CEN340 Detailed Syllabus

> MATLAB

Reference: Notes - Introduction to MATLAB; S. Rahal; 10/9/1437.

Signals and Systems:

Textbook: Signals & Systems; Oppenheim A. and Willsky A. With S. Nawab: 2-edition: 1997, Prentice Hall – Chapters: 1, 2. 3, 4, 8, 9.

1- Signals and Systems:

- What are Signals & Systems?
- Basic types of signals.
- Representation of CT & DT.
- Basic Signal Operations:
 - Time shift.
 - Time reversal.
 - Time scaling.
- Signals characteristics:
 - Causal vs. Anticausal vs. Noncausal Signals.
 - Periodic vs. Aperiodic Signals.
 - Even vs. Odd signals.
- Some Basic Signals
 - Sinusoidal Signals.
 - Complex Exponential Signals & Sinusoidal Signals.
- Exponential Signals & Sinusoidal Signals:
 - Continuous-Time Complex Exponential Signals & Sinusoidal Signals:
 - Real Exponential Signals.
 - Periodic Complex Exponential and Sinusoidal Signals.
 - Signal Energy & Power.
 - General Complex Exponential Signals.
 - Discrete-Time Complex Exponential and Sinusoidal Signals.
 - Real Exponential Signals
 - Sinusoidal Signals.
 - Periodicity Properties of Discrete-Time Complex Exponentials.

- The Unit Impulse & Unit Step Functions.
 - The Discrete-Time Unit Impulse & Unit Step Sequences.
 - The Continuous-Time Unit Step & Unit Impulse Functions.
- Continuous-Time and Discrete-Time Systems.
 - Simple Examples of Systems.
 - Interconnections of Systems.
 - Basic System Properties "BSP"
 - Systems with and without Memory.
 - Inverse Systems.
 - Causality.
 - Stability.
 - Time Invariance.
 - Linearity.
- Summary.

2- Linear Time-Invariant "LTI" Systems.

- Introduction.
- Discrete-Time LTI Systems: The Convolution Sum.
 - Representation of Discrete-Time Signals in Terms of Impulses.
 - Discrete-Time Unit Impulse Response and the Convolution Sum Representation of LTI Systems.
- Continuous -Time LTI Systems: The Convolution Integral.
 - Representation of a continuous-Time signal in Terms of Impulses.
 - Continuous –Time Unit Impulse Response and the Convolution Integral Representation of LTI Systems.
 - Graphical Interpretation of Convolution.
- Properties of LTI systems:
 - Commutative Property.
 - Distributive Property.
 - Associative Property.
 - Systems with and without Memory.
 - Invertibility of LTI Systems.
 - Causality of LTI Systems.
 - Stability of LTI Systems.
 - Unit Step Response of LTI Systems.
- Causal LTI Systems Described by Differential and Difference Equations.

- Linear Constant-Coefficient Differential Equations
- Solution of Differential Equations.
 - Homogeneous solution.
 - Particular solution.
- Higher order differential equations.
- Linear Constant-Coefficient Difference Equations.
- Block Diagram Representations of First-Order Systems Described by Differential and Difference Equations.
- Summary.

3- Fourier Series Representation of Periodic Signals:

- Introduction
- Historical Perspective.
- The response of LTI Systems to Complex Exponentials.
- Fourier Series Representation of Continuous-Time Periodic Signals:
 - Linear Combination of Harmonically Related Complex Exponentials.
 - Determination of the Fourier Series Representation of Continuous-Time Periodic Signals.
- Convergence of the Fourier Series.
- Properties of Continuous-Time Fourier Series.
- Fourier Series Representation of Discrete-Time Periodic Signals.
- Properties of Discrete-Time Fourier Series:
 - Linearity.
 - Time Shifting.
 - Time Reversal.
 - Time Scaling.
 - Multiplication.
 - Conjugation and Conjugate Symmetry.
 - Parseval's Relation for Continuous-Time Periodic Signals.
 - Summary of Properties of Continuous-Time Fourier Series
- Fourier Series & LTI Systems Frequency Response of the System.
- Filtering.
 - Frequency-Shaping Filters.
 - Frequency-Selective Filters.
- Examples of Continuous-Time Filters Described by Differential Equations:
 - A simple *RC* lowpass Filter.
 - A Simple *RC* Highpass Filter.
- Summary.

4- Continuous-Time Fourier Transform.

- Introduction.
- Representation of Aperiodic Signals: Continuous-Time Fourier Transform.
 - Development of Fourier Transform Representation of an Aperiodic Signal.
 - Convergence of Fourier Transforms.
 - Examples of Continuous-Time Fourier Transforms.
- Fourier Transform for Periodic Signals
- Properties of the continuous-Time Fourier Transform:
 - Linearity.
 - Time Shifting.
 - Conjugation and Conjugate Symmetry.
 - Differentiation and Integration.
 - Time and Frequency Scaling.
 - Duality.
 - Parseval's Relation.
- Convolution Property.
- Multiplication Property.
- Tables of Fourier Properties and of Basic Fourier Transform Pairs.
- Systems Characterized by Linear Constant–coefficient Differential Equations.
- Summary.

5- LAPLACE TRANSFORM

- Introduction
- Laplace Transform.
- Region of Convergence "ROC" for Laplace Transform.
- Inverse Laplace Transform.
- Properties of Laplace Transform:
 - Linearity.
 - Time Shifting.
 - Shifting in s-Domain.
 - Time Scaling.
 - Conjugation
 - Convolution Property.
 - Differentiation in Time Domain.
 - Differentiation s-Domain.
 - Integration in Time Domain.
- Some Laplace Transform Pairs.

- Analysis & Characterization of LTI System Using Laplace Transform.:
 - Causality.
 - Stability.
 - LTI Systems Characterized by Linear Constant-Coefficient Differential Equations.
- System Function Algebra & Block Diagram Representations:
 - System Function for Interconnections of LTI Systems.
- Unilateral Laplace Transform:
 - Representation of Unilateral Laplace Transform.
 - Properties of Unilateral Laplace Transform.
- Summary.

6- Application to Communication Systems

- Introduction.
- AM Modulation & Demodulation.
- FM Modulation & Demodulation.