Basics of Natural Products (PHG220)

Dr. Hanan AL-Aati د. حنان العاتي

Email: hati@ksu.edu.sa Office: S79 Office hour: Sunday & Tuesday (12-1)

Web site: https://fac.ksu.edu.sa/hati/home

PHG 220: Course Description

The following subjects will be covered :

1- Carbohydrates:

Chemical characters of different classes of carbohydrates and their biological significance

2- Plants containing Glycosides (botanical and chemical characters)

Introduction, Examples of medicinally important Glycosides and their importance as a "Lead Compounds" from the following groups:

Cardiac glycosides, Saponins, Anthracene derivatives, flavonoids and related compounds, Cyanogenic glycosides and thioglycosides.

3- Plants containing Alkaloids (botanical and chemical character)

Introduction, Examples of medicinally important Alkaloids and their importance as a "Lead Compounds" from the following groups:

Phenylalkylamine, Tropolone, Imidazole, pyridine, piperidine, tropane, quinoline, isoquinoline, Opium, Indole, Carboline, purine and steroidal alkaloids

PHG 220: Course Description

- 4- Unorganized drugs
- **5- Marine Derived Drugs**
- 6- Toxicological Pharmacognosy (Poisonous plants)

Definition

• Organic compounds composed of C, H and O with H and O present in the same ratio as in water. e.g. Glucose C₆H₁₂O₆.

Exceptions:

- Deoxy sugars such as Rhamnose $C_6H_{12}O_5$, digitoxose $C_6H_{12}O_4$
- Some non carbohydrates follow the definition:
 - » Acetic acid $C_2H_4O_2$
 - » Formaldehyde HCHO
 - » Lactic acid C₃H₆O₃

• New definition:

Optically active Polyhydroxy aldehydes or ketones, or substances that hydrolyze to yield polyhydroxy aldehydes or ketones.

Physical Characters

Condition:

Sugars are white, crystalline in shape and with sharp melting points, while polysaccharides are white amorphous solids.

Taste:

Sugars have a sweet taste. Polysaccharides are tasteless.

Solubility:

Monosaccharides are soluble in cold water and hot alcohol. Polysaccharides are partially soluble in hot water.

Optical activity:

A compound is optically active when, in solution, it is capable to rotate the plane of polarized light either to right (**dextrorotatory**, + or **d**) or to the left (**levorotatory**, - or **l**).

Sugar isomers

- Hexoses like glucose have 4 asymmetric (chiral) carbons.
- Number of isomers can be calculated from the formula:

Number of isomers = 2ⁿ

$$= 2^4 = 16$$

СНО *СН-ОН *¹ +О--СН *СН-ОН *СН-ОН *СН-ОН

D and **L** in Sugars

A monosaccharide in which the OH group attached to the carbon atom next to the CH_2OH (farthest asymmetric carbon atom from the carbonyl group) is always to the right is designated as a "D-sugar" and that with the same OH to the left as "L - sugar".

α - and β - anomers of Glucose

When sugars undergo cyclization C-1 became a new chairal carbon and two isomers exist. They are called "Anomers".

- In the α -anomer the OH group is directed downside and in the β -anomer is directed to the upper side.
- These two forms have different specific rotation, in solution an equilibrium exists between the two forms (mutarotation phenomenon).

Chemical Reaction for Carbohydrates

1- Effect of conc. acids:

Treatment with **conc. mineral acid** (HCl or H₂SO₄) leads to **dehydration of sugars** and formation of the corresponding **furfural**.

Reaction of furfural with amines resulted in Shiff's bases with different colours used as colour tests such as:

- 1- Molisch's test:
 - Any carbohydrate + Alcoholic α -naphthol then add conc. H₂SO₄ on the wall of the test tube Violet ring between the two layers.
- **2-** Resorcinol test (for keto-hexoses):
 - Sugar solution + few crystals of Resorcinol + Equall volume of conc. HCl and warm on water bath → Rose Red Colour.

3- Furfural test (Differentiate between Pentoses and Hexoses):

- Pentose + Conc. Acid and heat, expose the vapours to Aniline acetate paper → Red colour
- Hexoses give negative result.

Chemical Reaction for Carbohydrates (Cont.)

- 2- Effect of alkali:
- a- Strong alkalis: Polymerization.
- b- Weak alkalis: Isomerization.

3- Oxidation

Mild These are oxidizing agents like **Bromine water** that convert the CHO group to COOH to produce **"onic acids"**.

Strong These are oxidizing agents like HNO_3 that convert the CHO and CH_2OH group to COOH to produce "aric acids".

Enzymatic Takes place in plants and resulted in the oxidation of the primary alcohol group only producing "uronic acids".

СНО СН-ОН НО-СН _ СН-ОН СН-ОН СН-ОН	COOH ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	CHO CH-OH HO-CH CH-OH CH-OH	HNO3	СООН СН-ОН НО-СН СН-ОН СН-ОН СН-ОН	сно сн-он но-сн сн-он сн-он	СНО СН-ОН НО-СН 	СООН Н Н ОН ОН ОН Н Н
Ċн₂Он	с́н ₂ он	ĊH ₂ OH		ĊOOH	ĊH ₂ OH	ĊOOH	н он
D-Glucose	Gluconic acid	D-Glucose		Saccharic acid	D-Glucose	Glucuronic acid	

Colour test based on this reaction: Fehling's reduction test:

Sugar solutions + Fehling's A (CuSO₄) + Fehling's B (NaOH, NaK tartarate rochell salt), heat on water bath \longrightarrow Red Precipitate of Cu₂O

4- Reduction

This resulted in the reduction of the CHO to CH_2OH producing "Sugar Alcohols". Sodium borohydride or H2/Pt are examples of reducing agents.

> Glucose → Sorbitol Galactose → Dulcitol

Mannose — Mannitol

Monosaccharaides

1- Pentoses

Examples:

- **α-D-Ribose:** found in all plant and animal cells as the carbohydrate part of nucleic acids e.g. ribonucleic acid (RNA).
- α-D-Xylose (or wood sugar): prepared from corncobs, bran, straw (or any woody material)
- α-L-Arabinose (or pectin sugar): found in gums, pectic substances, accompanying hemicelluloses and forms the sugar part of several glycosides.

CHO	CHO	СНО
сн-он	сн—он	сн–он
но-сн	Ч СН—ОН	но-сн
но-сн	Ч СН—ОН	сн–он
ĊН ₂ ОН	Г СН ₂ ОН	∣ CH₂OH
L-Arabinose	D-Ribose	D-Xylose

A- α -D-Glucose

(dextrose, grape sugar, blood sugar or cornmon sugar)

Occurrence:

Widely distributed in nature. Present in Grape and blood.

Preparation:

D-Glucose is **commercially** prepared from **starch** by:

 Autoclaving (at 150 °C) an aqueous starch suspension (15-20%) with dilute acid (0.03 N hydrochloric acid) for 30 minutes (complete hydrolysis).

Uses:

- As source of energy either by mouth or IV injection.
- IV solutions to restore blood volume.
- Shocks following insulin administration.
- As osmotic diuretic.
- Sweetening agent for Pharmaceutical preparations, ice-cream and candy.

Liquid glucose

Preparation:

It is prepared by **partial acid hydrolysis of starch** using **dilute hydrochloric acid** and **heating** for **20 minutes** at about **30 pounds pressure**.

Composition:

It consists of a mixture of glucose, dextrin, maltose and water.

Uses:

Used as sweetening agent, as substitute for sucrose and as an excipient in massing pills.

B- Fructose (Levulose, Fruit Sugar)

Preparation:

- Acid hydrolysis of Inulin.
- Hydrolysis of Sucrose.

Uses:

- Infant food.
- Diabetic food.
- Diet control.

1- Gluconic acid and its salts:

Preparation:

Gluconic acid is prepared from glucose by **mild oxidation** using either dilute HNO₃ or Br₂/Na₂CO₃ or Electrically or by **fermentation** using *Acetobacter aceti*.

Uses:

- Ca gluconate is used (by i.v. or orally) for treatment calcium deficiency.
- Ferrous gluconate, (orally or by i.v.) is used in iron deficiency.
- These salts are characterized by being more easily absorbed than other Ca or Fe salts.

2- Glucuronic Acid:

- Naturally present in Gums and Mucilage's. It can be prepared by Enzymatic oxidation of glucose.
- Uses:

Treatment of certain arthritic condition as it is a component of cartilages, joint capsules and fluids, nerve sheath and tendons.

3- Aurothioglucose:

• Treatment of rheumatic arthritis by IM injection.

4-Auranofin:

It is the alkyl Phosphine Gold complex with Acetylated thioglucose.

Treatment of rheumatic arthritis

5- Sorbitol and Mannitol:

Preparation: Sorbitol is prepared by reduction of glucose and mannitol by reduction of mannose.

Uses of sorbitol:

- Mild laxative, osmotic diuretic
- Sweetening agent
- in some food and cosmetics industries.

Uses of mannitol:

- osmotic diuretic, laxative
- Vasodilator
- in laboratory diagnosis of kidney function.