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Abstract
The oscillating multifractal formalism is a formula conjectured by Jaffard expected to yield the
spectrum d(h, β) of oscillating singularity exponents from a scaling function ζ(p, s′), for p > 0
and s′ ∈ R, based on wavelet leaders of fractional primitives f−s′ of f . In this paper, using some
results from Jaffard et al., we first show that ζ(p, s′) can be extended on p ∈ R to a function
that is concave with respect to p ∈ R and independent on orthonormal wavelet bases in the
Schwartz class. We also establish its concavity with respect to s′ when p > 0. Then, we prove
that, under some assumptions, the extended scaling function ζ(p, s′) is the Legendre transform
of the wavelet leaders density of f−s′ . Finally, as an application, we study the validity of the
extended oscillating multifractal formalism for random wavelet series (under the assumption of
independence and laws depending only on the scale).

Keywords : Oscillating Singularity Exponents; Multifractal Formalism; Scaling Function; Ran-
dom Wavelet Series; Oscillation Spaces; Wavelet Leaders; Fractional Primitives; Wavelet Lead-
ers Density; Wavelet Leaders Profile.
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1. INTRODUCTION

Let f : R → R be a locally bounded function. Recall
that f ∈ Ch(x0) for h > 0 if there exist a polynomial
P of degree smaller than h and a constant C such
that

∀x ∈ R |f(x) − P (x− x0)| ≤ C|x− x0|h. (1)

The Hölder exponent h(x0) (also denoted hf (x0))
of f at x0 is the sup of all values of h such that
f ∈ Ch(x0).

The Hölder exponent, as a measure of point-
wise regularity of functions, is a powerful tool in
many applications such as image analysis or signal
analysis.1,2

The Hölder spectrum of f is the Hausdorff dimen-
sion d(h)= df (h) of the set of points x where h(x) =
h (we take dim(∅) = −∞).

We also say that f ∈ Ch(R) for h > 0 if (1) holds
for any x0 in R with a uniform C.

The (standard) multifractal formalism was intro-
duced by Frisch and Parisi3 in the context of fully
developed turbulence, and alternatively by Arneodo
et al.4 and Jaffard.5 It proposes to compute the
Hölder spectrum using the formula

d(h) = inf
p≥pc

(ph− η(p) + 1), (2)

where

η(p) = sup{s : f ∈ Bs/p,∞
p (R)}, (3)

where Bs/p,∞
p (R) denotes the Besov spaces and pc

is critical value for which η(pc) = 1.
The validity of (2) has been the subject of many

papers. We would not give a detailed review, let
us just mention that this validity has been proved
under self-similarity assumptions on f ,5–8 or for a
class of particular random processes,9 or even for
specific functions f ,10,11 or generically in the sense
of Baire and prevalence.12,13

However, the validity never holds in complete
generality: in Refs. 14 and 15, it has been proved
that the (standard) multifractal formalism fails in
the case where the function involves very oscillating
behaviors; the Hölder exponent does not take into
account the local oscillations of the function. Indeed
a given Hölder exponent h at x0 allows for different
behaviors near x0: for instance cusp-like singulari-
ties, such as |x− x0|h or very oscillatory behaviors,
such as

fh,β(x) = |x− x0|h sin
(

1
|x− x0|β

)
, (4)

for β > 0. The functions fh,β are the most simple
examples of chirps at x0. In signal analysis, this
notion is expected to give a model for functions
whose “instantaneous frequency” increases fast at
some time (see Ref. 16).

In Ref. 17, Mélot showed that formula (2) is only
adapted to cusp singularities (i.e. singularities with
oscillation exponent β = 0). Since∫ x

0
th sin

(
1
tβ

)
dt

=
xh+β+1

β
cos

(
1
xβ

)
− h+ β + 1

β
xh+β+1

×
∫ 1

0
sh+β cos

(
1

(sx)β

)
ds, (5)

then contrary to functions with cusp singularities,
the primitive of the oscillating function (4) has a
Hölder exponent h + 1 + β at x0 which is different
from h+1. This remark motivated the following def-
initions introduced by Jaffard and Meyer in Ref. 16.

Definition 1. Let h ≥ 0 and β > 0. A function
f ∈ L∞(R) is a (h, β)-type chirp at x0 if for each
n ∈ N, f can be written as f = f

(n)
n (nth derivative)

with fn ∈ Ch+n(β+1)(x0).
In this case, f can be written also as

f(x) = |x− x0|hg±
(
± 1
|x− x0|β

)
+R(x− x0),

(6)

where ± stands for the sign of x−x0, the two func-
tions g+(t) and g−(t) are defined on [T,∞) (for
some T > 0) and are indefinitely oscillating, i.e.
all their primitives are bounded, and R(x) is C∞ in
a neighborhood of the origin.

One immediately meets some difficulties when
using this definition for experimental data. Indeed it
is not stable when one adds to f a function which is
arbitrarily smooth, but not C∞. Consider for exam-
ple the function

f(x) = x sin
(

1
xβ

)
+ |x|3/2, (7)

then for n large enough such that 1 + n(β + 1) >
3
2 +n, the Hölder exponent hfn(0) equals 3

2 +n. This
drawback can be avoided by introducing a slightly
different definition of oscillating singularities which
agrees with the definition of a chirp for functions
such as (6), and has the required stability proper-
ties with respect to the addition of smooth noise.
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Consider

fh,β,O(x) = |x− x0|hg±
(
± 1
|x− x0|β

)

+O(|x− x0|h′
), (8)

where h′>h; the first term describes the local
behavior of fh,β,O near x0, so that, if x �→ ∫ x

0 g(t)×
dt ∈ L∞(R), the oscillating singularity exponent at
x0 should be (h, β).

Definition 2. Let f ∈ L2(R). The fractional prim-
itive of order t of f is the function (Id− d2

dx2 )−t/2(f),
where the operator (Id− d2

dx2 )−t/2 is the convolution
operator which amounts multiplying the Fourier
transform of f with (1 + |ξ|2)−t/2.

If f is locally bounded, the local fractional prim-
itive of order t at x0 of f is the function

ft :=
(
Id− d2

dx2

)−t/2

(φf),

where φ is a C∞ compactly supported function sat-
isfying φ(x0) = 1.

The Hölder exponent of the function ft is denoted
ht(x0).

Note that ht(x0) does not depend on the function
φ. In the case of the function fh,β,O defined by (8),
for t small enough, ht(x0) = h+(1+β)t: the increase
of pointwise Hölder regularity at x0 after a frac-
tional integration of very small order t is (1+ β)t.
For the example (7), for t > 0 small enough such
that 1+ t(β+1) < 3

2 + t we get ht(0) = 1+ t(β+1).
This remark motivated the following definition of
Ref. 14.

Definition 3. Let f : R → R be a locally bounded
function and x0 such that ht(x0) <∞. The oscillat-
ing singularity exponents of f at x0 are defined by(

h(x0), β(x0) =
∂

∂t
ht(x0)|t=0 − 1

)
.

This definition makes sense because, for a given x0,
the function t �→ ht(x0) is concave (with slope ≥ 1)
(see Ref. 14), hence it is differentiable on the right,
with a possible infinite derivative so that β(x0) can
be infinite.

If we want to study oscillating singularities
located in a signal, we are naturally led to define
the following spectrum.

Definition 4. The spectrum d(h, β) = df (h, β) of
oscillating singularities of a function f is the Haus-
dorff dimension of the set of points where f has
oscillating singularity exponents (h, β).

In Ref. 18, using heuristic arguments, Jaffard
derived an oscillating multifractal formalism which
yields d(h, β) from the knowledge of oscillation
spaces Os,s′

p (R), for p> 0 (see Definition 5), to which
the function f belongs. That spaces quantify the
degree of correlations between positions of large
wavelet coefficients through the scales; for p> 0, if

ζ(p, s′) = ζf (p, s′) = sup{s; f ∈ Os/p,s′
p (R)}, (9)

then the heuristic formula is

ζ(p, s′) = inf
h

inf
β

(hp − s′(1 + β)p − d(h, β)). (10)

So, if d(h, β) is concave then

d(h, β) = inf
p

inf
s′

(hp − s′(1 + β)p − ζ(p, s′)). (11)

Jaffard18 proved that this formula allows to recover
the increasing part of the spectrum in the case of
lacunary wavelet series. Obtaining the decreasing
part of the spectrum would correspond to an infi-
mum in (11) obtained for negative values of p.

Lacunary wavelet series is a simplified case of
random wavelet series: the nonzero coefficients at
a given scale take only one value. Random wavelet
series (see Ref. 19) are obtained by first choos-
ing an (almost) arbitrary sequence of histograms
of wavelet coefficients at each scale, and then draw-
ing at random each wavelet coefficients at each scale
inside the corresponding histogram, independently.
Random wavelet series are compatible with sev-
eral turbulence models that have been proposed
in the past (see Ref. 20). Other definitions of ran-
dom wavelet series have been the subject of many
papers.21–24

In Sec. 2, we first recall the definition of oscil-
lation spaces, then we extend ζ(p, s′) to p ∈ R.
We show that it is concave with respect to p ∈ R

and independent on orthonormal wavelet bases in
the Schwartz class (using some results from Jaffard
et al.25) and we prove its concavity with respect
to s′ when p > 0, see Proposition 1. In Sec. 3, we
obtain a relationship for the scaling function ω(p)
(respectively, ζ(p, s′)) for p ∈ R based on the large
deviation quantities derived from the distributions
of wavelet leaders, see Proposition 2 (respectively,
see Corollary 1). We thus extend to p ∈ R an earlier
result obtained by Jaffard26 for p > 0. In Sec. 4,
we recall some definitions, notations and results
(due to Aubry and Jaffard19) concerning the ran-
dom wavelet series. As an application, in Sec. 5, we
use the generalized scaling function ζ(p, s′) to study

1550005-3

Fr
ac

ta
ls

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 W
SP

C
 o

n 
04

/2
1/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.



2nd Reading

April 1, 2015 15:27 0218-348X 1550005

M. Ben Slimane & B. Halouani

the validity of both the multifractal formalism of
oscillating singularities and its inverse formula (11)
and (10) for random wavelet series, see Theorem 3.
In Sec. 6, we give a short conclusion.

2. SCALING FUNCTION

We consider functions on the unit torus T = R/Z
(1-periodic functions). Extensions to R and higher
dimension are straightforward. Let ψ be a mother
wavelet such that the constant function 1, together
with the periodized functions

2j/2ψj,k(x) := 2j/2
∑
l∈Z

ψ(2j(x− l) − k),

j ≥ 0, k ∈ {0, . . . , 2j−1}, form an orthonormal basis
of the space L2(T) (see Refs. 27 and 28). Since the
L∞ normalization for wavelets is more convenient
for our purpose, we denote

Cj,k = 2j

∫
[0,1]

f(t)ψj,k(t)dt, (12)

the wavelet coefficients of a function f in L2(T)
(with the usual modification when f is a tempered
distribution periodic over Z).

We will use the following simpler notations; λ
and λ′ will denote, respectively, the intervals λj,k =
[k2−j , k2−j + 2−j) and λj′,k′ = [k′2−j′ , k′2−j′ +
2−j′), Cλ will denote the coefficient Cj,k, and ψλ

will denote the wavelet ψj,k. If j is fixed, we will
denote by Λj the set of all intervals λ = λj,k where
k ∈ {0, . . . , 2j − 1}.

Let us first recall the definition of oscillation
spaces Os,s′

p (T) given by Jaffard in Ref. 18.

Definition 5. Let p > 0, and s, s′ ∈ R; a function
f ∈ L∞(T) belongs to the oscillation space Os,s′

p (T)
if its wavelet coefficients (12) satisfy

∃C > 0 ∀ j ≥ 0

S(p, j, s′) = Sf (p, j, s′)

=
∑
λ∈Λj

(
sup
λ′⊂λ

|Cλ′2s′j′ |
)p

≤ C2−spj.

(13)

In Ref. 26, Jaffard proved that, for either s ≥ 0 or
s ≤ −1/p, oscillation spaces are a variation on the
definition of Besov or Sobolev spaces. Recall that
Besov spaces Bs,q

p = Bs,q
p (T) for (s ∈ R, 0 < p ≤

∞, 0 < q ≤ ∞) are expressed by simple conditions

(mixed 
p − 
q norms) on wavelet coefficients (see
Ref. 29):

f ∈ Bs,q
p ⇔


∑

j


 ∑

λ∈Λj

|Cλ2(s− 1
p
)j |p




q/p



1/q

<∞,

(14)

(with the usual modification when p=∞ and/or
q=∞). On the contrary the spaces Os,s′

p (R) for
−1/p < s < 0 cannot be sharply imbedded between
Sobolev spaces, and thus are new spaces of really
different nature.

Remark 1. If either f ∈ L∞(T) or f ∈ B0,∞∞ (T),
then there exists C > 0 such that

∀λ ∈ Λ |Cλ| ≤ C. (15)

If s′ ≤ 0 then quantities supλ′⊂λ |Cλ′2s′j′ | are finite.

The scaling function ζ(p, s′) given in (9) satisfies

ζ(p, s′) = lim inf
j→∞

log(S(p, j, s′))
log(2−j)

. (16)

Note that (16) is a theorem if p > 0 and a definition
if p ≤ 0.

Remark 2. Quantities Cλ′2s′j′ are the wavelet co-
efficients, at scale j′, of a pseudo-fractional primi-
tive f̃−s′ , of f , of order −s′. Therefore

ζf (p, s′) = ζf̃−s′
(p, 0). (17)

Quantities

dλ := sup
λ′⊂λ

|Cλ′ | (18)

are called the wavelet leaders of f . Therefore, quan-
tities

dλ,t := sup
λ′⊂λ

|Cλ′2−tj′ | (19)

are the wavelet leaders of f̃t. In Refs. 14, 17 and 30,
it is proved that ht(x0) (given in Definition 2)
amounts to compute the Hölder exponent at x0 of
f̃t.

In Ref. 25, Jaffard et al. conjectured a multifrac-
tal formalism expected to yield the spectrum d(h)
of Hölder exponents from a scaling function defined
for p ∈ R by

ω(p) = ωf (p) = lim inf
j→∞

log(
∑

λ∈Λj
(dλ)p)

log(2−j)
. (20)

Clearly if ζ(p, 0) is extended for p ∈ R as in (16)
with s′ = 0 then

ω(p) = ζ(p, 0). (21)
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We will show the following properties for the scal-
ing function ζ(p, s′).

Proposition 1. The function p �→ ζ(p, s′) given in
(16), extended on the entire space of real numbers,
satisfies

ζ(p, s′) = ωf̃−s′
(p)

= lim inf
j→∞

log(
∑

λ∈Λj
(supλ′⊂λ |Cλ′2s′j′ |)p)
log(2−j)

.

(22)

It is concave on R with respect to p and independent
on orthonormal wavelet bases in the Schwartz class.

Moreover, if p > 0 then s′ �→ ζ(p, s′) is concave.

Proof of Proposition 1. In Ref. 25, Jaffard et al.
proved that the scaling function ω(p) is concave on
R (see also Ref. 31) and independent on orthonor-
mal wavelet bases in the Schwartz class. Conse-
quently, using (17) and (21), the function p �→
ζf (p, s′) is concave and independent on orthonormal
wavelet bases in the Schwartz class. It also satisfies
(22).

Let us now show the second result; let s′2 = αs′1+
(1 − α)s′3 with 0 < α < 1. We have

|Cλ′2s′2j′ | = |Cλ′2s′1j′ |α|Cλ′2s′3j′ |(1−α). (23)

If p > 0, using the notations (19), it follows that

(dλ,−s′2)
p ≤ (dλ,−s′1)

αp(dλ,−s′3)
(1−α)p.

By the Hölder inequality

∑
λ∈Λj

(dλ,−s′2)
p ≤


 ∑

λ∈Λj

(dλ,−s′1)
p




α

×

 ∑

λ∈Λj

(dλ,−s′3)
p




(1−α)

.

By definition, ∀ ε > 0, ∃C > 0 such that, for j large
enough, ∑

λ∈Λj

(dλ,−s′1)
p ≤ C2−jζ(p,s′1)2εj

and ∑
λ∈Λj

(dλ,−s′3)
p ≤ C2−jζ(p,s′3)2εj .

Therefore,∑
λ∈Λj

(dλ,−s′2)
p ≤ C2−jαζ(p,s′1)2−j(1−α)ζ(p,s′3)2εj .

Again, by definition, there exists a sequence
jn → ∞ such that∑

λ∈Λjn

(dλ,−s′1)
p ≥ C2−jnζ(p,s′2)2−εjn .

It follows that

ζ(p, s′2) + ε ≥ αζ(p, s′1) + (1 − α)ζ(p, s′3) − ε.

Letting ε → 0, we obtain the concavity of s′ �→
ζ(p, s′) for p > 0.

3. RELATIONSHIPS BETWEEN
SCALING FUNCTIONS AND
DISTRIBUTIONS OF
WAVELET LEADERS

Our purpose in this section is to give a relation-
ship for the scaling function ω(p) based on the large
deviation quantities derived from the distributions
of wavelet leaders see Refs. 32 and 33 where this
technique is discussed). Let us begin by some basic
definitions concerning the distributions of wavelet
leaders. Let f be a periodic tempered distribution.
Let α ∈ R. For each j, let

Mj(α) = Card{0 ≤ k < 2j ; dλ ≥ 2−αj}, (24)

where Card means cardinality.
The wavelet leaders density σ is defined by

σ(α) = σf (α) = inf
ε>0

σ(α, ε), (25)

where

σ(α, ε) = lim sup
j �→∞

log(Mj(α+ ε) −Mj(α− ε))
log(2j)

.

(26)

A heuristic interpretation is that at scale j (when
j → ∞): there are about 2σ(α)j wavelet leaders of
size of order 2−αj .

The domain of definition of the function σ(α) is
the set of α such that σ(α) �= −∞, we denote it by
Dom(σ).

Using some ideas from the proofs of Proposi-
tion 2.2 in Ref. 19, we will extend to p ∈ R an
earlier result obtained by Jaffard (relation (38) in
Ref. 26 page 49) which relates ω(p) for p > 0 to the
distributions of wavelet leaders.

Proposition 2. Let ω(p) and σ(α) be defined as in
(20) and (25). If f is a periodic tempered distri-
bution, then

∀ p ∈ R ω(p) = inf
α∈R

(αp− σ(α)). (27)
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Proof of Proposition 2. Since f is a periodic
distribution, then f has finite order, and there-
fore f has a minimal (perhaps negative) uniform
Hölder regularity. Therefore, there exist αmin ∈R

and C > 0 such that

∀λ |Cλ| ≤ C2−αminj.

It follows that

Dom(σ) ⊂ [αmin,∞). (28)

• We first prove the upper bound in (27); fix α ≥
αmin and δ > 0. For any ε > 0 there exists a
sequence (jn) with limn→∞ jn = ∞ such that

Mjn(α+ ε) −Mjn(α− ε)) ≥ 2jn(σ(α)−δ) ,

therefore

∀ p ∈ R

∑
λ∈Λj

(dλ)p ≥ 2jn(σ(α)−δ)2−αjnp2−εjn|p|.

Taking logarithms and letting jn tend to ∞, we
obtain

∀ p ∈ R ω(p) ≤ αp+ ε|p| − (σ(α) − δ)

for all δ > 0 and ε > 0. Finally, letting δ and ε
tend to 0 we see that

∀ p ∈ R ω(p) ≤ αp− σ(α).

Since α≥αmin was arbitrary this inequality
implies that

∀ p ∈ R ω(p) ≤ inf
α≥αmin

(αp − σ(α)).

• We now prove the lower bound in (27) for p > 0;
let A > 0 be large enough and δ > 0. For all
α ∈ [αmin, A], there exists ε > 0 such that for all
ε′ ≤ ε

|σ(α, ε′) − σ(α)| ≤ δ.

Thus, there exist α1, . . . , αN and ε1 ≤ ε, . . . ,
εN ≤ ε such that [αmin, A] is covered by the inter-
vals [αi − εi, αi + εi], and for all i ∈ {1, . . . , N},
|σ(αi, εi) − σ(αi)| ≤ 2δ. Thus, for each (αi, εi)
there exists Ji such that

∀ j ≥ Ji,

Mj(αi + εi) −Mj(αi − εi)) ≤ 2(σ(αi)+2δ)j .

Taking for J the maximum of the Ji, it follows
that ∀ j ≥ J ,

∀ p > 0

∑
λ∈Λj

(dλ)p ≤
N∑

i=1

(2j(σ(αi)+2δ)2−αjp2εijp)

+ 2j2−Ajp

(the last term corresponds to wavelet leaders
smaller than 2−Aj). Thus,

∀ j ≥ J, ∀ p > 0
∑
λ∈Λj

(dλ)p ≤ N2supα(j(σ(αi)−αp))2(2δ+εp)j

+ 2j2−Ajp.

Taking logarithms and letting ε and δ (respec-
tively A) tend to 0 and (respectively ∞), we see
that

∀ p > 0 ω(p) ≥ − sup
α≥αmin

(−αp + σ(α))

= inf
α≥αmin

(αp − σ(α)).

• Let us now prove the lower bound in (27) for
p < 0. We first assume that Dom(σ) is bounded, it
follows that K := Dom(σ) is compact. By replac-
ing the above interval [αmin, A] by K, we get

∀ j ≥ J ∀ p < 0
∑
λ∈Λj

(dλ)p ≤
N∑

i=1

2j(σ(αi)+δ)2−αjp2−εijp.

Therefore, as previously

∀ p < 0 ω(p) ≥ inf
α≥αmin

(αp − σ(α)).

We now consider the general case; let A> 0,
denote by ω(A, p) the scaling function obtained
with the sequence {dλ : dλ ≥ 2−Aj}. We just
proved that

∀ p < 0 ω(A, p) ≥ inf
αmin≤α≤A

(αp − σ(α)). (29)

Since ω(A, p) decreases when A increases then

ω(p) = lim
A→∞

ω(A, p) = inf
A>0

ω(A, p).

Then, from (29) we deduce that

∀ p < 0 ω(p) ≥ inf
α≥αmin

(αp − σ(α)).

This completes the proof.

We deduce the following result.

Corollary 1. Let ζ(p, s′) (respectively σf̃−s′
(α)) be

as in (22) for p in the entire real line R (respectively
(25) applied to f̃−s′). If f is a periodic tempered
distribution, then

∀ p ∈ R ζ(p, s′) = inf
α∈R

(αp − σf̃−s′
(α)). (30)
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4. SOME PREVIOUS RESULTS

We will begin this section by some definitions, nota-
tions and results in Aubry and Jaffard.19

Definition 6. A function f is a random wavelet
series if its wavelet coefficients Cj,k defined in (12)
satisfy the following requirements:

(1) ∀ j, k, Cj,k is a random variable such that

− log(|Cj,k|)
log(2j)

has law ρj ,
(2) these random variables are independent,
(3) there exists γ > 0 such that

ρ(α) := 1 + inf
ε>0

lim sup
j→∞

log(ρj([α− ε, α + ε))
log(2j)

(31)

is strictly negative for α < γ.

The function ρ(α) thus defined is called the upper
logarithmic density of the process. It is upper semi-
continuous, but not necessarily monotonous. Note
that for now we do not make any assumption on
ρj; it can be a probability measure on R ∪ {∞},
ρj({∞}) being the probability that Cj,k = 0.

Consider an arbitrary function f , which can be
for instance a realization of a random wavelet series.
Let α ∈ R, for each j ≥ 0 let

Nj(α) = Card{k ∈ {0, . . . , 2j − 1}; |Cj,k| ≥ 2−αj}.
(32)

Define the wavelet profile as

ν(α) = lim sup
j→∞

log(Nj(α))
log(2j)

, (33)

and ν̄ the upper closure of ν: the hypograph of ν̄
is the closure of the hypograph of ν, or, since ν is
obviously increasing

ν̄(α) = lim
α′→α+

ν(α′). (34)

The wavelet density ρ(α) is defined by

ρ(α) = inf
ε>0

ρ(α, ε), (35)

where

ρ(α, ε) = lim sup
j→∞

(
log(Nj(α+ ε) −Nj(α− ε))

log(2j)

)
.

(36)

An heuristic interpretation is that at scale j (when
j → ∞), there are about 2ρ(α)j wavelet coefficients
of size |Cj,k| of order 2−αj .

In Ref. 19, Aubry and Jaffard proved the follow-
ing proposition.

Proposition 3. The wavelet density ρ(α) defined
in (35) is upper semi-continuous, and for all α ≥ 0,
the upper closure ν̄ (defined in (34) of ν (defined in
(33)) is given by

ν̄(α) = sup
α′≤α

ρ(α′).

In the case where f is a random wavelet series,
ρ is a deterministic function whereas ρ is random.
The first important result of Ref. 19 links these two
functions. Let

W :=


α;∀ ε > 0,

∞∑
j=0

2jρj([α− ε, α + ε]) = ∞

.

Clearly ρ(α) > 0 ⇒ α ∈ W and ρ(α) < 0 ⇒
α /∈W .

The following theorem and Corollary were
obtained by Aubry and Jaffard.19

Theorem 1. For a random wavelet series (as in
Definition 6), almost surely, for all α ≥ 0,

ρ(α) =
{

ρ(α) if α ∈W

−∞ else.
(37)

Corollary 2. A random wavelet series f (as in
Definition 6), almost surely, f ∈ Cγ(T).

For simplicity, in the rest of this paper we assume
that

ρ(α) = 0 ⇒ α ∈W, (38)

in which case (37) boils down to

ρ(α) =
{

ρ(α) if α ≥ 0
−∞ else.

(39)

Let us define

hmin = infW (40)

and

hmax =
(

sup
α>0

ρ(α)
α

)−1

. (41)

Let

σ(h) = h sup
0<α≤h

ρ(α)
α

. (42)

In Ref. 19, Aubry and Jaffard obtained also the fol-
lowing theorem.

Theorem 2. Let f be a random wavelet series
(as in Definition 6). Assume that assumption (38)
holds. Let σ(h) and ρ(α) are as in (42) and (31),
respectively. Almost surely, f has the following
properties.
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The Hölder spectrum d(h) is defined for h ∈
[hmin, hmax]. If hmax = 0, then d(h) is reduced to
d(0) = 1. If hmax > 0, d(0) = 0, and for 0 < h ≤
hmax,

d(h) = σ(h). (43)

The spectrum of oscillating singularities of f is
defined on [hmin, hmax] × [0,∞), where

d(h, β) = (1 + β)ρ
(

h

1 + β

)
. (44)

If hmax > 0 then

d(h) = sup
β≥0

d(h, β). (45)

Let us now write some definitions, notations and
results in Aubry.34 The wavelet leaders profile κ(α)
is defined by

κ(α) = lim sup
j �→∞

log(Mj(α))
log(2j)

. (46)

Denote κ̄(α) its upper closure: the hypograph of κ̄
is the closure of the hypograph of κ, or, since κ is
obviously increasing

κ̄(α) = lim
α′→α+

κ(α′). (47)

Remark 3. Functions κ and σ defined, respectively
in (46) and (25) are the equivalent, for the wavelet
leaders, of the functions ν and ρ. In particular, the
like of Proposition 3 holds for them.

The following result and remark were found in
Aubry.34

Proposition 4. Let f be a random wavelet series
(as in Definition 6). Assume that assumption (38)
holds. Let κ̄(α), σ(α) and σ(h) be as in (46), (25)
and (42), respectively. Then almost surely,

κ̄(α) = σ(α) =
{

σ(α) if α ∈ [hmin, hmax]
−∞ else.

Remark 4. By Theorem 2, it turns out that almost
surely, these functions coincide with the Hölder
spectrum d(h).

5. THE OSCILLATING
MULTIFRACTAL FORMALISM
FOR RANDOM WAVELET
SERIES

We will finally apply Proposition 2 and the results
above to obtain the following theorem.

Theorem 3. Let f be a random wavelet series
(as in Definition 6). Assume that assumption (38)

holds. Then almost surely formula (10) extended
to p∈R holds. Further, if d(h, β) is concave then
almost surely the multifractal formalism of oscillat-
ing singularities (11) extended to p ∈ R holds.

Proof of Theorem 3. Proposition 4 implies that
for a random wavelet series, almost surely K =
[hmin, hmax] is compact. Therefore, applying Propo-
sition 2, we obtain almost surely

∀ p ∈ R ω(p) = inf
α≥0

(αp − σ(α)).

Since f̃−s′ is also a random wavelet series then
almost surely

∀ p ∈ R ζ(p, s′) = inf
α≥0

(αp − σf̃−s′
(α)).

It follows from Remark 4 that almost surely

∀ p ∈ R ζ(p, s′) = inf
α≥0

(αp − df̃−s′
(α)).

On the other hand, from Theorem 2, almost surely,

df̃−s′
(α) = sup

β≥0
df̃−s′

(α, β)

and

df̃−s′
(α, β) = (1 + β)ρf̃−s′

(
α

1 + β

)
.

Clearly

ρf̃−s′
(α) = ρf (α+ s′).

Therefore almost surely,

df̃−s′
(α, β) = (1 + β)ρ

(
α

1 + β
+ s′

)

= (1 + β)ρ
(
α+ s′(1 + β)

1 + β

)

= d(α+ s′(1 + β), β).

Hence almost surely

∀ p ∈ R

ζ(p, s′) = inf
α≥0

(αp− sup
β≥0

d(α + s′(1 + β), β)).

Whence almost surely

∀ p ∈ R

ζ(p, s′) = inf
α≥0

inf
β≥0

(αp − d(α + s′(1 + β), β)).

By a change of variables we get almost surely (10)
extended to p ∈ R. It follows that for a random
wavelet series almost surely the function (p, s′) �→
ζ(p, s′) is concave. So, if d(h, β) is concave then
almost surely (11) extended to p ∈ R holds.
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6. CONCLUSION

The scaling function ζ(p, s′) takes into account
strong correlations between the positions of large
wavelet coefficients. This requirement is backed by
several numerical studies which have uncovered
such correlations in turbulence,35 image process-
ing,36 traffic,37 finance,38 etc. Several random pro-
cesses have been introduced in order to model such
data; a particularly important class is supplied by
multiplicative models, see, for instance, Refs. 21, 39,
40, 41 and 42 and references therein.

In this paper, using some results from Jaffard
et al.,25 we extended the scaling function to p ∈ R

and deduced its concavity with respect to p ∈ R

and independence on the orthonormal wavelet basis
in the Schwartz class. We also proved its concavity
with respect to s′ when p > 0. We then proved a
result which relates ω(p) (for p ∈ R) to the wavelet
leaders density σ(α). We therefore deduced a result
which relates ζ(p, s′) for p ∈ R to σf−s′ (α). As an
application, we used the generalized scaling func-
tion ζ(p, s′) to study the validity of the multifrac-
tal formalism of oscillating singularities for random
wavelet series (under the assumption of indepen-
dence and laws depending only on the scale). We
therefore extended the results obtained by Jaffard
(for lacunary wavelet series) in the general settings
of random wavelet series and p ∈ R .
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