar{X}_2 = 34$, $S_2 = 5$

a. What is the value of the pooled-variance t-Stat test statistic for testing H_0 : $\mu_1 = \mu_2$?

$$\mathbf{t} = \frac{\overline{X}_1 - \overline{X}_2}{\sqrt{S_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

$$S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{(n_1 - 1) + (n_2 - 1)} = \frac{(8 - 1) \times 4^2 + (15 - 1) \times 5^2}{(8 - 1) + (15 - 1)} = 22$$

$$t_{STAT} = \frac{42 - 34}{\sqrt{22(\frac{1}{8} + \frac{1}{15})}} = \frac{8}{2.0536} = 3.8959$$

b- In finding the critical value, how many degrees of freedom are there?

degrees of freedom (d.f) =
$$n_1 + n_2 - 2 = (8 + 15) - 2 = 21$$

c. Using the level of significance $\alpha=0.01$, what is the critical value for a one-tail test for the hypothesis H_0 : $\mu_1 \leq \mu_2$ against the alternative, H_1 : $\mu_1 > \mu_2$?

$$t_{0.01,21} = 2.5177$$

d. What is your statistical decision?

Reject H_0 because $t_{stat} > t_{\alpha}$

(10.4)

referring to problem 10.2, construct a 95% confidence interval estimate of the population mean difference between μ_1 and μ_2

$$\mu_1 - \mu_2 = (\overline{X}_1 - \overline{X}_2) \pm t_{\alpha/2} \sqrt{S_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}$$

$$= (42 - 34) \pm 2.0796 \sqrt{22 \left(\frac{1}{8} + \frac{1}{15}\right)}$$

$$= 8 \pm 2.0796 \times 2.0536$$

$$= 8 \pm 4.2705$$

$$3.7295 \le \mu_1 - \mu_2 \le 12.2705$$

(10.20) Nine experts rated two brands of coffee and its taste testing experiment. A rating on a 1 to 7-point scale [1 = extremely unpleasing, 7 = extremely pleasing] is given for each of four characteristics: taste, aroma, richness, and acidity. The accompanying data table contains the ratings accumulated over all four characteristics.

	Brand		
Expert	Α	В	
C.C.	26	27	
S.E.	27	27	
E.G.	19	21	
B.L.	22	24	
C.M.	22	25	
C.N.	25	26	
G.N.	25	24	
R.M.	25	26	
P.V.	21	23	

a. At the 0.05 level of significance, is there evidence of a difference in the mean ratings between the two brands?

Solution:

Step 1: state the hypothesis: H_0 : $\mu_D = 0$

$$H_1$$
: $\mu_D \neq 0$

Step2: Select the level of significance and critical value:

$$d.f = n - 1 = 9 - 1 = 8$$

$$t_{0.025.8} = \pm 2.3060$$

Step 3: Find the appropriate test statistic.

$$t_{stat} = \frac{\bar{D}}{S_D / \sqrt{n}}$$
 $\bar{D} = \frac{\sum D_i}{n}$ $S_D = \sqrt{\frac{\sum (D_i - \overline{D})^2}{n - 1}}$

Expert	А	В	D=A-B	D- <i>D</i>	$(D\text{-}\ ar{D})^2$
C.C.	26	27	-1	0.2222	0.0494
S.E.	27	27	0	1.2222	1.4938
E.G.	19	21	-2	-0.7778	0.6050
B.L.	22	24	-2	-0.7778	0.6050
C.M.	22	25	-3	-1.7778	3.1606
C.N.	25	26	-1	0.2222	0.0494
G.M.	25	24	1	2.2222	4.9382
R.M.	25	26	-1	0.2222	0.0494
P.V.	21	23	-2	-0.7778	0.6050
			∑ =-11		∑=11.558

$$\bar{D} = \frac{\sum D_i}{n} = \frac{-11}{9} = -1.2222$$

$$S_D = \sqrt{\frac{\sum (D_i - \overline{D})^2}{n-1}} = \sqrt{\frac{11.5558}{8}} = 1.2019$$

$$t_{stat} = \frac{\bar{D}}{S_D / \sqrt{n}} = \frac{-1.2222}{1.2019 / 3} = \frac{-1.2222}{0.4006} = -3.05$$

Step 4: State the decision rule

Reject
$$H_0$$
 if $t_{stat} > 2.3060$ or $t_{stat} < -2.3060$

Step 5: Decision Reject H_0 (t_{stat} is in the rejection region)

b. Construct and interpret a 95% confidence interval estimate of the difference in the mean ratings between the two brands.

$$\hat{\mu}_D = \overline{D} \pm t_{\alpha/2} \frac{S_D}{\sqrt{n}}$$

$$= -1.222 \pm 2.3060 \frac{1.2019}{\sqrt{9}}$$

$$= -1.222 \pm 0.9238$$

$$-2.146 < \hat{\mu}_D < -.2984$$

(10.27)

Let n1=80, X1=70, and n2= 80, and X2=50.

a. at the 0.10 level of significance, is there evidence of a significant difference t between the two population proportions?

Solution:

Step 1: State the null and alternate hypotheses.

$$H_0$$
: $\pi 1 - \pi 2 = 0$

$$H_1: \pi 1 - \pi 2 \neq 0$$

Step 2: State the level of significance and critical value (α = 0.10).

$$\pm Z_{\frac{\alpha}{2}} = \pm Z_{\frac{0.10}{2}} = \pm Z_{0.05} = \pm 1.645$$

Step 3:
$$z_{\text{stat}} = \frac{(p_1 - p_2) - (\pi_1 - \pi_2)}{\sqrt{\overline{p}(1 - \overline{p})(\frac{1}{n_1} + \frac{1}{n_2})}}$$

The sample proportions are:

The pooled estimate for the overall proportion is:

$$\overline{p} = \frac{X_1 + X_2}{n_1 + n_2} = \frac{70 + 50}{80 + 80} = 0.75$$

$$z_{\text{stat}} = \frac{(0.875 - 0.625) - (0)}{\sqrt{0.75(1 - 0.75)\left(\frac{1}{80} + \frac{1}{80}\right)}} = 3.6496$$

Step 4: State the decision rule: Reject H_0 if

$$z_{\mathrm{stat}} > Z_{\frac{lpha}{2}} \quad \mathrm{Or} \quad z_{\mathrm{stat}} > - Z_{\frac{lpha}{2}}$$

Decision: $z_{\rm stat} > Z_{\frac{\alpha}{2}}$

Reject Ho

b. Construct a 90% confidence interval estimate of the difference between the two population proportions.

$$(p_1 - p_2) \pm Z_{\alpha/2} \sqrt{\frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2}}$$

The 90% confidence interval for $\pi 1 - \pi 2$ is:

=
$$(0.875 - 0.625) \pm 1.645 \sqrt{\frac{0.875(1-0.875)}{80} + \frac{0.625(1-0.625)}{80}}$$

= $(0.1422, 0.3578)$

(10.39) The following information is available for two samples selected from independent normally distributed Populations

$$s_1^2 = 161.9$$

$$n2 = 25$$

$$s_1^2 = 161.9$$
 $n2 = 25$ $s_2^2 = 133.7$

What is the value of F_{STAT} If you are testing the null hypothesis $H_0: \sigma_1^2 = \sigma_2^2$?

$$F_{STAT} = \frac{S_1^2}{S_2^2} = \frac{161.9}{133.7} = 1.2109$$

(10.40) How many degrees of freedom are there in the numerator and denominator of the F_{STAT} ?

$$d.f1$$
 (numerator) = $n1 - 1 = 25 - 1 = 24$

d.f1 (numerator) =
$$n1 - 1 = 25 - 1 = 24$$
 d.f2 (denominator) = $n2 - 1 = 25 - 1 = 24$

(10.41) What is the upper-tail critical value of F if the level of significance, $\alpha = 0.05$ and the alternative hypothesis is $H_1: \sigma_1^2 \neq \sigma_2^2$

$$F_{\frac{\alpha}{2},\text{d.f1,d.f2}} = F_{\frac{0.05}{2},24,24} = 2.27$$

(10.42) What is your statistical decision?

$$F_{STAT} < F_{\frac{\alpha}{2}}$$

Decision:
$$F_{STAT} < F_{\frac{\alpha}{2}}$$
 , Don't reject

(10.51) An experiment has a single factor with three groups and six values in each group.

a) How many degrees of freedom are there in determining the among- group variation?

$$C - 1 = 3 - 1 = 2$$

b) How many degrees of freedom are there in determining the within-group variation?

$$n - c = 18 - 3 = 15$$

c) How many degrees of freedom are there in determining the total variation?

$$n - 1 = 18 - 1 = 17$$

(10.52) If you are working with the same experiment as in problem 10.51,

a) If SSA = 60, and SST = 210. What is the SSW?

$$SST = SSA + SSW$$
 $SSW = SST - SSA = 210 - 60 = 150$

b) What is the MSA?

$$MSA = \frac{SSA}{C-1} = \frac{60}{2} = 30$$

c) What is the MSW?

$$MSW = \frac{SSW}{n-C} = \frac{150}{15} = 10$$

d) What is the value of F_{stat} ? $F_{stat} = \frac{MSA}{MSW} = \frac{30}{10} = 3$

(10.53)

a- Construct the ANOVA summary table and fill in all values in the table.

Source	d.f	Sum of Square	Mean Square	F
Among Groups	c-1 = 2	SSA = 60	MSA = 30	3
Within Groups	n-c = 15	SSW = 150	MSW = 10	
Total	n-1 = 17	SST = 210		

b) At the 0.05 level of significance, what is the upper -tail critical value from F distribution?

$$F_{0.05,c-1,n-1=3.68}$$

c) What is your statistical decision?

Don't reject ($F_{stat} < F_{\frac{\alpha}{2}}$).