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√
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√
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√
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Chapter 1

CONIC SECTIONS

1.1 Parabola

Definition 1.1 A parabola is a set of all points in a plane that are equidistant from a fixed point F (called the focus) and a
fixed line D (called the directrix) in the same plane.

Let the focus lies along the x-axis at F = (a,0) and let the directrix
be the line x =−a. From Definition 1.1, we have |PF |= |PD|. Then
from the distance formula, we obtain√

(x−a)2 +(y−0)2 =
√

(x+a)2 +(y− y)2

⇒
√
(x−a)2 + y2 = (x+a)

⇒ (x−a)2 + y2 = (x+a)2

⇒ y2 = (x+a)2− (x−a)2

⇒ y2 = 4ax .

Figure 1.1: An illustrative graph of of the parabola.

The result is the equation of a parabola with vertex at the origin, that opens to the right. Similarly, we can extract the other equations of
the parabola. In each case, a > 0 which represents the distance from the vertex to the focus. The axis of symmetry of the parabola is a
line that passes through the vertex and is perpendicular to the directrix.

1.1.1 Vertical Parabolas

When a parabola opens right or left, it has a vertical axis of symmetry. In this case, the parabola is called a vertical parabola. We study
the special and general cases of the vertical parabolas. In the special case, we assume that the vertex of the parabola is at the origin. In
the general case, we assume that the vertex is at V (h,k).

(A) Vertical Parabolas with the Vertex at the Origin.

The equation of the vertical parabola with the vertex at the origin is x2 =±4ay, where a > 0.
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(1) The equation x2 = 4ay has the following properties:

• The vertex of the parabola is V (0,0).

• The parabola opens upwards.

• The axis of symmetry of the parabola is y-axis.

• The focus of the parabola is F(0,a).

• The directrix of the parabola is y =−a.

Figure 1.2: The graph of the parabola x2 = 4ay.

(2) The equation x2 =−4ay has the following properties:

• The vertex of the parabola is V (0,0).

• The parabola opens downwards.

• The axis of symmetry of the parabola is y-axis.

• The focus of the parabola is F(0,−a).

• The directrix of the parabola is y = a.

Figure 1.3: The graph of the parabola x2 =−4ay.

(B) Vertical Parabolas with the Vertex at V (h,k).

The equation of the vertical parabola with the vertex at V (h,k) is (x−h)2 =±4a(y− k), where a > 0. The previous form is the general
formula of the vertical parabolas.

(1) The equation (x−h)2 = 4a(y− k) has the following properties:

• The vertex of the parabola is V (h,k).

• The parabola opens upwards.

• The axis of symmetry of the parabola is parallel to y-axis.

• The focus of the parabola is F(h,k+a).

• The directrix of the parabola is y = k−a.

Figure 1.4: The graph of the parabola (x− h)2 = 4a(y− k)
for h,k > 0.
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(2) The equation (x−h)2 =−4a(y−k) has the following properties:

• The vertex of the parabola is V (h,k).

• The parabola opens downwards.

• The axis of symmetry of the parabola is parallel to y-axis.

• The focus of the parabola is F(h,k−a).

• The directrix of the parabola is y = k+a.

Figure 1.5: The graph of the parabola (x−h)2 =−4a(y−k)
for h,k > 0.

� Example 1.1 Find the focus and the directrix of the parabola x2 = 4y, and sketch its graph.

Solution:
The equation x2 = 4y takes the form x2 = 4ay with a = 1.

Therefore, the parabola has the following properties:

• The vertex of the parabola is V (0,0).

• The parabola opens upwards.

• The axis of symmetry of the parabola is y-axis.

• The focus of the parabola is F(0,1).

• The directrix of the parabola is y =−1.
Figure 1.6: The parabola x2 = 4y.

� Example 1.2 Find the focus and the directrix of the parabola (x+1)2 =−4(y−1), and sketch its graph.

Solution: The equation (x+1)2 =−4(y−1) takes the form

(x−h)2 =−4a(y− k) .

This implies a= 1, h=−1 and k = 1. The parabola has the following
properties:

• The vertex of the parabola is V (−1,1).

• The parabola opens downwards.

• The axis of symmetry of the parabola is parallel to y-axis.

• The focus of the parabola is F(−1,−1).

• The directrix of the parabola is y = 2. Figure 1.7: The graph of the parabola (x+1)2 =−4(y−1).

� Example 1.3 Find the equation of the parabola with vertex (2,1) and focus F(2,3). Then, sketch the graph.
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Solution:
Since the vertex and focus are in the same line x = 2, then the axis
of symmetry of the parabola is parallel to the y-axis. Also, from the
y-coordinate of the vertex and focus, the parabola opens upwards.
Thus, the equation of the parabola takes the form

(x−h)2 = 4a(y− k) .

From the vertex and focus, we have

V (h,k) = (2,1)⇒ h = 2 and k = 1

F(h,k+a) = (2,3)⇒ a = 2

By substituting the values of a, h and k, the equation of the parabola
becomes (x−2)2 = 8(y−1).

Figure 1.8: The graph of the parabola (x−2)2 = 8(y−1).

1.1.2 Horizontal Parabolas

When a parabola opens upwards or downwards, it has a horizontal axis of symmetry. In this case, the parabola is called a horizontal
parabola. We consider the two cases: the vertex at the origin and the vertex at V (h,k).

(A) Horizontal Parabolas with the Vertex at the Origin. The equation of the horizontal parabola with the vertex at the origin is
y2 =±4ax, where a > 0.

(1) The equation y2 = 4ax has the following properties:

• The vertex of the parabola is V (0,0).

• The parabola opens to the right.

• The axis of symmetry of the parabola is x-axis.

• The focus of the parabola is F(a,0).

• The directrix of the parabola is x =−a.

Figure 1.9: The graph of the parabola y2 = 4ax.

(2) The equation y2 =−4ax has the following properties:

• The vertex of the parabola is V (0,0).

• The parabola opens to the left.

• The axis of symmetry of the parabola is x-axis.

• The focus of the parabola is F(−a,0).

• The directrix of the parabola is x = a.

Figure 1.10: The graph of the parabola y2 =−4ax.

(B) Horizontal Parabolas with the Vertex at V (h,k). The general equation of the horizontal parabola with the vertex at V (h,k) is
(y− k)2 =±4a(x−h), where a > 0.
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(1) The equation (y− k)2 = 4a(x−h) has the following properties:

• The vertex of the parabola is V (h,k).

• The parabola opens to the right.

• The axis of symmetry of the parabola is parallel to x-axis.

• The focus of the parabola is F(h+a,k).

• The directrix of the parabola is x = h−a.

Figure 1.11: The graph of the parabola (y− k)2 = 4a(x−h)
for h,k > 0.

(2) The equation (y−k)2 =−4a(x−h) has the following properties:

• The vertex of the parabola is V (h,k).

• The parabola opens to the left.

• The axis of symmetry of the parabola is parallel to x-axis.

• The focus of the parabola is F(h−a,k).

• The directrix of the parabola is x = h+a.

Figure 1.12: The graph of the parabola (y− k)2 = −4a(x−
h).

� Example 1.4 Find the focus and the directrix of the parabola y2 =−8x, and sketch its graph.

Solution:

The equation y2 =−8x takes the form y2 =−4ax with a = 2.

The parabola has the following properties:

• The vertex of the parabola is V (0,0).

• The parabola opens to the left.

• The axis of symmetry of the parabola is x-axis.

• The focus of the parabola is F(−2,0).

• The directrix of the parabola is x = 2.

Figure 1.13: The parabola y2 =−8x.
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� Example 1.5 Find the equation of the parabola with focus (3,0) and directrix x =−3. Then, sketch the graph.

Solution:

Since the focus of the parabola is F(3,0) = F(a,0), the axis of
symmetry of the parabola is x-axis and it opens to the right.

Thus, the equation of the parabola takes the form y2 = 4ax.

Since a = 3, then the equation of the parabola is y2 = 12x. The
directrix of the parabola is x =−3.

Figure 1.14: The parabola y2 = 12x.

� Example 1.6 Find the focus and the directrix of the parabola 2y2−4y+8x+10 = 0, and sketch its graph.

Solution:

Since the quadrature is on the y−term, then the parabola takes the form (y− k)2 =±4a(x−h).

2y2−4y+8x+10 = 0, divide all terms by 2

y2−2y+4x+5 = 0,

y2−2y =−4x−5, isolate y-terms

(y2−2y+1)︸ ︷︷ ︸
completing square

=−4x−4

(y−1)2 =−4(x+1) (y− k)2 =−4a(x−h)

The parabola has the following properties:

• The vertex of the parabola is V (−1,1).

• The parabola opens to the left.

• The axis of symmetry of the parabola is parallel to x-axis.

• The focus of the parabola is F(−2,1).

• The directrix of the parabola is x = 0.

Figure 1.15: The graph of the parabola (y−1)2 =−4(x+1).

1.2 Ellipse

Definition 1.2 An ellipse is a set of all points in a plane such that the sum of the distances from each point to two fixed points
(called foci) is constant.
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• Each of the two fixed points mentioned in the previous
definition is called a focus. The line containing the foci
intersects the ellipse at points called vertices.

• The line segment between the vertices is called the major
axis, and its midpoint is the center of the ellipse.

• A line perpendicular to the major axis through the center
intersects the ellipse is called the minor axis and its endpoints
called co-vertices.

Figure 1.16: An illustrative graph of of the ellipse.

Let c2 be a circle with midpoint F2 and radius 2a. From Figure 1.17, the distance of the point P to the circle c2 equals the distance to the
focus F1. Therefore, if the point P =W1(0,b), then |PF1|= |Pc2|= a. From Pythagoras’ theorem, we have a2 = b2 + c2.

Figure 1.17

From Definition 1.2, we have
| PF2|+ |PF1|= 2a√

(x+ c)2 + y2 = 2a−
√
(x− c)2 + y2

(x+ c)2 + y2 = 4a2−4a
√

(x− c)2 + y2 +(x− c)2 + y2√
(x− c)2 + y2 =−

(
a− c

a x
)

(x− c)2 + y2 = a2− c2

a2 x2−2cx

x2−2cx+ c2 + y2 = a2− c2

a2 x2−2cx isolate x-terms any y-terms

( a2−c2

a2 )x2 + y2 = a2− c2 divide both sides by a2− c2

x2

a2 +
y2

a2−c2 = 1
x2

a2 +
y2

b2 = 1 b2 = a2− c2

Figure 1.18

1.2.1 Ellipses with the Center at the Origin

The equation of the ellipse is x2

a2 +
y2

b2 = 1.
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(A) If a > b, the ellipse has the following properties:
• The center of the ellipse is P(0,0).

• The vertices of the ellipse are V1(a,0), V2(−a,0).

• The foci of the ellipse are F1(c,0), F2(−c,0), where

c =
√

a2−b2 .

• The major axis of the ellipse is x-axis with length 2a.

• The minor axis endpoints (co-vertices) are W1(0,b), W2(0,−b).

• The minor axis of the ellipse is y-axis with length 2b.
Figure 1.19: The graph of the ellipse x2

a2 + y2

b2 = 1, where
a > b.

(B) If b > a, the ellipse has the following properties:

• The center of the ellipse is P(0,0).

• The vertices of the ellipse are V1(0,b), V2(0,−b).

• The foci of the ellipse are F1(0,c), F2(0,−c), where

c =
√

b2−a2 .

• The major axis of the ellipse is x-axis with length 2b.

• The minor axis endpoints (co-vertices) are W1(a,0), W2(−a,0).

• The minor axis of the ellipse is y-axis with length 2a. Figure 1.20: The graph of the ellipse x2

a2 + y2

b2 = 1, where
b > a.

� Example 1.7 Identify the features of the ellipse and sketch its graph.
(1) 9x2 +25y2 = 225 (2) 16x2 +9y2 = 144

Solution:

1. By dividing both sides by 225, we have x2

25 +
y2

9 = 1. The result takes the form x2

a2 +
y2

b2 = 1, where a = 5 and b = 3. Since a > b,
then c =

√
25−9 =

√
16 = 4.

The ellipse has the following properties:

• The center of the ellipse is P(0,0).

• The vertices of the ellipse are V1(5,0), V2(−5,0).

• The foci of the ellipse are F1(4,0), F2(−4,0)

• The major axis of the ellipse is x-axis with length 10.

• The minor axis endpoints (co-vertices) are W1(0,3), W2(0,−3).

• The minor axis of the ellipse is y-axis with length 6.
Figure 1.21: The graph of the ellipse x2

25 + y2

9 = 1, where
a > b.
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2. By dividing both sides by 144, we have x2

9 + y2

16 = 1. The result takes the form x2

a2 +
y2

b2 = 1, where a = 3 and b = 4. Since b > a,
then c =

√
16−9 =

√
7.

The ellipse has the following properties:

• The center of the ellipse is P(0,0).

• The Vertices of the ellipse are V1(0,4), V2(0,−4).

• The foci of the ellipse are F1(0,
√

7), F2(0,−
√

7)

• The of the ellipse is x-axis with length 8.

• The minor axis endpoints (co-vertices) are W1(3,0), W2(−3,0).

• The minor axis of the ellipse is y-axis with length 6.
Figure 1.22: The graph of the ellipse x2

9 + y2

16 = 1, where
b > a.

� Example 1.8 Find an equation of an ellipse if the center is at the origin and
(1) Major axis on x-axis

Major axis length = 14
Minor axis length = 10

(2) Major axis on y-axis
Minor axis length = 14
Distance of foci from center = 10

√
2

Solution:

(1) Since the major axis is on x-axis, then the equation of the ellipse takes the form x2

a2 +
y2

b2 = 1, where a > b. Also, the major axis
length is 2a = 14 and this implies a = 7. The minor axis length is 2b = 10, so b = 5. From this, the equation of the ellipse
becomes x2

49 +
y2

25 = 1.

(2) Since the major axis is on y-axis, then the equation of the ellipse takes the form x2

a2 +
y2

b2 = 1, where b > a. From the minor axis
length 2a = 14, we have a = 7. Also, the distance of foci from the center is c = 10

√
2. Since c2 = b2−a2, then b2 = 249. By

substituting the values of a and b, we have x2

49 +
y2

249 = 1.

1.2.2 Ellipses with the Center Not at the Origin

The equation of an ellipse of the form is (x−h)2

a2 +
(y−k)2

b2 = 1.

(A) If a > b, the ellipse has the following properties:

• The center of the ellipse is P(h,k).

• The Vertices of the ellipse are V1(h+a,k), V2(h−a,k).

• The foci of the ellipse are F1(h+ c,k), F2(h− c,k), where

c =
√

a2−b2 .

• The major axis of the ellipse is x-axis with length 2a.

• The minor axis endpoints are W1(h,k+b), W2(h,k−b).

• The minor axis of the ellipse is y-axis with length 2b.
Figure 1.23: The graph of the ellipse (x−h)2

a2 + (y−k)2

b2 = 1,
where a > b.
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(B) If a < b, the ellipse has the following properties:

• The center of the ellipse is P(h,k).

• The Vertices of the ellipse are V1(h,k+b), V2(h,k−b).

• The foci of the ellipse are F1(h,k+ c), F2(h,k− c), where

c =
√

b2−a2 .

• The major axis of the ellipse is y-axis with length 2b.

• The minor axis endpoints are W1(h+a,k), W2(h−a,k).

• The minor axis of the ellipse is x-axis with length 2a.
Figure 1.24: The graph of the ellipse (x−h)2

a2 + (y−k)2

b2 = 1,
where b > a.

� Example 1.9 Find the equation of the ellipse with foci at (−3,1), (5,1) and one of its vertice is (7,1), then sketch its graph.

Solution:

Since the y−term in the foci is constant, the equation of the ellipse is of the form (x−h)2

a2 +
(y−k)2

b2 = 1 where a > b.

From the given foci, we have

F1(h+ c,k) = (5,1)⇒ h+ c = 5, k = 1

F2(h− c,k) = (−3,1)⇒ h− c =−3, k = 1

By doing some calculation, we obtain h = 1 and c = 4.

Illustration:

h+ c = 5→ 1

h− c =−3→ 2

Also, from the given vertex, we have V1(h+a,k) = (7,1) and by substituting the value of h, we obtain a = 6.

From the formula c2 = a2−b2, we have b2 = 36−16 = 20, so b = 2
√

5. Thus, the equation of the ellipse is

(x−1)2

36
+

(y−1)2

20
= 1 .

The ellipse has the following properties:

• The center of the ellipse is P(1,1).

• The Vertices of the ellipse are V1(7,1), V2(−5,1).

• The foci of the ellipse are F1(5,1), F2(−3,1).

• The major axis of the ellipse is x-axis with length 12.

• The endpoints of the minor axis are W1(1,1 + 4
√

5) and
W2(1,1−4

√
5).

• The minor axis of the ellipse is y-axis with length 8
√

5.
Figure 1.25: The graph of the ellipse (x−1)2

36 + (y−1)2

20 = 1.

� Example 1.10 Find the equation of the ellipse with foci at (2,5), (2,−3) and the length of its minor axis equals 6, then and sketch
its graph.
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Solution:

Since the x−term in the foci is constant, the equation of the ellipse is of the form (x−h)2

a2 +
(y−k)2

b2 = 1 where b > a.

From the given foci, we have

F1(h,k+ c) = (2,5)⇒ h = 2, k+ c = 5

F2(h,k− c) = (2,−3)⇒ h = 2, k− c =−3

By doing some calculation, we obtain k = 1 and c = 4.

Illustration:

k+ c = 5→ 1

k− c =−3→ 2

Also, the length of its minor axis equals 2a = 6, hence a = 3. From the formula c2 = b2−a2, we have b2 = 16+9 = 25, so b = 5. Thus,
the equation of the ellipse is

(x−2)2

9
+

(y−1)2

25
= 1 .

The ellipse has the following properties:

• The center of the ellipse is P(2,1).

• The Vertices of the ellipse are V1(2,6), V2(2,−4).

• The foci of the ellipse are F1(2,5), F2(2,−3).

• The major axis of the ellipse is y-axis with length 10.

• The minor axis endpoints are W1(5,1), W2(−1,1).

• The minor axis of the ellipse is x-axis with length 6.

Figure 1.26: The graph of the ellipse (x−2)2

9 + (y−1)2

25 = 1.

� Example 1.11 Identify the features of the ellipse 4x2 +2y2−8x−8y−20 = 0, then sketch its graph.

Solution:

4x2 +2y2−8x−8y−20 = 0

2x2 + y2−4x−4y−10 = 0

2x2−4x+ y2−4y = 10 isolate x any y terms

2(x2−2x+1)+(y2−4x+4) = 10+2+4 completing square: (a±b)2 = a2±2ab+b2

2(x−1)2 +(y−2)2 = 16

(x−1)2

8
+

(y−2)2

16
= 1 divide by 16 .

The result takes the standard form
(x−h)2

a2 +
(y− k)2

b2 = 1 ,

where

h = 1, k = 2, a = 2
√

2, and b = 4, then c =
√

16−8 = 2
√

2 .
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The ellipse has the following properties:

• The center of the ellipse is P(1,2).

• The Vertices of the ellipse are V1(1,6), V2(1,−2).

• The foci of the ellipse are F1(1,2+2
√

2), F2(1,2−2
√

2).

• The major axis of the ellipse is y-axis with length 8.

• The endpoints of the minor axis are W1(1 + 2
√

2,2) and
W2(1−2

√
2,2).

• The minor axis of the ellipse is x-axis with length 4
√

2.
Figure 1.27: The graph of the ellipse (x−1)2

8 + (y−2)2

16 = 1.

1.3 Hyperbola

Definition 1.3 A hyperbola is the set of all points in a plane such that the absolute value of the difference of the distances of
each point from two fixed points (called foci) is constant.

• Each fixed point mentioned in the previous definition is called
a focus.

• The point midway between the foci is called the center. The
line containing the foci is the transverse axis.

• The graph of the hyperbola is made up of two parts called
branches. Each branch intersects the transverse axis at a
point called the vertex.

Figure 1.28: An illustrative graph of the hyperbola.

Let c2 be the circle with midpoint F2 and radius 2a. The distance of a point P of the right branch to the circle c2 equals the distance to
the focus F1: |PF1|= |Pc2|.
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Figure 1.29

From Definition 1.3, we have

||PF1|− |PF2||= 2a√
(x− c)2 + y2−

√
(x+ c)2 + y2 = 2a

x2(c2−a2)−a2y2 = a2(c2−a2) Rearranging and completing the square

x2

a2 −
y2

c2−a2 = 1 dividing both sides by c2−a2

x2

a2 −
y2

b2 = 1 b2 = c2−a2 .

1.3.1 Hyperbola with the Center at the Origin

(A) The equation of the hyperbola is x2

a2 − y2

b2 = 1.

The hyperbola has the following properties:

• The center of the ellipse is P(0,0).

• The vertices of the ellipse are V1(a,0), V2(−a,0).

• The foci of the ellipse are F1(c,0), F2(−c,0), where

c =
√

a2 +b2 .

• The transverse axis is x-axis with length 2a.

• The asymptotes are y =± b
a x.

Figure 1.30: The graph of the hyperbola x2

a2 −
y2

b2 = 1.

(B) The equation of the hyperbola is y2

a2 − x2

b2 = 1.

The hyperbola has the following properties:

• The center of the ellipse is P(0,0).

• The vertices of the ellipse are V1(0,b), V2(0,−b).

• The foci of the ellipse are F1(0,c), F2(0,−c), where

c =
√

a2 +b2 .

• The transverse axis is x-axis with length 2b.

• The asymptotes are y =± b
a x.

Figure 1.31: The graph of the hyperbola y2

b2 − x2

a2 = 1.
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� Example 1.12 Identify the features of the hyperbola and sketch its graph.

(1) 4x2−16y2 = 64

(2) 4y2−9x2 = 36

Solution:

(1) By dividing both sides by 64, we have x2

16 −
y2

4 = 1. The result takes the form x2

a2 − y2

b2 = 1.
Since a = 4 and b = 2, then c =

√
16+4 = 2

√
5.

The hyperbola has the following properties:

• The center of the ellipse is P(0,0)

• The vertices of the ellipse are V1(4,0), V2(−4,0).

• The foci of the ellipse are F1(2
√

5,0), F2(−2
√

5,0).

• The transverse axis is x-axis with length 8.

• The asymptotes are y =± 1
2 x.

Figure 1.32: The graph of the hyperbola x2

16 −
y2

4 = 1.

(2) Divide both sides by 36 to have y2

9 −
x2

4 = 1. The result takes the form y2

b2 − x2

a2 = 1.
Since a = 2 and b = 3, then c =

√
4+9 =

√
13.

The hyperbola has the following properties:

• The center of the ellipse is P(0,0)

• The vertices of the ellipse are V1(0,3), V2(0,−3).

• The foci of the ellipse are F1(0,
√

13), F2(0,−
√

13).

• The transverse axis is x-axis with length 6.

• The asymptotes are y =± 3
2 x.

Figure 1.33: The graph of the hyperbola y2

9 −
x2

4 = 1.

� Example 1.13 Find an equation of the hyperbola if its vertices are V1(3,0) and V2(−3,0), and one of its foci (4,0), then sketch its
graph.

Solution:

Since the y−term in the vertices is constant, the equation of the hyperbola takes the form x2

a2 − y2

b2 = 1. Also, V1(a,0) =V1(3,0) implies
a = 3 and F1(c,0) = F1(4,0) implies c = 4.
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From the formula c2 = a2 +b2, we have b =
√

16−9 =
√

7.
Thus, the equation of the hyperbola is x2

9 −
y2

7 = 1.
The hyperbola has the following properties:

• The center of the ellipse is P(0,0)

• The vertices of the ellipse are V1(3,0), V2(−3,0).

• The foci of the ellipse are F1(4,0) and F2(−4,0).

• The transverse axis is x-axis with length 6.

• The asymptotes are y =±
√

7
3 x.

Figure 1.34: The graph of the hyperbola x2

a2 −
y2

b2 = 1.

1.3.2 Hyperbola with the Center Not at the Origin

(A) The equation of the hyperbola is (x−h)2

a2 − (y−k)2

b2 = 1.

The hyperbola has the following properties:

• The center of the ellipse is P(h,k)

• The vertices of the ellipse are V1(h+a,k), V2(h−a,k).

• The foci of the ellipse are F1(h+ c,k), F2(h− c,k), where

c =
√

a2 +b2 .

• The transverse axis is x-axis with length 2a.

• The asymptotes are (y− k) =± b
a (x−h).

Figure 1.35: The graph of the hyperbola (x−h)2

a2 − (y−k)2

b2 = 1.

(B) The equation of the hyperbola is (y−k)2

b2 − (x−h)2

a2 = 1.

The hyperbola has the following properties:

• The center of the ellipse is P(h,k)

• The vertices of the ellipse are V1(h,k+b), V2(h,k−b).

• The foci of the ellipse are F1(h,k+ c), F2(h,k− c).

• The transverse axis is x-axis with length 2b.

• The asymptotes are (y− k) =± b
a (x−h).

Figure 1.36: The graph of the hyperbola (y−k)2

b2 − (x−h)2

a2 = 1.
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� Example 1.14 Find the equation of the hyperbola with foci at (−2,2), (6,2) and one of its vertices is (5,2), then sketch its graph.

Solution:

Since the y−term in the foci is constant, then the equation of the
hyperbola takes the form (x−h)2

a2 +
(y−k)2

b2 = 1.
From the given foci, we have

F1(h+ c,k) = (6,2)⇒ h+ c = 6,k = 2

F2(h− c,k) = (−2,2)⇒ h− c =−2,k = 2

By doing some calculation, we obtain h = 2 and c = 4.

Illustration:

h+ c = 6→ 1

h− c =−2→ 2

Also, from the given vertex V1(h+a,k) = (5,2), we have h+a = 5. By substituting the value of h, we obtain a = 3. From the formula

c2 = a2 +b2, we find b2 = 16−9 = 7 and this implies b =
√

7. Thus, the equation of the hyperbola is (x−2)2

9 +
(y−2)2

7 = 1.

The hyperbola has the following properties:

• The center of the ellipse is P(2,2)

• The vertices of the ellipse are V1(5,2), V2(−1,2).

• The foci of the ellipse are F1(6,2), F2(−4,2).

• The transverse axis is x-axis with length 6.

• The asymptotes are (y−2) =±
√

7
3 (x−2).

Figure 1.37: The graph of the hyperbola (x−2)2

9 + (y−2)2

7 = 1.

� Example 1.15 Find the equation of the hyperbola with foci at (−1,−6) , (−1,4) and the length of its transverse axis is 8, and sketch
its graph.

Solution:

Since the x−term in the foci is constant, the equation of the hyperbola takes the form (y−k)2

b2 − (x−h)2

a2 = 1.

From the foci, we have

F1(h,k+ c) = (−1,4)⇒ h =−1,k+ c = 4

F2(h,k− c) = (−1,−6)⇒ h =−1,k− c =−6

By doing some calculation, we obtain k =−1 and c = 5.

Illustration:

k+ c = 4→ 1

k− c =−6→ 2

Also, the length of the transverse axis is 2b = 8 and this implies b = 4. From the formula c2 = a2 +b2, we have a2 = 25−16 = 9, so
a = 3.

Thus, the equation of the hyperbola is
(y+1)2

16
− (x+1)2

9
= 1 .
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The hyperbola has the following properties:

• The center of the ellipse is P(−1,−1)

• The vertices of the ellipse are V1(−1,3), V2(−1,−4).

• The foci of the ellipse are F1(−1,4), F2(−1,−6).

• The transverse axis is x-axis with length 8.

• The asymptotes are (y+1) =± 4
3 (x+1).

Figure 1.38: The graph of the hyperbola (y+1)2

16 + (x+1)2

9 = 1.

� Example 1.16 Identify the features of the hyperbola 2y2−4x2−4y−8x−34 = 0. Then, sketch its graph.

Solution:

2y2−4x2−4y−8x−34 = 0,

2y2−4y−4x2−8x = 34

2(y2−2y)−4(x2−2x) = 34 Rearranging x-terms and y-terms

2(y2−2y+1)−4(x2−2x+1) = 34+2+4 completing the square

2(y−1)2−4(x+1)2 = 40

(y−1)2

20
− (x+1)2

10
= 1 dividing both sides by 40

.

From the standard form (y−k)2

b2 − (x−h)2

a2 = 1, we have h =−1, k = 1, a =
√

10, and b = 2
√

5. Thus, from the formula c2 = a2 +b2, we
have c =

√
30.

The hyperbola has the following properties:

• The center of the ellipse is P(−1,1)

• The vertices of the ellipse are

V1(−1,1+2
√

5), V2(−1,1−2
√

5) .

• The foci of the ellipse are

F1(−1,1+
√

30), F2(−1,1−
√

30) .

• The transverse axis is x-axis with length 4
√

5.

• The asymptotes are (y−1) =±
√

2(x+1).
Figure 1.39: The graph of the hyperbola (y−1)2

20 − (x+1)2

10 =
1.
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Exercises

1 - 13 Write an equation of the parabola with the given elements, then sketch the graph.

1 Vertex at (−4,2) and focus at (− 7
2 ,2).

2 Vertex at (2,6), passes through (−1,4) and opens to the left.

3 Vertex at (−1,1) and y-intercept of (0,2).

4 Focus at (2,4) and directrix is y =−2.

5 Vertex at (0,−2), passes through (−2,0) and opens to the left.

6 Vertex at (5,3), passes through (3,−1) and opens downwards.

7 Vertex at (1,2) and focus at (1,3).

8 Vertex at (4,−3), passes through (10,−6) and opens downwards.

9 Vertex at (−3,−5), passes through (−5,−6) and opens downwards.

10 Focus at (4,1) and directrix is the y-axis.

11 Vertex at (4,−5), passes through (6,1) and opens upwards.

12 Vertex at (−8,2), passes through (2,−3) and opens downwards.

13 Focus at (3,6) and the directrix y = 2.

14 - 21 Write an equation of the ellipse with the given elements, then sketch the graph.

14 Center at the origin and major axis on x-axis and its length equals 8 and minor axis length equals 6.

15 One of its vertices (3,0), one of its foci at (2,0).

16 Center at (2,2), one of its vertices (4,2), and one of its foci (2+
√

3,2).

17 Center at (1,−1), one of its vertices (4,−1), and one of its foci (1+
√

5,−1).

18 Center at (−2,3), major axis is parallel to y-axis, and its length equals 8 and minor axis length equals 4.

19 Vertices (2,3) and (2,−2), and minor axis is parallel to x-axis and its length equals 2.

20 Vertices (−1,−1) and (−1,9), and minor axis is parallel to x-axis with length 8.

21 Foci (10,−2),(4,−2) and one of its vertices (12,−2).

22 - 31 Write an equation of the hyperbola with the given elements, then sketch the graph.

22 Vertices (0,−2) and (0,2) and one of its foci (0,
√

13).

23 Vertices (0,−6) and (0,6), and one of its foci (0,−8).

24 Vertices (1,1) and (11,1), and one of its foci (12,1).



Exercises 25

25 One of its vertices (−4,0) and the asymptotes y =±x.

26 One of its vertices (1,0) and the asymptotes y =±2x.

27 One of its vertices (0,5) and the asymptotes y =± 5
3 x.

28 One of its vertices (0,− 7
2 ) and the asymptotes y =± 1

2 x.

29 Center at (3,5), one of its vertices (3,11) and one of foci (3,5+2
√

10).

30 Center at (4,2), one of its vertices (9,2) and one of foci (4+
√

26,2).

31 Foci (4,−2) and (10,−2), and one of its vertices (8,−2).

32 - 75 Determine the elements of the conic section and sketch its graph.

32 (x−1)2 = 8(y+1)

33 y =−(x−2)2−2

34 y =− 3
4 (x+2)2 +3

35 y = 1
2 (x+2)2−5

36 y =−4(x−1)2 +1

37 y = 4x2 +24x+25

38 y = 4(x−5)2−7

39 y =−5(x+4)2 +9

40 y = x2−8x+7

41 4x2 +10y2 = 100

42 x2 +9y2 = 36

43 x2

100 +
y2

49 = 1

44 x2

5 + y2

7 = 1

45 x2

49 +
y2

36 = 1

46 (x+3)2

16 +
(y−2)2

9 = 1

47 x2

36 +
y2

81 = 1

48 x2

15 +
y2

30 = 1

49 x2

55 +
y2

27 = 1

50 x2

64 +
y2

10 = 1

51 25(x−3)2 +10(y+2)2 = 100

52 x2

9 +
(y−2)2

25 = 1

53 49x2 +4y2 = 196

54 y =−2x2−28x−89

55 y = x2 +6x+5

56 y = 2(x−4)2−3

57 y =−2x2−16x−35

58 x−5 = (y−3)2

59 x =−2y2−4y−5

60 x2 +5y2 +6x−40y+84 = 0

61 x2 +2y+2x = 2

62 x2

25 −
y2

9 = 1

63 x2

16 −
y2

9 = 1

64 y2

49 −
x2

25 = 1

65 x2

4 −
y2

49 = 1

66 x2

25 −
y2

81 = 1

67 y2

64 −
x2

25 = 1

68 x2

36 −
y2

20 = 1

69 (x+3)2

16 − (y−2)2

9 = 1

70 (x−2)2

25 − y2

16 = 1

71 (y−5)2

64 − (x−6)2

25 = 1

72 (x+4)2

81 − (y−5)2

55 = 1

73 −4x2 +10y2 = 100

74 10y2 +49x2 = 490

75 y2−5x2 +6y−40x−76 = 0
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Chapter 2

MATRICES AND DETERMINANTS

2.1 Matrices

2.1.1 Definitions and Notations

Definition 2.1 A matrix A of order m×n is a set of numbers or expressions arranged in a rectangular array of m rows and n
columns.

A matrix is a rectangular table of form

A =



a11 a12 a13 · · · a1,n−1 a1n
a21 a22 a23 · · · a2,n−1 a2n
a31 a32 a33 · · · a3,n−1 a3n

...
...

...
...

...
...

am−1,1 am−1,2 am−1,3 · · · am−1,n−1 am−1,n
am1 am2 am3 · · · am,n−1 amn


.

Notes :

(1) The horizontal arrays of a matrix are called its rows and the vertical arrays are called its columns.

(2) ai j represents the element of the matrix A that lies in row i and column j.

(3) The matrix A can also be written as A = [ai j]m×n.

� Example 2.1 Find the order of each matrix, then find the given elements.

(1) A =
[

2 −4
1 0

]
, a11 and a22

(2) B =
[

1 3 5
2 1 0

]
, a12, a21 and a23

Solution:

1. The matrix A is of order 2×2. The elements a11 = 2 and a22 = 0.

2. The matrix B is of order 2×3. The elements a12 = 3, a21 = 2 and a23 = 0.
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Definition 2.2 Two matrices A = [ai j] and B = [bi j] having the same order m×n are equal if ai j = bi j for each i = 1,2, ...,m
and j = 1,2, ...,n.

� Example 2.2 Find the value of x if the matrices A = B.

A =
[

1 2
−1 4x−1

]
, B =

[
1 2
−1 11

]
Solution:

Since the matrices A = B, then from Definition 2.2, we have 4x−1 = 11. This implies x = 3.

2.1.2 Special Types of Matrices

1. Row vector. A row vector of order n is a matrix of order 1×n written as A = [a1 a2 ... an]. For example, A = [2 7 0 −1 9] is
a row vector of order 5.

2. Column vector. A column vector of order n is a matrix of order n×1 written as A =


a1
a2
...

an

. For example, A =

1
7
3

 is a column

vector of order 3.

3. Null matrix. The matrix A = [ai j]m×n is called a null matrix if ai j = 0 for all i and j i.e.

A =


0 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


For example,

[
0 0 0
0 0 0

]
is a null matrix of order 2×3.

4. Square matrix. If the number of rows equals the number of columns (m = n), then the matrix is called a square matrix of order
n. In a square matrix A = [ai j], the set of elements of the form aii is called the diagonal of the matrix. For example, the diagonal

of the following square matrix is highlighted in red

 2 −7 3
1 0 9
−1 6 8

.

5. Upper triangular matrix. The square matrix A = [ai j] of order n is called an upper triangular matrix if ai j = 0 for all i > j:

A =


a11 a12 a13 · · · a1n
0 a22 a23 · · · a2n
0 0 a33 · · · a3n
...

...
. . .

...
0 0 0 · · · ann



For example,

2 3 1
0 −1 4
0 0 5

 is an upper triangular matrix of order 3.

6. Lower triangular matrix. The square matrix A = [ai j] of order n is called a lower triangular matrix if ai j = 0 for all i < j:

A =


a11 0 0 · · · 0
a21 a22 0 · · · 0
a31 a32 a33 · · · 0

...
...

. . .
...

an1 an2 an3 · · · ann

 .
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For example,

4 0 0
1 −1 0
2 3 5

 is a lower triangular matrix of order 3.

7. Diagonal matrix. The square matrix A = [ai j] of order n is called a diagonal matrix if ai j = 0 for all i j:

A =


a11 0 0 · · · 0
0 a22 0 · · · 0
0 0 a33 · · · 0
...

...
. . .

...
0 0 0 · · · ann


This can be written as diag(a11,a22, ...,ann).

For example,

2 0 0
0 1 0
0 0 5

 is a diagonal matrix of order 3. Note that a square matrix that is both upper and lower triangular is

called a diagonal matrix.

8. Identity matrix. The square matrix In = [ai j] of order n is called an identity matrix if ai j =

{
1 : i = j
0 : i 6= j

.

An identity matrix of order n can be represents by

In =


1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . .

...
0 0 0 · · · 1



For example,

1 0 0
0 1 0
0 0 1

 is an identity matrix of order 3.

2.1.3 Operations on Matrices

(1) Addition and subtraction of matrices :

Definition 2.3 Let A = [ai j] and B = [bi j] be two matrices of order m×n. Then,
1. A+B =C with ci j = ai j +bi j .

2. A−B =C with ci j = ai j−bi j .

From Definition 2.3, if A = [ai j] and B = [bi j] are two matrices of order m×n, then

A+B =


a11 +b11 a12 +b12 · · · a1n +b1n
a21 +b21 a22 +b22 · · · a2n +b2n

...
...

. . .
...

am1 +bm1 am2 +bm2 · · · amn +bmn

 .

Also,

A−B =


a11−b11 a12−b12 · · · a1n−b1n
a21−b21 a22−b22 · · · a2n−b2n

...
...

. . .
...

am1−bm1 am2−bm2 · · · amn−bmn

 .
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� Example 2.3 If A =

1 3 2
5 −4 6
0 9 2

 and B =

 5 0 8
1 4 −1

10 11 −2

, find A+B and A−B.

Solution:

A+B =

 1+5 3+0 2+8
5+1 −4+4 6+(−1)

0+10 9+11 2+(−2)

 =

 6 3 10
6 0 5
10 20 0

.

A-B =

 1−5 3−0 2−8
5−1 −4−4 6− (−1)

0−10 9−11 2− (−2)

 =

 −4 3 −6
4 −8 7
−10 −2 4

.

(2) Multiplying a matrix by a scalar:

Definition 2.4 Let A = [ai j] be a matrix of order m×n. Then, for any k ∈ R, kA is a matrix C = [ci j] with ci j = kai j.

From Definition 2.4, if A = [ai j] is a matrix of order m×n and k ∈ R then k A = [k ai j].

kA =


ka11 ka12 · · · ka1n
ka21 ka22 · · · ka2n

...
...

. . .
...

kam1 kam2 · · · kamn

 .

� Example 2.4 If A =
[

1 3 2
0 9 2

]
, find 3A.

Solution:

3A =

[
3×1 3×3 3×2
3×0 3×9 3×2

]
=

[
3 9 6
0 27 6

]

� Example 2.5 If A =
[

1 6
−2 4

]
and B =

[
2 3
0 8

]
, find −2A+3B.

Solution:

−2A+3B =−2
[

1 6
−2 4

]
+3
[

2 3
0 8

]
=

[
−2 −12
4 −8

]
+

[
6 9
0 24

]
=

[
4 −3
4 16

]
.

Theorem 2.5 Let A,B and C be matrices of order m×n, and let k, ` ∈ R. Then
1. The addition of matrices is commutative: A+B = B+A.

2. The addition of matrices is associative: (A+B)+C = A+(B+C).

3. The null matrix is the identity matrix of addition: A+0 = A.

4. (k+ `)A = kA+ `A.

5. k(`A) = (k`)A.
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Definition 2.6 Let A = [ai j] be a matrix of order m×n. There exists a matrix B such that A+B = 0. This matrix B is called
the additive inverse of A and it is denoted by −A = (−1)A.

(3) Multiplication of matrices:

Definition 2.7 Let A = [ai j] be a matrix of order m×n and B = [bi j] be a matrix of order n× p. The multiplication AB is a
matrix C = [ci j] of order m× p, where

ci j =
n

∑
k=1

aikbk j = ai1b1 j +ai2b2 j + ...+ainbn j .

Note: the multiplication AB is defined if and only if the number of columns of A equals the number of rows of B; otherwise, we say the
multiplication is undefined.

� Example 2.6 If A =
[

1 6
−2 4

]
and B =

[
2 3
0 8

]
, find AB.

Solution:

AB =

[
1 6
−2 4

][
2 3
0 8

]
=

[
1×2+6×10 1×3+6×8
−2×2+4×0 −2×3+4×8

]
=

[
2 51
−4 26

]
.

� Example 2.7 If A =
[

1 6 2
−2 4 1

]
and B =

 2 3 0
−1 4 2
0 1 7

, find AB.

Solution:

AB =

[
1 6 2
−2 4 1

] 2 3 0
−1 4 2
0 1 7

=

[
−4 29 26
−8 11 15

]
.

A special case of multiplication of matrices is multiplying a row vector by a column vector. Let A = [a1 a2 ... an] be a row vector of

order n and B =


b1
b2
...

bn

 be a column vector of order n. Then the multiplication AB is a matrix C = [c] of order 1, where

c =
n

∑
k=1

akbk = a1b1 +a2b2 + ...+anbn .

� Example 2.8 If A =
[
2 1 4

]
and B =

 8
−3
5

, find AB

Solution:
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AB = [2×8+1× (−3)+4×5] = [33].

� Example 2.9 If A =
[
2 1 4 −6

]
and B =


1
3
−4
7

, find AB

Solution:

AB = [2×1+1×3+4× (−4)+(−6)×7] = [−53].

� Example 2.10 If A =
[
1 3 5

]
, B =

 2
−1
0

 and C =

 2 3
−1 4
0 1

 , Compute (if possible) 1. AB 2. BC.

Solution:

(1) AB = A =
[
1 3 5

] 2
−1
0

= [−1].

(2) The multiplication BC is not possible since the matrix B of order 3×1 and the matrix C of order 3×2.

Theorem 2.8 Let A be a matrix of order m×n, B be a matrix of order n× p and C be a matrix of order p×q. Then,
1. The multiplication of matrices is not commutative: AB 6= BA.

2. The multiplication of matrices is associative: (AB)C = A(BC).

3. The matrix In is the identity matrix of multiplication: AIn = A.

4. For any k ∈ R, (kA)B = k(AB) = A(kB).

Theorem 2.9 Let A and B be any two matrices of order m×n. The multiplication of matrices is distributive:
1. (A+B)C = AC+BC, where C is a matrix of order n× p.

2. C(A+B) =CA+CB, where C is a matrix of order p×m.

� Example 2.11 If A =
[

4 3 9
−1 2 0

]
and B =

[
2 3
0 1

]
Compute (if possible) 1. AB 2. BA.

Solution:

(1) The multiplication BC is not possible since the matrix B of order 3×1 and the matrix C of order 3×2.

(2) BA =

[
2 3
0 1

][
4 3 9
−1 2 0

]
=

[
5 12 13
−1 2 0

]
.

� Example 2.12 If A =
[

3 4
−1 2

]
and B =

[
7 5
1 0

]
, compute (if possible) 1. AB 2. BA.

Solution:
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(1) AB =

[
3 4
−1 2

][
7 5
1 0

]
=

[
25 15
−5 −5

]
.

(2) BA =

[
7 5
1 0

][
3 4
−1 2

]
=

[
16 38
3 4

]
.

From this example, we find AB 6= BA and this means the multiplication of matrices is not commutative.

� Example 2.13 If A =
[

4 3
−1 2

]
, find AI2

Solution: AIn =

[
4 3
−1 2

][
1 0
0 1

]
=

[
4 3
−1 2

]
.

Definition 2.10 Let A = [ai j] be a matrix of order m×n. Then, the transpose of A is At = [a ji]n×m.

Theorem 2.11 Let A and B be any two matrices of order m×n and k ∈ R.
1. (At)t = A.

2. (A+B)t = At +Bt .

3. (kA)t = kAt .

4. (AB)t = BtAt .

Remark 2.12
1. The transpose of a row vector is a column vector and vice-versa.

2. The transpose of a lower triangular matrix is an upper triangular matrix and vice-versa.

� Example 2.14 If A =
[

3 −1 0
2 5 1

]
, B =

[
2 1 −2
−1 0 1

]
and C =

 5 3
1 4
−1 2

 , Compute

(1) (At)t

(2) (A+B)t

(3) (3A)t

(4) (AC)t

Solution:

(1) (At) =

 3 2
−1 5
0 1

, so (At)t =

[
3 −1 0
2 5 1

]
.

(2) (A+B) =
[

3 −1 0
2 5 1

]
+

[
2 1 −2
−1 0 1

]
=

[
5 0 −2
1 5 2

]
. From this, (A+B)t =

 5 1
0 5
−2 2

.

(3) (3A)t = 3At = 3

 3 2
−1 5
0 1

=

 9 6
−3 15
0 3

.



Matrices 33

(4) (AC)t =CtAt =

[
5 1 −1
3 4 2

] 3 2
−1 5
0 1

=

[
14 3
5 50

]
.

2.2 Determinants of Matrices

Let A be a square matrix. Then, the determinant of A is denoted by det(A) or |A|.

Definition 2.13 Let A = [ai j] be a square matrix of order n. Then, the determinant of A can be defined as follows:

det(A) =
{

a : A = [a]
∑

n
j=1(−1)i+ jai jAi j(i = 1, ...,n) : otherwise,

where Ai j is det(A) after removing the row i and clomun j.

2.2.1 The determinant of an 2×2 Matrix

Let A be a square matrix of order 2 as follows:

A =
[

a11 a12
a21 a22

]
. Then det(A) =

∣∣∣∣a11 a12
a21 a22

∣∣∣∣= a11a22−a21a12.

� Example 2.15 Find the determinant of the matrix.

(1) A =
[

1 5
3 7

]
(2) B =

[
4 −1
2 9

]
Solution:

1. det(A) =
∣∣∣∣1 5
3 7

∣∣∣∣= 1×7−3×5 = 7−15 =−8.

2. det(B) =
∣∣∣∣4 −1
2 9

∣∣∣∣= 4×9− (−1)×2 = 36+2 = 38.

2.2.2 The determinant of an n×n Matrix

Before starting evaluating the determinant of an n×n matrix, we first need to define the minor and cofactor of that matrix. The minor
Mi j is the determinant of the matrix obtained by eliminating the ith row and the jth column of A.

� Example 2.16 If A =

 1 3 1
−2 −1 2
2 4 5

, find the minors M11, M12 and M13.

Solution:

M11 =

∣∣∣∣−1 2
4 5

∣∣∣∣=−1×5−2×4 =−13.

M12 =

∣∣∣∣−2 2
2 5

∣∣∣∣=−2×5−2×2 =−14.

M13 =

∣∣∣∣−2 −1
2 4

∣∣∣∣=−2×4− (−1)×2 =−6.
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The cofactor Ci j of the matrix A is defined as follows:

Ci j = (−1)i+ jMi j .

Note that the cofactor Ci j depends on the minor Mi j .

� Example 2.17 In the previous example, calculate the corresponding cofactors of the minors M11, M12 and M13.

Solution:

C11 = (−1)(1+1)M11 = (1)(−13) =−13.

C12 = (−1)(1+2)M12 = (−1)(−14) = 14.

C13 = (−1)(1+3)M13 = (1)(−6) =−6.

(1) The determinant of an 3×3 Matrix

The determinant of a matrix A is obtained as follows:

• Choose a row or a column of A (we usually choose a row).

• Multiply each of the elements ai j of the row (or column) by its corresponding cofactor Ci j.

Let A be a square matrix of order 3 as follows:

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 .

To calculate the determinant, choose the first row of A and multiply each of its elements by the corresponding cofactor:

det(A) = a11C11 +a12C12 +a13C13

= a11(−1)(1+1)M11 +a12(−1)(1+2)M12 +a13(−1)(1+3)M13

= a11

∣∣∣∣a22 a23
a32 a33

∣∣∣∣−a12

∣∣∣∣a21 a23
a31 a33

∣∣∣∣+a13

∣∣∣∣a21 a22
a31 a32

∣∣∣∣
= a11(a22a33−a23a32)−a12(a21a33−a23a31)+a13(a21a32−a22a31) .

� Example 2.18 Find the determinant of the matrix.

(1) A =

 1 6 3
5 −1 4
−2 9 7

 (2) B =

4 1 5
2 1 −2
1 8 7


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Solution:

(1) det(A) =

∣∣∣∣∣∣
1 6 3
5 −1 4
−2 9 7

∣∣∣∣∣∣= 1C11 +6C12 +3C13

= 1(−1)(1+1)M11 +6(−1)(1+2)M12 +3(−1)(1+3)M13

= 1
∣∣∣∣−1 4

9 7

∣∣∣∣−6
∣∣∣∣ 5 4
−2 7

∣∣∣∣+3
∣∣∣∣ 5 −1
−2 9

∣∣∣∣
= 1(−7−36)−6(35+8)+3(45−2) =−42−258+129 =−171 .

(2) det(B) =

∣∣∣∣∣∣
4 1 5
2 1 −2
1 8 7

∣∣∣∣∣∣= 4C11 +1C12 +5C13

= 4(−1)(1+1)M11 +1(−1)(1+2)M12 +5(−1)(1+3)M13

= 4
∣∣∣∣1 −2
8 7

∣∣∣∣−1
∣∣∣∣2 −2
1 7

∣∣∣∣+5
∣∣∣∣2 1
1 8

∣∣∣∣
= 4(7+16)−1(14+2)+5(16−1) = 92−16+75 = 151 .

(2) The determinant of an 4×4 Matrix

Let A be a square matrix of order 4 as follows:

A =


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 .

Then

det(A) = a11C11 +a12C12 +a13C13 +a14C14

= a11(−1)(1+1)M11 +a12(−1)(1+2)M12 +a13(−1)(1+3)M13 +a14(−1)(1+4)M14

where

M11 =

a22 a23 a24
a32 a33 a34
a42 a43 a44

 ,M12 =

a21 a23 a24
a31 a33 a34
a41 a43 a44

 ,

M13 =

a21 a22 a24
a31 a32 a34
a41 a42 a44

 ,M14 =

a21 a22 a23
a31 a32 a33
a41 a42 a43

 .

� Example 2.19 Find the determinant of the matrix.

(1) A =


1 6 3 2
5 −1 4 1
−2 9 7 3
7 1 3 −6

 (2) B =


4 1 5 2
2 1 0 1
0 1 3 9
1 7 4 6


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Solution:

(1) det(A1) =

∣∣∣∣∣∣
−1 4 1
9 7 3
1 3 −6

∣∣∣∣∣∣=−1
∣∣∣∣7 3
3 −6

∣∣∣∣−4
∣∣∣∣9 3
1 −6

∣∣∣∣+1
∣∣∣∣9 7
1 3

∣∣∣∣
=−1(−42−9)−4(−54−3)+1(27−7) = 51+228+20 = 299 .

det(A2) =

∣∣∣∣∣∣
5 4 1
−2 7 3
7 3 −6

∣∣∣∣∣∣= 5
∣∣∣∣7 3
3 −6

∣∣∣∣−4
∣∣∣∣−2 3

7 −6

∣∣∣∣+1
∣∣∣∣−2 7

7 3

∣∣∣∣
= 5(−42−9)−4(12−21)+1(−6−49) =−255+36−55 =−274 .

det(A3) =

∣∣∣∣∣∣
5 −1 1
−2 9 3
7 1 −6

∣∣∣∣∣∣= 5
∣∣∣∣9 3
1 −6

∣∣∣∣+1
∣∣∣∣−2 3

7 −6

∣∣∣∣+1
∣∣∣∣−2 9

7 1

∣∣∣∣
= 5(−54−3)+1(12−21)+1(−2−63) =−285−9−65 =−359 .

det(A4) =

∣∣∣∣∣∣
5 −1 4
−2 9 7
7 1 3

∣∣∣∣∣∣= 5
∣∣∣∣9 7
1 3

∣∣∣∣+1
∣∣∣∣−2 7

7 3

∣∣∣∣+4
∣∣∣∣−2 9

7 1

∣∣∣∣
= 5(27−7)+1(−6−49)+4(−2−63) = 100−55−260 =−215 .

Thus,

det(A) = 1 det(A1)−6 det(A2)+3 det(A3)−2 det(A4) = 1(299)−6(−274)+3(−359)−2(−215) = 1296 .

(2) det(B1) =

∣∣∣∣∣∣
1 0 1
1 3 9
7 4 6

∣∣∣∣∣∣= 1
∣∣∣∣3 9
4 6

∣∣∣∣−0
∣∣∣∣1 9
7 6

∣∣∣∣+1
∣∣∣∣1 3
7 4

∣∣∣∣
= 1(18−36)−0+1(4−21) =−18−17 =−35 .

det(B2) =

∣∣∣∣∣∣
2 0 1
0 3 9
1 4 6

∣∣∣∣∣∣= 2
∣∣∣∣3 9
4 6

∣∣∣∣−0
∣∣∣∣0 9
1 6

∣∣∣∣+1
∣∣∣∣0 3
1 4

∣∣∣∣
= 2(18−36)−0+1(0−3) =−36−3 =−39 .

det(B3) =

∣∣∣∣∣∣
2 1 1
0 1 9
1 7 6

∣∣∣∣∣∣= 2
∣∣∣∣1 9
7 6

∣∣∣∣−1
∣∣∣∣0 9
1 6

∣∣∣∣+1
∣∣∣∣0 1
1 7

∣∣∣∣
= 2(6−63)−1(0−9)+1(0−1) =−114+9−1 =−106 .

det(B4) =

∣∣∣∣∣∣
2 1 0
0 1 3
1 7 4

∣∣∣∣∣∣= 2
∣∣∣∣1 3
7 4

∣∣∣∣−1
∣∣∣∣0 3
1 4

∣∣∣∣+0
∣∣∣∣0 1
1 7

∣∣∣∣
= 2(4−21)−1(0−3)+0 =−35+3 =−32 .

Thus,

det(B) = 4 det(B1)−1 det(B2)+5 det(B3)−2 det(B4) = 4(−35)−1(−39)+5(−106)−2(−32) =−773 .
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Theorem 2.14
1. If A is a square matrix having a zero row (or a zero column), then det(A) = 0.

2. If A is a square matrix having two equal rows (or two equal columns), then det(A) = 0.

3. If A is a square matrix having a row which is a multiple of another row (or a column which is a multiple of another
column), then det(A) = 0.

4. If A is a diagonal matrix or an upper triangular matrix or a lower triangular matrix, then det(A) is the product of the
elements of the main diagonal.

5. The determinant of the null matrix is 0 and the determinant of the identity matrix is 1.

6. If B is obtained from A by multiplying a row (or column) by λ, then det(B) = λ det(A).

7. If B is obtained from A by interchanging two rows (or two columns), then det(B) =−det(A).

8. If B is obtained from A by multiplying a row by a non-zero constant and adding the result to another row (or multiplying
a column by a non-zero constant and adding the result to another column), then det(B) = det(A).

� Example 2.20 Find the determinant the matrix.

(1) A =

1 2 −2
0 0 0
3 4 7


(2) B =

1 2 1
6 5 6
3 4 3


(3) C =

1 2 −2
4 7 5
3 6 −6


(4) D =

3 1 4
0 −1 2
0 0 5



Solution:

(1) The matrix A contains a zero row, so from (item 1) in Theorem 2.14, we have det(A) = 0.

(2) The matrix A contains two equal columns, so from (item 2) in Theorem 2.14, we have det(A) = 0.

(3) The third row in matrix A is a multiple of the first row by 2, so from (item 3) in Theorem 2.14, we have det(A) = 0.

(4) The matrix A is an upper triangular matrix, so from (item 4) in Theorem 2.14, we have det(A) =−15.

� Example 2.21 Find the determinant the matrix.

(1) A =

1 3 1
4 2 −1
0 −3 2


(2) B =

2 6 2
4 2 −1
0 −3 2


(3) C =

4 2 −1
1 3 1
0 −3 2


(4) D =

1 3 1
6 8 2
0 −3 2



Solution:

(1) det(A) = 1(4−3)−3(8−0)+1(−12−0) =−35.

(2) The matrix B is obtained from A (in item 1) by multiplying the first row by 2, then det(B) = 2det(A) =−70.

(3) The matrix C is obtained from A by interchanging the first and second rows, then det(C) =−det(A) = 35.

(4) The matrix C is obtained from A by multiplying the first row by 2 and adding the result to the second row. Therefore, det(D) =
det(A) =−35.
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Theorem 2.15
1. Let A and B be square matrices of order n. Then det(AB) = det(A)det(B).

2. Let A be a square matrix. Then det(A) = det(At).

� Example 2.22 If A =

[
1 3
4 2

]
and B =

[
−2 0
3 1

]
, find (1) det(AB) (2) det(At).

Solution:

First, we compute det(A) and det(B).

det(A) =
∣∣∣∣1 3
4 2

∣∣∣∣=−10 and det(B) =
∣∣∣∣−2 0

3 1

∣∣∣∣=−2.

(1) From Theorem 2.15, det(AB) = det(A)det(B) =−10× (−2) = 20.

(2) From Theorem 2.15, det(At) = det(A) =−10.

Exercises

1 - 10 If A =

1 3 2
5 −4 6
0 9 2

 , B =

 5 0
1 4
10 11

 and C =

−2 0
0 7
5 3

, compute the following (if possible):

1 B+C

2 2B+3C

3 C−B

4 A−C

5 AB

6 BA

7 At

8 (3A)t

9 det(A)

10 det(2A)

11 - 20 If A =

4 −1
1 5
2 7

 , B =

−2 1
3 6
1 4

 and C =
[

1 2 1
9 5 3

]
, compute the following (if possible):

11 A+B

12 5A

13 −3A+2B

14 A−C

15 AC

16 BC

17 AB

18 Bt

19 (2A)t

20 (At)t

21 - 24 If det(B) = 2 and det(A) =−3, find the following:
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21 7det(A)

22 det(AB)

23 det(At)

24 det((AB)t)

25 - 32 Find the determinant.

25
∣∣∣∣1 −2
2 7

∣∣∣∣
26

∣∣∣∣∣∣
3 1 3
7 2 9
1 7 4

∣∣∣∣∣∣
27

∣∣∣∣∣∣
4 −2 3
3 7 2
6 9 5

∣∣∣∣∣∣

28

∣∣∣∣∣∣∣∣
4 −2 3 1
3 7 2 2
6 9 5 −1
1 0 5 1

∣∣∣∣∣∣∣∣

29
∣∣∣∣2 3
1 4

∣∣∣∣
30

∣∣∣∣∣∣
2 −2 2
−3 10 1
5 1 1

∣∣∣∣∣∣
31

∣∣∣∣∣∣
1 −2 3
4 0 1
2 7 0

∣∣∣∣∣∣

32

∣∣∣∣∣∣∣∣
1 5 3 6
1 0 1 2
2 7 0 1
2 1 0 1

∣∣∣∣∣∣∣∣
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Chapter 3

SYSTEMS OF LINEAR EQUATIONS

3.1 Linear Systems

Definition 3.1 A linear system of m equations in n unknowns x1,x2, ...,xn is a set of equations of the form

a11x1 +a12x2 +a13x3 + ...+a1nxn = b1

a21x1 +a22x2 +a23x3 + ...+a2nxn = b2

a31x1 +a32x2 +a33x3 + ...+a3nxn = b3

· · · + · · · + · · · + · · · + · · ·= · · ·
am1x1 +am2x2 +am3x3 + ...++amnxn = bm

(3.1)

where ai j,b j ∈ R for 1≤ i≤ n and 1≤ j ≤ m.

The above system of linear equations can be written as AX = B where

A =


a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · ann

 , X =


x1
x2
...

xn

 , and B =


b1
b2
...

bn

 .

A is called the coefficients matrix

X is called the column vector of the variables (or column vector of the unknowns)

B is called the column vector of constants (or column vector of the resultants)

A special case of the linear system of equations is a system of two different variables x1 and x2:

a11x1 +a12x2 = b1

a21x1 +a22x2 = b2

The above system of linear equations can be written as AX = B where A =
[

a11 a12
a21 a22

]
, X =

[
x1
x2

]
, and B =

[
b1
b2

]
.



Solution of Linear Equations Systems 41

3.2 Solution of Linear Equations Systems

A solution of the linear system Ax = B is a column vector Y with entries y1,y2, ...,yn such that the linear system (3.1) is satisfied if we
replace yi with xi i.e., AY = B holds where Y t = [y1,y2, ...,yn]. Note that for the linear system of equations AX = 0, the column vector
X t = [0,0, ...,0] is always solution and it is called the trivial solution.

In this chapter, we present three methods to solve the system of linear equations (3.1): Cramer’s method, Gauss elimination method,
and Gauss-Jordan method.

3.2.1 Cramer’s Method

Theorem 3.2 Let AX = B be a linear system with n equations in n variables. The system has a solution if det(A) 6= 0.

Theorem 3.3 Let AX = B be a linear system with n equations in n variables. If det(A) 6= 0, then the unique solution to this
system is

xi =
det(Ai)

det(A)
for everyi = 1,2, ...,n ,

where Ai is the matrix formed by replacing the ith column of A by the column vector of constants B.

The matrix A1 is formed by replacing the first column of A by the column vector of constants B:

A1 =


b1 a12 · · · a1n
b2 a22 · · · a2n
...

...
. . .

...
bn an2 · · · ann

 .

The matrix A2 is formed by replacing the second column of A by the column vector of constants B:

A2 =


a11 b1 · · · a1n
a21 b2 · · · a2n

...
...

. . .
...

an1 bn · · · ann

 .

By continuing doing so, the matrix An is formed by replacing the last column of A by the column vector of constants B:

An =


a11 a12 · · · b1
a21 a22 · · · b2

...
...

. . .
...

an1 an2 · · · bn

 .

� Example 3.1 Solve the linear system by Cramer’s rule.

(1) 2x+3y = 7
− x+ y = 4

(2) 2x+ y+ z = 3
4x+ y− z =−2
2x−2y+ z = 6

(3) x1 +2x2 = 1
2x1 + x2 =−1

(4) x+ y+ z = 12
x− y = 2
x− z = 4
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Solution:

(1) A =

[
2 3
−1 1

]
⇒ det(A) = 5.

A1 =

[
7 3
4 1

]
⇒ det(A1) =−5.

A2 =

[
2 7
−1 4

]
⇒ det(A2) = 15.

Hence,

x1 =
det(A1)

det(A)
=
−5
5

=−1 and x2 =
det(A2)

det(A)
=

15
5

= 3

The column vector of variables is X =

[
−1
3

]
.

(2) A =

2 1 1
4 1 −1
2 −2 1

⇒ det(A) =−18.

A1 =

 3 1 1
−2 1 −1
6 −2 1

⇒ det(A1) =−9.

A2 =

2 3 1
4 −2 −1
2 6 1

⇒ det(A2) = 18.

A3 =

2 1 3
4 1 −2
2 −2 6

⇒ det(A3) =−54.

Hence,

x =
det(A1)

det(A)
=
−9
−18

=
1
2
, y =

det(A2)

det(A)
=

18
−18

=−1 and z =
det(A3)

det(A)
=
−54
−18

= 3 .

The column vector of variables is X =

 1
2
−1
3

.

(3) A =

[
1 2
2 1

]
⇒ det(A) =−3.

A1 =

[
1 2
−1 1

]
⇒ det(A1) = 3.

A2 =

[
1 1
2 −1

]
⇒ det(A2) =−3.

From this,

x1 =
det(A1)

det(A)
=

3
−3

=−1 and x2 =
det(A2)

det(A)
=
−3
−3

= 1 .

The column vector of variables is X =

[
−1
1

]
.

(4) A =

1 1 1
1 −1 0
1 0 −1

⇒ det(A) = 3.

A1 =

12 1 1
2 −1 0
4 0 −1

⇒ det(A1) = 18.

A2 =

1 12 1
1 2 0
1 4 −1

⇒ det(A2) = 12.

A3 =

1 1 12
1 −1 2
1 0 4

⇒ det(A3) = 6.

Therefore,

x =
det(A1)

det(A)
=

18
3

= 6, y =
det(A2)

det(A)
=

12
3

= 4 and z =
det(A3)

det(A)
=

6
3
= 2 .
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The column vector of variables is X =

6
4
2

.

3.3 Gauss Elimination Method

Definition 3.4 The following operations are called elementary operations:
1. Interchange of two equations.

2. Multiply a non-zero constant throughout an equation.

3. Replace an equation by itself plus a constant multiple of another equation.

Definition 3.5 Two linear systems are said to be equivalent if one can be obtained from the other by a finite number of
elementary operations.

The elementary operations help us in getting a linear system from the system (3.1), which is easily solvable.

Theorem 3.6 Let CX = D be the linear system obtained from the linear system AX = B by a finite number of elementary
operations. Then, the linear systems AX = B and CX = D have the same set of solutions.

Elementary Row Operations

Rewriting the system of linear equations in matrix form simplifies the solution process. The operations on the corresponding matrix are
exactly the same operations on the original system of equations as follows:

1. In the linear system, we can multiply the corresponding equation by a real number λ 6= 0. In a matrix, we can multiply the elements
of one row by that number.

2. In the linear system, we can replace one of the original equations with another after multiplying by a number. In a matrix, we can
substitute any row with another row after adding one multiplied by that number.

3. In the linear system, we can interchange any two equations. In the matrix, we can interchange the two corresponding rows.

The previous operations can be summarized in the following table:

Elementary Operations

Elementary Operations on Linear Systems Elementary Row Operations

Multiply ith equation by λ Multiply ith row (Ri) by λ:
λRi−−→

Multiply ist equation by λ and add the result Multiply ith row (Ri) by λ and add the result

to jth equation to jth row (R j):
λRi +R j−−−−−→

Replace ith equation by jth equation Replace ith row (Ri) by jth row (R j):

Ri↔ R j

Table 3.1

For example, for a linear system with two equations

x+ y = 11→ 1

2x+ y = 25→ 2
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Multiply the 1st row by −2 and add the result to 2nd row

−2x−2y =−22

2x+ y = 25

This can be represented by the following elementary row operation:

[A|B] =
[

1 1 11
2 1 25

]
−2R1 +R2−−−−−−→

[
−2 −2 −22
2 1 25

]

Definition 3.7 Two matrices are said to be row-equivalent if one can be obtained from the other by a finite number of
elementary row operations.

� Example 3.2 The three matrices given below are row equivalent. 2 −3 1
−1 5 2
1 −2 −7

 R1 ↔R2−−−−−→

 −1 5 2
2 −3 1
1 −2 −7

 2R1−−→

 −2 10 4
2 −3 1
1 −2 −7

 .

Definition 3.8 Gaussian elimination is a method of solving a linear system AX = B by constructing the augmented matrix
[A|B] and transforming the matrix A to an upper triangular matrix [C|D].

The Method:

1. Construct the augmented matrix [A|B]: 
a11 a12 · · · a1n b1
a21 a22 · · · a2n b2

...
...

. . .
...

...
an1 an2 · · · ann bn

 .

2. Use the elementary row operations on the augmented matrix to transform the matrix A to an upper triangular matrix with a leading
coefficient of each row equals 1: 

1 c12 c13 c14 · · · c1n d1
0 1 c33 c24 · · · c2n d2
...

...
. . .

...
...

...
...

0 0 0 · · · 1 c(n−1)n dn−1
0 0 0 · · · 1 1 dn

 .

3. From the last augmented matrix, we have xn = dn and the rest of the unknowns can be calculated by backward substitution.

� Example 3.3 Solve the linear system by Gauss elimination method.

(1) 3x1 + x2 = 9
x1 +2x2 = 8

(2) x−2y+ z = 4
− x+2y+ z =−2
4x−3y− z =−4

(3) x+ y+ z = 2
x− y+2z = 0
2x+ z = 2

(4) x+2y+3z = 14
2x+ y+2z = 10
3x+4y−3z = 2
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Solution: For each system, construct the augmented matrix [A|B]. Then, use elementary row operations on the augmented matrix to
transform the matrix A to an upper triangular matrix with leading coefficient of each row equals 1.

(1) [A|B] =
[

3 1 9
1 2 8

]
R1 ↔R2−−−−−→

[
1 2 8
3 1 9

]
-3 R1 +R2−−−−−−→

[
1 2 8
0 −5 −13

]
− 1

5 R1−−−→
[

1 2 8
0 1 13

5

]
.

Thus, x2 =
13
5 and x1 +2x2 = 8. By substituting the value of x2, we obtain x1 =

14
5 . Therefore, the column vector of variables is

X =

[ 14
5

13
5

]
.

(2) [A|B] =

 1 −2 1 4
−1 2 1 −2
4 −3 −1 −4

 1R1 +R2−−−−−−→
−4R1 +R3

 1 −2 1 4
0 0 2 2
0 5 −5 −20

 R2↔ R3−−−−−→

 1 −2 1 4
0 5 −5 −20
0 0 2 2

 1
5 R2−−→
1
2 R3 1 −2 1 4

0 1 −1 −4
0 0 1 1

 .

Hence, z = 1, y− z =−4 and x−2y+ z = 4. By doing some substitution, we obtain y =−3 and x =−3. The column vector of variables

is X =

−3
−3
1

 .

(3) [A|B] =

 1 1 1 2
1 −1 2 0
2 0 1 2

 −1R1 +R2−−−−−−→
−2R1 +R3

 1 1 1 2
0 −2 1 −2
0 −2 −1 −2

 −1R2 +R3−−−−−−→

 1 1 1 2
0 −2 1 −2
0 0 −2 0


− 1

2 R2−−−→
− 1

2 R3

 1 1 1 2
0 1 − 1

2 1
0 0 1 0

 .

Thus, z = 0, y− 1
2 z = 1 and x+ y+ z = 2. By substituting the value of z and then y, we have y = 1 and x = 1. The column vector of

variables is X =

1
1
0

 .

(4) [A|B] =

 1 2 3 14
2 1 2 10
3 4 −3 2

 −2R1 +R2−−−−−−→
−3R1 +R3

 1 2 3 14
0 −3 −4 −18
0 −2 −12 −40

 − 1
2 R3−−−→

 1 2 3 14
0 −3 −4 −18
0 1 6 20


R2↔ R3−−−−−→

 1 2 3 14
0 1 6 20
0 −3 −4 −18

 3R2 +R3−−−−−→

 1 2 3 14
0 1 6 20
0 0 14 42

 1
14 R3−−−→

 1 2 3 14
0 1 6 20
0 0 1 3

 .

Hence, we have z = 3, y+6z = 20 and x+2y+3z = 14. By substituting the value of z and then y, we have y = 2 and x = 1. The column

vector of variables is X =

1
2
3

 .

3.4 Gauss-Jordan Method

Definition 3.9 Gauss-Jordan elimination is a method of solving a linear system AX = B by constructing the augmented matrix
[A|B] and transforming the matrix A to an identity matrix [In|D].
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The Method:

1. Construct the augmented matrix [A|B] . 
a11 a12 · · · a1n b1
a21 a22 · · · a2n b2

...
...

. . .
...

...
an1 an2 · · · ann bn

 .

2. Use the elementary row operations on the augmented matrix [A|B] to transform the matrix A to the identity matrix In.


1 0 0 0 · · · 0 d1
0 1 0 0 · · · 0 d2
...

...
. . .

...
...

0 0 0 · · · 1 0 dn−1
0 0 0 0 · · · 1 dn

 .

3. From the last augmented matrix, xi = di for every i = 1,2, ,n.

� Example 3.4 Solve the linear system by Gauss-Jordan elimination method.

(1) x+ y = 2
2x+ y = 1

(2) x+ y+ z = 2
x− y+2z = 0
2x+ z = 2

(3) x−2y+2z = 5
5x+3y+6z = 57
x+2y+2z = 21

Solution: For each linear system, construct the augmented matrix [A|B]. Then, use the elementary row operations on the augmented
matrix to transform the matrix A to the identity matrix In.

(1) [A|B] =
[

1 1 2
2 1 1

]
−2R1 +R2−−−−−−→

[
1 1 2
0 −1 −3

]
1R2 +R1−−−−−→

[
1 0 −1
0 −1 −3

]
−1R2−−−→

[
1 0 −1
0 1 3

]
.

Thus, x =−1 and y = 3. The column vector of variables is X =

[
−1
3

]
.

(2) [A|B] =

 1 1 1 2
1 −1 2 0
2 0 1 2

 −1R1 +R2−−−−−−→
−2R1 +R3

 1 1 1 2
0 −2 1 −2
0 −2 −1 −2

 −1R2 +R3−−−−−−→

 1 1 1 2
0 −2 1 −2
0 0 −2 0

 − 1
2 R2−−−→
− 1

2 R3 1 1 1 2
0 1 − 1

2 1
0 0 1 0

 1
2 R3 +R2−−−−−→

 1 1 1 2
0 1 0 1
0 0 1 0

 −1R2 +R1−−−−−−→

 1 0 1 1
0 1 0 1
0 0 1 0

 −1R3 +R1−−−−−−→

 1 0 0 1
0 1 0 1
0 0 1 0

 .

Hence, x = 1, y = 1 and z = 0. The column vector of variables is X =

1
1
0

 .

(3) [A|B] =

 1 −2 2 5
5 3 6 57
1 2 2 21

 −5R1 +R2−−−−−−→
−1R1 +R3

 1 −2 2 5
0 13 −4 32
0 4 0 16

 1
4 R3−−→

 1 −2 2 5
0 13 −4 32
0 1 0 4

 R2↔ R3−−−−−→ 1 −2 2 5
0 1 0 4
0 13 −4 32

 −13R2 +R3−−−−−−−→

 1 −2 2 5
0 1 0 4
0 0 −4 −20

 − 1
4 R3−−−→

 1 −2 2 5
0 1 0 4
0 0 1 5

 2R2 +R1−−−−−→

 1 0 2 13
0 1 0 4
0 0 1 5

 −2R3 +R1−−−−−−→ 1 0 0 3
0 1 0 4
0 0 1 5

 .

Hence, x = 3, y = 4 and z = 5. The column vector of variables is X =

3
4
5

 .
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Exercises

1 - 8 Use Cramer’s rule to solve the system of linear equations

1 x+ y+ z = 18
x− y+ z = 6
x+ y− z = 4

2 x1 + x2−2x3 = 1
2x1−3x2 + x3 =−8
3x1 + x2 +4x3 = 7

3 x+2y− z =−1
x−3y+2z = 3
x+ y− z = 2

4 2x1 +2x2− x3 = 1
2x1− x2 +2x3 = 1
x1 + x2−4x3 = 5

5 x+ y− z = 1
x− y+2z = 2
4x+ y− z = 2

6 x1 +3x2− x3 = 2
x1− x2 +5x3 = 3
3x1 + x2− x3 = 1

7 x+ y− z =−3
x−6y+5z = 1
x+4y+ z = 1

8 2x−4y+3z = 10
3x+ y−2z = 6
x+3y− z = 20

9 - 16 Use Gauss elimination method to solve the system

9 x+ y+ z = 18
x− y+ z = 6
x+ y− z = 4

10 x1 +3x2− x3 = 2
x1− x2 +5x3 = 3
3x1 + x2− x3 = 1

11 x− y− z = 1
x−6y+5z = 4
2x+ y+ z = 6

12 x1− x2− x3 = 4
−2x1− x2 + x3 = 2
x1 + x2 +3x3 = 7

13 x1 +4x2− x3 = 1
x1−2x2 +7x3 = 9
x1 +2x2 + x3 = 3

14 x+2y+ z = 11
x+ y− z = 20
x− y+ z = 5

15 x1 +2x2 + x3 = 15
x1 +3x2 + x3 = 5
−3x1− x2 +2x3 = 1

16 x+ y+ z = 12
x− y = 2
x− z = 4

17 - 24 Use Gauss-Jordan method to solve the system
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17 x−3y+ z = 21
4x+2y+ z = 14
3x+3y+ z = 7

18 x1 +3x2− x3 = 2
x1− x2 +5x3 = 3
3x1 + x2− x3 = 1

19 2x+2y+6z = 8
x+2y− z = 1
x+ y−3z = 1

20 x1 + x2−2x3 = 1
2x1−3x2 + x3 =−8
3x1 + x2 +4x3 = 7

21 2x+ y+3z = 5
−5x−3y+ z = 13
x+ y+2z = 7

22 x1 + x2 + x3 = 1
− x1 + x2 + x3 = 3
2x1 + x2−3x3 = 5

23 x1 +6x2 +3x3 = 4
2x1 + x2 +2x3 = 1
3x1 + x2 + x3 = 5

24 2x−4y+3z = 10
3x+ y−2z = 6
x+3y− z = 20
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Chapter 4

INTEGRATION

4.1 Antiderivatives and Indefinite Integrals

We begin with a definition of antiderivatives and indefinite integrals. Then, we provide basic integration rules.

4.1.1 Antiderivatives

Definition 4.1 A function F is called an antiderivative function of a function f on an interval I if

F
′
(x) = f (x) for every x ∈ I.

� Example 4.1

(1) Consider the functions F(x) = x3 +4x2− x+5 and f (x) = 3x2 +8x−1.

Since F
′
(x) = 3x2 +8x−1 = f (x), then the function F(x) is an antiderivative of f (x).

(2) Consider the functions G(x) = tan x+ x2−1 and g(x) = sec2 x+2x.

Since G
′
(x) = sec2 x+2x = g(x), then the function G(x) is an antiderivative of g(x).

Now, assume that F(x) is an antiderivative function of a function f (x), then every function F(x)+ c is also antiderivative of f (x), where
c is a constant. For different values of the constant c, we have different antiderivatives, but they are very similar geometrically. The
upcoming theorem states that any antiderivative G(x), which is different from F(x) can be expressed as F(x)+ c where c is an arbitrary
constant. In particular, if F(x) and G(x) are antiderivative functions of f (x), then

G(x) = F(x)+ c .

Theorem 4.2 Functions with same derivatives differ by a constant.

� Example 4.2 If f (x) = 3x2, the following functions

F(x) = x3 +2,

G(x) = x3− 1
2 ,

H(x) = x3 + 3
√

2

F(x)−G(x) = x3 +2− (x3− 1
2 ) =

5
2 = c

F(x)−H(x) = x3 +2− (x3 + 3√2) = 2− 3√2 = c
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are antiderivative functions of the function f (x). The difference between any two antiderivative functions is a constant c. Therefore,
F(x) = x3 + c is a general form of the antiderivatives of the function f (x) = 2x.

4.1.2 Indefinite Integrals

From Theorem 4.2, if F(x)+ c is an antiderivative function of f (x), then there exist no antiderivative functions in different forms for
the function f (x). This leads us to define the indefinite integral. We introduce a symbol, namely,

∫
f (x) dx which will represent the

antiderivative the function f (x) and it is read as the indefinite integral of the function f with respect to x.

Definition 4.3 Let f be a continuous function on an interval I. The indefinite integral of f is the general antiderivative of f on
I: ∫

f (x) dx = F(x)+ c.

The function f is called the integrand, the symbol
∫

is the integral sign, x is called the variable of the integration and c is the

constant of the integration.

Now, by using the previous definition, the general antiderivatives in Example 4.1 are

(1)
∫
(3x2 +8x−1) dx = x3 +4x2− x︸ ︷︷ ︸

= F(x)

+c.

(2)
∫
(sec2 x+2x) dx = tan x+ x2︸ ︷︷ ︸

= F(x)

+c.

4.2 Properties of Indefinite Integrals

Theorem 4.4 Assume f and g have antiderivatives on an interval I, then

1.
d
dx

∫
f (x) dx = f (x).

2.
∫ d

dx
(F(x)) dx = F(x)+ c.

3.
∫ (

f (x)±g(x)
)

dx =
∫

f (x) dx±
∫

g(x) dx.

4.
∫

k f (x) dx = k
∫

f (x) dx, where k is a constant.

Notes

The properties 3. and 4. can be generalized to a finite number of functions f1, f2, ..., fn and real numbers, k1,k2, ...,kn:∫ (
k1 f1(x)+ k2 f2(x)+ ...+ kn fn(x)

)
dx = k1

∫
f1(x) dx+ k2

∫
f2(x) dx+ ...+ kn

∫
fn(x) dx .

For property 3., we shall write only one constant of integration in the final answer.

4.2.1 Integration as an Inverse Process of Differentiation

In this section, we are given the derivative of certain functions and asked to find their antiderivatives. We will notice that the antiderivative
functions are obtained directly from the corresponding formula for differentiation. That is, by knowing the derivation formulas, we can
write the corresponding formulas for integration.
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Rule 1: Power of x.

d
dx

(
xn+1

n+1
) = xn, so

∫
xn dx =

xn+1

n+1
+ c for n 6=−1 .

In words, to integrate the function xn, we add 1 to the power (i.e.,
n+1) and divide the function by n+1.

For n = 0, we have a special case∫
1 dx = x+ c.

Recall, if c ∈ R, then d
dx

(
xn+1

n+1 + c
)
= xn. Thus, antiderivatives are

not unique.

Note
Note that Rule 1 cannot be applied
for n =−1.

For this value, the formula gives∫
x−1 dx =

x0

0
= ∞ .

� Example 4.3 Evaluate the integral.

(1)
∫
(x+1) dx

(2)
∫
(4x3 +2x2 +1) dx

(3)
∫ (

x2− 1
x3

)
dx

Solution:

(1)
∫
(x+1) dx =

∫
x dx+

∫
1 dx =

x2

2
+ x+ c .

(2)
∫
(4x3 +2x2 +1) dx =

∫
4x3 dx+

∫
2x2 dx+

∫
1 dx =

4x4

4
+

2
3

x3 + x+ c = x4 +
2
3

x3 + x+ c .

(3)
∫ (

x2− 1
x3

)
dx =

∫
x2 dx−

∫
x−3 dx =

x3

3
+

x−2

2
+ c .

Rule 2: Trigonometric Functions.

• d
dx (sin x) = cos x⇒

∫
cos dx = sin x+ c

• d
dx (cos x) =−sin x⇒

∫
−sin x dx = cos x+ c

• d
dx (tan x) = sec2 x⇒

∫
sec2 x dx = tan x+ c

• d
dx (cot x) =−csc x⇒

∫
−csc2 x dx = cot x+ c

• d
dx (sec x) = sec x tan x⇒

∫
sec x tan x dx = sec x+ c

• d
dx (csc x) =−csc x cot x⇒

∫
−csc x cot x dx = csc x+ c

� Example 4.4 Evaluate the integral.

(1)
∫
(sinx− cscx cotx) dx

(2)
∫ ( 1

secx
+ cosx

)
dx

(3)
∫ ( tanx

cosx
− x2

)
dx

Solution:

(1)
∫
(cosx− cscx cotx) dx =

∫
cosx dx−

∫
cscx cotx dx = sinx+ cscx+ c .
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(2)
∫ ( 1

secx
− sinx

)
dx =

∫
cosx dx−

∫
sinx dx = sinx+ cosx+ c .

(3)
∫ ( tanx

cosx
− x2

)
dx =

∫
tanx secx dx−

∫
x2 dx = secx− x3

3
+ c .

Rule 3: Natural Logarithmic and Exponential Functions.

If u = g(x) is a differentiable function, then

• d
dx
(

ln |u|
)
= u′

u =⇒
∫ u′

u
dx = ln |u|+ c

As special case:
d
dx
(

ln |x|
)
= 1

x =⇒
∫ 1

x
dx = ln |x|+ c

• d
dx
(
eu)= eu.u′ =⇒

∫
eu u′ dx = eu + c

As special case:
d
dx
(
ex)= ex =⇒

∫
ex dx = ex + c

ln : (0,∞)−→ R ,

e : R−→ (0,∞) ,

y = ex⇔ lny = x

1 2 3 4

−2

−1

1

2

3

y = lnx

y = ex

x

y

� Example 4.5 Evaluate the integral.

(1)
∫ 3

x
dx

(2)
∫ (

x3 + x−1 + ex) dx

(3)
∫ ( 1

3e−x +
1
x2

)
dx

(4)
∫ 1

x+2
dx

(5)
∫ 3x2−1

2x3− x2 +1
dx

(6)
∫ sin x

cos x
dx

(7)
∫

2x e(x
2+1) dx

(8)
∫

sin x ecos x dx

(9)
∫ e

√
x
√

x
dx

(10)
∫ etan x

cos2 x
dx

Solution:

(1)
∫ 3

x
dx = 3

∫ 1
x

dx = 3ln |x|+ c.

(2)
∫ (

x3 + x−1 + ex) dx =
∫

x3 dx+
∫ 1

x
dx+

∫
ex dx =

x4

4
+ ln |x|+ ex + c.

(3)
∫ ( 1

3e−x +
1
x2

)
dx =

1
3

∫
ex dx+

∫
x−2 dx =

1
3

ex− x−1 + c.

(4)
∫ 1

x+2
dx = ln |x+2|+ c.

(5)
∫ 3x2−1

2x3− x2 +1
dx =

1
2

∫ 2(3x2−1)
2x3− x2 +1

dx = ln |2x3− x2 +1|+ c.
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(6)
∫ sin x

cos x
dx =−

∫ −sin x
cos x

dx = ln |cos x|+ c.

(7)
∫

2x e(x
2+1) dx = e(x

2+1)+ c

(8)
∫

sin x ecos x dx =−
∫
−sin x ecos x dx = ecos x + c.

(9)
∫ e

√
x
√

x
dx = 2

∫
e
√

x 1
2
√

x
dx = 2e

√
x + c.

(10)
∫ etan x

cos2 x
dx =

∫
etan x 1

cos2 x
dx =

∫
etan x sec2 x dx = etan x + c.

Rule 4: Inverse Trigonometric Functions.
• d

dx
(

sin−1 ) = 1√
1−x2

• d
dx
(

cos−1 ) =− 1√
1−x2

• d
dx
(

tan−1 ) = 1
1+x2

• d
dx
(

cot−1 ) =− 1
1+x2

• d
dx
(

sec−1 ) = 1
x
√

x2−1

• d
dx
(

csc−1 ) =− 1
x
√

x2−1

In general, we have

•
∫ 1√

a2− x2
dx = sin−1 ( x

a

)
+ c

•
∫ 1

a2 + x2 dx =
1
a

tan−1 ( x
a

)
+ c

•
∫ 1

x
√

x2−a2
dx =

1
a

sec−1 ( x
a

)
+ c

� Example 4.6 Evaluate the integral.

(1)
∫ 6

4+ x2 dx

(2)
∫ ( 1√

1− x2
+

1√
x

)
dx

(3)
∫ (

5x+
1

x
√

x2−5

)
dx

Solution:

(1)
∫ 6

4+ x2 dx = 6
∫ 1

4+ x2 dx = 3tan−1(
x
2
)+ c.

(2)
∫ ( 1√

1− x2
+

1√
x

)
dx =

∫ 1√
1− x2

dx+
∫

x−
1
2 dx = sin−1 x+2

√
x+ c.

(3)
∫ (

5x+
1

x
√

x2−5

)
dx =

∫
5x dx+

∫ 1

x
√

x2−5
dx =

5x2

2
+

1√
5

sec−1(
x√
5
)+ c.

Notes
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When evaluating an integral, we can always verify our answer by deriving the result of the integral.

In the previous examples, we use x as a variable of the integral. However, for this role, we can use any variable such as y, z, t,
etc . That is, instead of f (x) dx, we can integrate f (y) dy or f (t) dt.

� Example 4.7 Evaluate the integral.

(1)
∫
(y2 + y+1) dy

(2)
∫
(cos t + sec2 t) dt

Solution:

(1)
∫
(y2 + y+1) dy =

y3

3
+

y2

2
+ y+ c .

(2)
∫
(cos t + sec2 t) dt = sin t + tan t + c .

4.3 Definite Integrals

4.3.1 Summation Notation

Summation (or sigma notation) is a simple form used to give a concise expression for a sum of values.

Definition 4.5 Let {a1,a2, ...,an} be a set of numbers. The symbol
n
∑

k=1
ak represents their sum:

n

∑
k=1

ak = a1 +a2 + ...+an.

� Example 4.8 Evaluate the sum.

(1)
3
∑

i=1
i2 (2)

5
∑

j=1
( j+1) (3)

3
∑

k=1
(k+1)k2

Solution:

(1)
3
∑

i=1
i2 = 12 +22 +32 = 1+4+9 = 14.

(2)
5
∑

j=1
( j+1) = (1+1)+(2+1)+(3+1)+(4+1)+(5+1) = 2+3+4+5+6 = 20.

(3)
3
∑

k=1
(k+1)k2 = (1+1)(1)2 +(2+1)(2)2 +(3+1)(3)2 = 2+12+36 = 50.

Theorem 4.6 Let {a1,a2, ...,an} and {b1,b2, ...,bn} be sets of real numbers. If n is any positive integer, then

1.
n
∑

k=1
c = c+ c+ ...+ c︸ ︷︷ ︸

n-times

= nc for any c ∈ R.

2.
n
∑

k=1
(ak±bk) =

n
∑

k=1
ak±

n
∑

k=1
bk.

3.
n
∑

k=1
c ak = c

n
∑

k=1
ak for any c ∈ R.
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� Example 4.9 Evaluate the sum.

(1)
10
∑

k=1
6 (2)

3
∑

k=1
(k2 +2k) (3)

4
∑

k=1
3(k+1)

Solution:

(1)
10
∑

k=1
6 = (10)(6) = 60.

(2)
3
∑

k=1
(k2 +2k) =

3
∑

k=1
k2 +2

3
∑

k=1
k = (12 +22 +32)+2(1+2+3) = 14+12 = 26.

(3)
4
∑

k=1
3(k+1) = 3

4
∑

k=1
(k+1) = 3(2+3+4+5) = 42.

4.3.2 Riemann Sum and Area

Riemann sum is a mathematical model where one of its applications is to approximate the areas of the regions bounded by the graphs of
the functions. In the following, we will provide some basic definitions that we need to define the definite integral.

Definition 4.7 A set P = {x0,x1,x2, ...,xn} is called a partition of a closed interval [a,b] if for any positive integer n,

a = x0 < x1 < x2 < .... < xn−1 < xn = b.

Figure 4.1: A partition of the interval [a,b].

Notes

The division of the interval [a,b] by a partition P generates n subintervals: [x0,x1], [x1,x2], [x2,x3], ..., [xn−1,xn].

The length of each subinterval [xk−1,xk] is ∆xk = xk− xk−1.

The largest length among ∆x1,∆x2,∆x3, ...,∆xn is called the norm of the partition P:

|| P ||= max{∆x1,∆x2,∆x3, ...,∆xn} .

The partition P of the interval [a,b] is regular if ∆x0 = ∆x1 = ∆x2 = ...= ∆xn = ∆x.

For any positive integer n, if the partition P is regular, then

∆x =
b−a

n
and xk = x0 + k ∆x .

To see this, let P be a regular partition of the interval [a,b]. Since x0 = a and xn = b, then

x1 = x0 +∆x ,

x2 = x1 +∆x = (x0 +∆x)+∆x = x0 +2∆x ,

x3 = x2 +∆x = (x0 +2∆x)+∆x = x0 +3∆x.

By continuing doing so, we have xk = x0 + k ∆x.
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Figure 4.2: A regular partition of the interval [a,b].

Riemann Sum

Definition 4.8 Let f be a bounded and defined function on a closed bounded interval [a,b] and let P = {x0,x1, ...,xn} be
a partition of [a,b]. Let ω = (ω1,ω2, ...,ωn) be a mark on the partition P where ωk ∈ [xk−1,xk], k = 1,2,3, ...,n. Then the
Riemann sum of f with respect to the partition P and the mark ω is

R( f ,P,ω) =
n

∑
k=1

f (ωk)∆xk.

As shown in Figure 4.3, the amount f (ω1)∆x1 is the area of the rectangle A1, f (ω2)∆x2 is the area of the rectangle A2 and so on. The
sum of these areas approximates the area of the whole region under the graph of the function f (x) from x = a to x = b. This indicates
that if the function f is bounded and non-negative on a closed bounded interval [a,b] and P = {x0 = a,x1, . . . ,xn = b} is a partition of
that interval where ω = (ω1,ω2, ...,ωn) is a mark on the partition P, then the Riemann sum estimates the area of the region under the
function f (x) from x = a to x = b. As the number of the subintervals increases n→ ∞ (i.e., ||P|| → 0), the estimation becomes better.
Therefore,

A = lim
‖P‖→0

R( f ,P,ω) = lim
‖P‖→0

n

∑
k=1

f (ωk)∆xk (4.1)

if the limit exists.

Figure 4.3: A region under a function f from x = a to x = b.

The following definition shows that the definite integral of a defined function f on a closed bounded interval [a,b] is a Riemann sum
when ‖ P ‖→ 0.
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Definite Integrals

Definition 4.9 For any function f bounded and defined on a closed bounded interval [a,b], the definite integral of f from a to
b is ∫ b

a
f (x) dx = lim

n→∞
∑
k

f (ωk)∆xk,(‖ P ‖→ 0)

if the limit exists. The numbers a and b are called the limits of the integration.

Notes

The limit in the previous definition is over all points in the partition P = {([xk−1,xk],ωk)}1≤k≤n. When the limit exists, we say
that f is Riemann integrable (or integrable) on [a,b].

Any continuous function is Riemann integrable on a closed bounded interval [a,b].

4.3.3 Properties of Definite Integrals

Theorem 4.10

1.
∫ b

a
c dx = c(b−a).

2.
∫ a

a
f (x) dx = 0 if f (a) exists.

� Example 4.10 Evaluate the integral.

(1)
∫ 2

0
5 dx (2)

∫ 3

3

√
x2−1 dx

Solution:

(1)
∫ 2

0
5 dx = 5(2−0) = 10.

(2)
∫ 3

3
(x2−1) dx = 0.

Theorem 4.11
1. Let f and g be integrable functions on [a,b], then the functions f +g and f −g are integrable on [a,b] and∫ b

a

(
f (x)±g(x)

)
dx =

∫ b

a
f (x)±

∫ b

a
g(x) dx.

2. Let f be integrable function on [a,b] and k ∈ R, then the function k f is integrable on [a,b] and∫ b

a
k f (x) dx = k

∫ b

a
f (x) dx.

� Example 4.11 If
∫ b

a
f (x) dx = 5 and

∫ b

a
g(x) dx = 9, find the value of the integral

∫ b

a

(
4 f (x)− g(x)

3

)
dx.

Solution:
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∫ b

a

(
4 f (x)− g(x)

3

)
dx = 4

∫ b

a
f (x) dx− 1

3

∫ b

a
g(x) dx (Using Theorem 4.11 )

= 4(5)− 1
3
(9) = 17 .

Theorem 4.12
1. If f and g are integrable on [a,b] and f (x)≥ g(x) for all x ∈ [a,b], then∫ b

a
f (x) dx≥

∫ b

a
g(x) dx.

2. If f is integrable on [a,b] and f (x)≥ 0 for all x ∈ [a,b], then∫ b

a
f (x) dx≥ 0.

� Example 4.12 Prove that
∫ 2

0
(x3 + x2 +2) dx≥

∫ 2

0
(x2 +1) dx without evaluating the integrals.

Solution: Let f (x) = x3 + x2 + 2 and g(x) = x2 + 1. We can find that f (x)− g(x) = x3 + 1 > 0 for all x ∈ [0,2]. This implies that
f (x)> g(x) and from Theorem 4.12, we have ∫ 2

0
(x3 + x2 +2) dx≥

∫ 2

0
(x2 +1) dx .

Theorem 4.13 If f is integrable on the intervals [a,c] and [c,b], then f is integrable on [a,b] and∫ b

a
f (x) dx =

∫ c

a
f (x) dx+

∫ b

c
f (x) dx.

Theorem 4.14 If f is integrable on [a,b], then ∫ b

a
f (x) dx =−

∫ a

b
f (x) dx.

4.3.4 The Fundamental Theorem of Calculus

Theorem 4.15 Suppose that f is continuous on the closed interval [a,b].

1. If F(x) =
∫ x

a
f (t) dt for every x ∈ [a,b], then F(x) is an antiderivative of f on [a,b].

2. If F(x) is any antiderivative of f on [a,b], then
∫ b

a
f (x) dx = F(b)−F(a).

From the previous theorem, the definite integral
∫ b

a
f (x) dx is evaluated by two steps:
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Step 1: Find the indefinite integral
∫

f (x) dx = F(x) and no need to put a constant c.

Step 2: Evaluate the antiderivative F at upper and lower limits by substituting x = b and x = a then calculate F(b)−F(a).

� Example 4.13 Evaluate the integral.

(1)
∫ 2

−1
(2x+1) dx

(2)
∫ 3

0
(x2 +1) dx

(3)
∫ 2

1

1√
x3

dx

(4)
∫ π

2

0
(sin x+1) dx

(5)
∫ π

3

π

4

(sec2 x−4) dx

(6)
∫ 1

0
x2(x3 +1)4 dx

Note
For trigonometric functions,
students can use the values in Table
?? on the page 9.

Solution:

(1)
∫ 2

−1
(2x+1) dx =

[
x2 + x

]2

−1
=
(
4+2

)
−
(
(−1)2 +(−1)

)
= 6−0 = 6.

(2)
∫ 3

0
(x2 +1) dx =

[x3

3
+ x
]3

0
= (

27
3

+3)−0 = 12.

(3)
∫ 2

1

1√
x3

dx =
[ −2√

x

]2

1
=
−2√

2
− (−2) =

−2+2
√

2√
2

=−
√

2+2.

(4)
∫ π

2

0
(sin x+1) dx =

[
− cos x+ x

] π

2

0
= (−cos

π

2
+

π

2
)− (−cos 0+0) =

π

2
+1.

(5)
∫

π

π

4

(sec2 x−4) dx =
[

tan x−4x
]π

π

4

=
(

tan π−4π
)
−
(

tan
π

4
−4

π

4
)
=−4π− (1−π) =−3π−1.

(6)
∫ π

3

0
(sec x tan x+ x) dx =

[
sec x+

x2

2

] π

3

0
=
(

sec
π

3
+

( π

3 )
2

2
)
−
(

sec 0+
0
2
)
= 2+

π2

18
−1 = 1+

π2

18
.

4.4 Techniques of Integration

In the previous section, we demonstrated the importance of basic integral rules and the integral properties in evaluating several integrals.
Those rules are elementary for simple functions, but in this section we will study new techniques that will enable us to evaluate more
complex functions.

4.4.1 Integration By Substitution

The integration by substitution (known as u-substitution) is one of the important methods for evaluating the integrals. The method is
based on changing the variable of the integral to obtain a simple integral.

Theorem 4.16 Let g be a differentiable function on an interval I where the derivative is continuous. Let f be continuous on
the interval J contains the range of the function g. If F is an antiderivative of the function f on J, then∫

f (g(x))g
′
(x) dx = F(g(x))+ c, ∀x ∈ I.

In the following examples, we will check if the integrand has the form f (g(x))g
′
(x) so that we can use Theorem 4.16.

� Example 4.14 Evaluate the integral
∫

3x2 (x3 +1)5 dx.



60 INTEGRATION

Solution: We can use the previous theorem by assuming f (x) = x5

and g(x) = x3 +1, then f
(
g(x)

)
= (x3 +1)5.

Since g
′
(x) = 3x2, then∫

3x2(x3 +1)5 dx =
(x3 +1)6

6
+ c.

Note∫
f (x) dx = F(x)+ c

⇒
∫

x5 dx =
x6

6
+ c

Note that in the previous example, we can end with the same solution by using the following steps of the substitution method.

Steps of the integration by substitution:

Step 1: Choose a new variable u. Observe the integrand f (x) and choose an inside function u as a function of x. Then check if f (x) can
be decomposed into

f (x) = (function of u).constant multiple of u′(x)

Step 2: Determine the value of du.

Step 3: Make the substitution i.e., eliminate all occurrences of x in the integral by making the entire integral in terms of u.

Step 4: Evaluate the new integral.

Step 5: Return the evaluation to the initial variable x.

In Example 4.14, let u = x3 +1, this implies du = 3x2 dx. Now apply the substitution by substituting all x-terms into u-terms:∫
(x3 +1︸ ︷︷ ︸

u

)5 3x2︸︷︷︸
du

dx =
∫

u5 du =
u6

6
+ c .

By returning the evaluation to the initial variable x, we have∫
3x2(x3 +1)5 dx =

(x3 +1)6

6
+ c .

� Example 4.15 Evaluate the integral
∫
(3x−1)

√
3x2−2x+1 dx.

Solution: Assume f (x) =
√

x and g(x) = 3x2− 2x+ 1, then f
(
g(x)

)
=
√

3x2−2x+1. Since g′(x) = 6x− 2 = 2(3x− 1), then from
Theorem 4.16,∫

(3x−1)
√

3x2−2x+1 dx =
1
2

∫
2(3x−1)

√
3x2−2x+1 dx

=
1
2

2
3
(3x2−2x+1)

3
2 + c =

(3x2−2x+1)
3
2

3
+ c .

By using the steps of the substitution method, let u = 3x2−2x+1 and this implies du = (6x−2)dx = 2(3x−1)dx. By substitution, we
have ∫ √

u
du
2

=
1
2

∫
u

1
2 du =

u
3
2

3
+ c =

(3x2−2x+1)
3
2

3
+ c .

� Example 4.16 Evaluate the integral
∫ cos

√
x√

x
dx.

Solution: Assume f (x) = cos x and g(x) =
√

x, then f
(
g(x)

)
= cos

√
x. Since g

′
(x) = 1/(2

√
x), then from Theorem 4.16, we have∫ cos

√
x√

x
dx = 2

∫ cos
√

x
2
√

x
dx = 2sin

√
x+ c .

By using the steps of the substitution method, let u =
√

x and this implies du = 1
2
√

x dx. By substitution, we obtain

2
∫

cos u du = 2sin u+ c = 2sin
√

x+ c.



Techniques of Integration 61

� Example 4.17 Evaluate the integral
∫

tan x dx.

Solution: Write tan x =
sin x
cos x

and assume u = cos x. This implies du =−sin x dx, then −du = sin x dx.

Hence, ∫
tan x dx =

∫ sin x
cos x

dx =
∫ 1

cos x
.sin x dx

=−
∫ 1

u
du =− ln |u|+ c (Using Rule 3 on page 52 ) .

By returning the evaluation to the initial variable x, we have∫
tan x dx =− ln |cos x|+ c .

Rules

•
∫

tan x dx =− ln |cos x|+ c

= ln |sec x|+ c

•
∫

cot x dx = ln |sin x|+ c

=− ln |csc x|+ c

� Example 4.18 Evaluate the integral
∫ x2−1

(x3−3x+1)6 dx.

Solution: Let u = x3−3x+1, then du = 3(x2−1) dx. By substitution, we have

1
3

∫
u−6 du =

1
3

1
−5 u5 + c =

−1
15(x3−3x+1)5 + c.

� Example 4.19 Evaluate the integral
∫

sin3 x cosx dx.

Solution:

Let u = sinx, then du = cosx dx. By substitution, we
have ∫

u3 du =
u4

4
+ c

=
sin4 x

4
+ c.

Note
Any power of a trigonometric
function can be integrated by Rule
1 on page 51 when accompanied by
its differential.

� Example 4.20 Evaluate the integral
∫ sin−1 x√

1− x2
dx.

Solution: Let u = sin−1 x, then du = 1√
1−x2 dx. By

substitution, we have∫
u du =

u2

2
+ c

=
(sin−1 x)2

2
+ c.

Note
Any inverse trigonometric function
such that the differential is
accompanied can be integrated in
the same manner of Example 4.20.

Corollary 4.17 If
∫

f (x) dx = F(x)+ c, then for any a 6= 0,

∫
f (ax±b) dx =

1
a

F(ax±b)+ c.

� Example 4.21 Evaluate the integral.

(1)
∫ √

3x−2 dx
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(2)
∫

sec2 (5x+4) dx

Solution: From Corollary 4.17, we have

(1)
∫ √

3x−2 dx =
1
3
(3x−2)3/2

3/2
+ c =

(3x−2)3/2

3
+ c.

(2)
∫

sec2 (5x+4) dx =
1
5

tan (5x+4)+ c.

Notes

When using the substitution method to evaluate the definite integral
∫ b

a
f (x) dx, we have two options:

Option 1: Change the limits of integration to the new variable. In this case, we evaluate the integral without returning to the
original variable.

Option 2: Leave the limits in terms of the original variable. In this case, we evaluate the integral and return the result to the
original variable. After that, we substitute x = b and x = a into the antiderivative.

� Example 4.22 Evaluate the integral
∫ 1

0
2x
√

x2 +1 dx.

Solution:

Option 1: Let u = x2 +1, this implies du = 2x dx. Change the limits u(0) = 1 and u(1) = 2. By substitution, we have∫ 2

1
u1/2 du =

2
3
[
u

3
2

]2

1
=

2
3

(
2

3
2 −1

3
2

)
=

2
3

(
2
√

2−1
)
.

Option 2: Let u = x2 +1, then du = 2x dx. By substitution, we have
∫

u1/2 du =
2
3

u
3
2 =

2
3
(x2 +1)

3
2 + c. Thus,

∫ 1

0
2x
√

x2 +1 dx =
2
3

[
(x2 +1)

3
2

]1

0
=

2
3

(
2
√

2−1
)
.

� Example 4.23 Evaluate the integral
∫ π

2

0

sin x
1+ cos2 x

dx.

Solution: Let u = cos2 x, this implies du =−sin x dx. Change the limits u(0) = 1 and u( π

2 ) = 0. By substitution, we have

−
∫ 0

1

1
1+u2 du =

∫ 1

0

1
1+u2 du =

[
tan−1 u

]1

0
=
(

tan−1(1)− tan−1(0)
)
= (

π

4
−0) =

π

4
.

4.4.2 Integration by Parts

In this section we will learn another important technique of integration, called integration by parts. This technique depends on the
product rule in differentiation, so it can be thought as the product formula for integration. In practice, the integrand is divided into two
parts u and dv, then we find du by deriving u and v by integrating dv. This method transfers a product integral (the original integrand)
into another product integral that can be evaluated.

Theorem 4.18 If u = f (x) and v = g(x) such that f ′ and g′ are continuous, then∫
u dv = uv−

∫
v du.
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Theorem 4.18 shows that the integration by parts transfers the integral
∫

u dv into an easier integral
∫

v du. The question here is, what

we choose as u and what we choose as dv = v′ dx.

A Guideline for Choosing u and dv:

(1) Choose u a portion of the integrand that can be easily differentiated. We can choose u to be the function that comes first in this list:
(a) Inverse trigonometric function.
(b) Logarithmic function.
(c) Algebraic function.
(d) Exponential function.
(e) Trigonometric function.

(2) Choose dv the most complicated portion of the integrand that can be easily integrated.

This guideline is useful, but is not enough to solve all product integrals. Sometimes we need to analyze the integrand and examine the
best way of using integration by parts.

� Example 4.24 Evaluate the integral
∫

x ex dx.

Solution:
The integrand xex is a product of two functions x and ex. Now we
need to identify one function as u and the other one as dv such that
the new product integral

∫
v du is easier than the original integrand.

Let I =
∫

x ex dx and choose u = x, and dv = ex dx. Then,

u = x⇒ du = dx ,

dv = ex dx⇒ v =
∫

ex dx = ex.

From Theorem 4.18, we have

I = x ex−
∫

ex dx = x ex− ex + c.

ttttttttttttttttttttttttttttttttttttttttttttttttttt

Note
• We choose u = x because it can be

differentiated to a constant. Thus the
new product integral will not involve
a product anymore.
• Try to choose

u = ex and dv = x dx

We will obtain

I =
x2

2
ex−

∫ x2

2
ex dx.

However, the integral
∫ x2

2
ex dx is

more difficult than the original one∫
xex dx.

� Example 4.25 Evaluate the integral
∫

x cos x dx.

Solution: In the same manner as in the preceding example, let I =
∫

x cos x dx. Set u = x and dv = cos x dx. Hence,

u = x⇒ du = dx ,

dv = cos x dx⇒ v =
∫

cos x dx = sin x.

From Theorem 4.18, we have

I = x sin x−
∫

sin x dx

= x sin x+ cos x+ c .

Try to choose

u = cos x and dv = x dx

Do you have the same result?

� Example 4.26 Evaluate the integral
∫

lnx dx.
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Solution: Let I =
∫

lnx dx and choose u = lnx, and dv = dx. Then,

u = lnx⇒ du =
1
x

dx ,

dv = dx⇒ v =
∫

1 dx = x.

Remember

If u = g(x) is differentiable, then

d
dx

(ln |u|) = u′

u

Apply Theorem 4.18 to have

I = x lnx−
∫

x
1
x

dx

= x lnx−
∫

1 dx = x lnx− x+ c .

� Example 4.27 Evaluate the integral
∫

x3 lnx dx.

Solution:

Let I =
∫

x3 lnx dx and choose u = lnx, and dv = x3 dx. Then,

u = lnx⇒ du =
1
x

dx ,

dv = x3 dx⇒ v =
∫

x3 dx =
x4

4
.

From Theorem 4.18, we have

I =
x4

4
lnx−

∫ x4

4
1
x

dx

=
x4

4
lnx− 1

4

∫
x3 dx

=
x4

4
lnx− x4

16
+ c .

Rule
In the same manner as in Example

4.28, to evaluate
∫

xn lnx dx, let

u = lnx⇒ du = 1
x dx

dv = xn dx⇒ v =
∫

xn dx = xn+1

n+1

Hence,∫
xn lnx dx=

xn+1

n+1
lnx+

xn+1

(n+1)2 +c

Notes

Remember when we consider the integration by parts, we want to obtain an easier integral. As we saw in Example 4.28, if we

choose u = ex and dv = x dx, we have
∫ x2

2
ex dx which is more difficult than the original integral.

When considering the integration by parts, we have to choose dv a function that can be integrated (see Example 4.28 ).

� Example 4.28 Evaluate the integral
∫

sin x ln(cos x) dx.

Solution:

Let I =
∫

sin x ln(cos x) dx and choose u = ln(cos x) for cos x > 0, and dv = sin x dx. Then,

u = ln(cos x)⇒ du =
−sin x
cos x

dx =− tan x dx,

dv = sin x dx⇒ v =
∫

sin x dx =−cos x.

Hence,
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I =−cos x ln(cos x)−
∫

cos x tan x dx

=−cos x ln(cos x)−
∫

sin x dx

=−cos x ln(cos x)+ cos x+ c .

Similarly, we can evaluate the
integral∫

cos x ln(sin x) dx

by choosing u = ln(sin x) for
sin x > 0, and dv = cos x dx.

� Example 4.29 Evaluate the integral
∫ 1

0
tan−1 x dx.

Solution:

Let I =
∫

tan−1 x dx and choose u = tan−1 x, and dv = dx. Hence,

u = tan−1 x⇒ du =
1

x2 +1
dx ,

dv = dx⇒ v =
∫

1 dx = x.

Rule
Any inverse trigonometric function
such that the differential is not
accompanied can be integrated in
the same manner of Example 4.29.

By applying Theorem 4.18, we obtain

I = x tan−1 x− 1
2

∫ 2x
x2 +1

dx︸ ︷︷ ︸
apply substitution u=x2+1

= x tan−1 x− 1
2

ln(x2 +1)+ c.

Therefore, ∫ 1

0
tan−1 x dx =

[
x tan−1 x− 1

2
ln(x2 +1)

]1

0
= (tan−1(1)− 1

2
ln2)− (0− 1

2
ln1) =

π

4
− ln
√

2.

Note that sometimes we need to use the integration by parts twice as in the following examples.

� Example 4.30 Evaluate the integral
∫

x2ex dx.

Solution:

Let I =
∫

x2ex dx and choose u = x2, and dv = ex dx. Then,

u = x2⇒ du = 2x dx ,

dv = exdx⇒ v =
∫

ex dx = ex.

This implies I = x2ex−2
∫

xex dx.

Note
In successive application of the
integration by parts, do not switch
choices for u and dv. In Example
4.30, we choose dv = ex in integrals
I and J.

We use the integration by parts again for the integral
∫

xex dx where we assume J =
∫

xex dx.

Let u = x and dv = ex dx. Hence,

u = x⇒ du = dx ,

dv = exdx⇒ v =
∫

ex dx = ex.

Therefore,
J = xex−

∫
ex dx = xex− ex + c .

By substituting the result of J into I, we have

I = x2ex−2(xex− ex)+ c

= ex(x2−2x+2)+ c .
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� Example 4.31 Evaluate the integral
∫

ex cos x dx.

Solution: Let I =
∫

ex cos x dx and choose u = ex, and dv = cos x dx.

Then,

u = ex⇒ du = ex dx ,

dv = cos x dx⇒ v =
∫

cos x dx = sin x.

Hence, I = ex sin x−
∫

ex sin x dx.

Note
In Example 4.31,

try to choose

u = cosx and dv = ex

Do you have the same result?

The integral
∫

ex sin x dx cannot be evaluated. Therefore, we use the integration by parts again where we assume J =
∫

ex sin x dx.

Let u = ex and dv = sin x dx. Then,

u = ex⇒ du = ex dx ,

dv = sin x dx⇒ v =
∫

sin x dx =−cos x.

Hence,

J =−ex cos x+
∫

ex cos x dx .

By substituting the result of J into I, we have

I = ex sin x− J

= ex sin x+ ex cos x−
∫

ex cos x dx

⇒ I = ex sin x+ ex cos x− I.

This implies

2I = ex sin x+ ex cos x⇒ I =
1
2
(ex sin x+ ex cos x)

⇒
∫

ex cos x dx =
ex

2
(sin x+ cos x)+ c .

4.4.3 Integrals of Rational Functions

A rational function is a quotient of two polynomials of the form q(x) = f (x)
g(x) . A Polynomial f (x) is a linear sum of powers of x, for

example f (x) = 5x3 + x2 + x+1 or g(x) = x4− x. The degree of a polynomial is the highest power occurring in the polynomial, for
example the degree of f (x) is 3 and the degree of g(x) is 4.

Steps of the integration of the rational functions:

ä Step 1: If the degree of f (x) is equal or greater than the degree of g(x), we do polynomial long-division; otherwise we move to step 2.

By doing the long-division, we reduce the fraction to a
mixed quantity.

q(x) =
f (x)
g(x)

= h(x)+
r(x)
g(x)

,

where h(x) is the quotient and r(x) is the remainder.
The degree of the numerator of the new fraction will
be less than the degree of the denominator.

h(x)
g(x)

)
f(x)

- ...
...

r(x)

ä Step 2: Factor the denominator g(x) into irreducible polynomials where the factors are either linear or irreducible quadratic polynomials.
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ä Step 3: Find the partial fraction decomposition. This step depends on the result of step 2 where the fraction f (x)
g(x) or r(x)

g(x) can be written
as a sum of partial fractions:

q(x) = P1(x)+P2(x)+P3(x)+ ...+Pn(x) ,

where Pk(x) =
Ak

(ax+b)n ,n ∈ N or Pk(x) =
Akx+Bk

(ax2 +bx+ c)n if b2−4ac < 0. The constants Ak and Bk are real numbers and computed

later. Note that the denominators of the fractions Pk(x) are the factors of the original denominator obtained in step 2.

ä Step 4: Integrate the result of step 3:∫
q(x) dx =

∫
P1(x) dx+

∫
P2(x) dx+

∫
P3(x) dx+ ...+

∫
Pn(x) dx .

Cases of factoring the denominator g(x):

Case 1: The denominator g(x) is a product of distinct linear factors.

If g(x) = (a1x+b1)(a2x+b2)...(anx+bn), then the fraction f (x)
g(x) can be written as a sum of partial fractions:

f (x)
g(x)

=
A1

a1x+b1
+

A2

a2x+b2
+

A3

a3x+b3
+ ...+

An

anx+bn

Case 2: The denominator g(x) has repeated linear factors of the form (aix+bi)
k where k > 1. Then,

f (x)
g(x)

=
A1

(aix+bi)
+

A2

(aix+bi)2 +
A3

(aix+bi)3 + ...+
An

(aix+bi)k .

Case 3: The denominator g(x) has factors which are irreducible quadratics of the form aix2 +bix+ ci where b2
i −4aici < 0. In this

case, we include terms of the form
Aix+Bi

aix2 +bix+ ci
.

� Example 4.32 Evaluate the integral
∫ 2x3−4x2−15x+5

x2 +3x+2
dx.

Solution:

Step 1: Do the polynomial long-division.
Since the degree of the denominator g(x) is less than the degree of
the numerator f (x), we do the polynomial long-division given on
the right side. Hence, we have

q(x) = (2x−10)+
11x+25

x2 +3x+2
.

Illustration:

2x −10
x2 +3x+2

)
2x3 −4x2 −15x +5
−(2x3 +6x2 +4x)

−10x2 −19x +5
−(−10x2 −30x −20)

11x +25

Step 2: Factor the denominator g(x) into irreducible polynomials

g(x) = x2 +3x+2 = (x+1)(x+2).

Here we have case 2 in factoring the denominator g(x).

Step 3: Find the partial fractions

q(x) = (2x−10)+
11x+25

x2 +3x+2
= (2x−10)+

A
x+1

+
B

x+2
= (2x−10)+

Ax+2A+Bx+B
(x+1)(x+2)

.

We need to find the constants A and B by equating the coefficients of like powers of x in the two sides of the equation:

11x+25 = (A+B)x+(2A+B)
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Coefficients of the numerators:

coefficients of x: A+B = 11→ 1

constants: 2A+B = 25→ 2

By doing some calculation, we have A = 14 and B =−3. Hence,

q(x) = (2x−10)+
14

x+1
+
−3

x+2
.

Illustration:
Multiply equation 1 by −2 and

add the result to equation 2

−2A−2B =−22

2A+B = 25

−−−−−−−−−
−B = 3

Step 4: Integrate the result of step 3.∫
q(x) dx =

∫
(2x−10) dx+

∫ 14
x+1

dx+
∫ −3

x+2
dx

= x2−10x+14ln | x+1 | −3ln | x+2 |+c.

� Example 4.33 Evaluate the integral
∫ x+1

x2−2x−8
dx.

Solution:

Step 1: This step can be skipped since the degree of f (x) = x+1 is less than the degree of g(x) = x2−2x−8.

Step 2: Factor the denominator g(x) into irreducible polynomials

g(x) = x2−2x−8 = (x+2)(x−4) .

Here we have case 2 in factoring the denominator g(x).

Step 3: Find the partial fraction decomposition

x+1
x2−2x−8

=
A

x+2
+

B
x−4

=
Ax−4A+Bx+2B
(x+2)(x−4)

.

We need to find the constants A and B by equating the coefficients of like powers of x in the two sides of the equation:

x+1 = (A+B)x+(−4A+2B)

Coefficients of the numerators:

coefficients of x: A+B = 1→ 1

constants: −4A+2B = 1→ 2

By doing some calculation, we obtain A = 1
6 and B = 5

6 . Thus,

x+1
x2−2x−8

=
1/6

x+2
+

5/6
x−4

.

Illustration:

Multiply equation 1 by 4 and add the result to

equation 2

4A+4B = 4

−4A+2B = 1

−−−−−−−−−
6B = 5

Step 4: Integrate the result of step 3.∫ x+1
x2−2x−8

dx =
∫ 1/6

x+2
dx+

∫ 5/6
x−4

dx =
1
6

ln | x+2 |+5
6

ln | x−4 |+c.
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� Example 4.34 Evaluate the integral
∫ 2x2−25x−33

(x+1)2(x−5)
dx.

Solution:

Steps 1 and 2 can be skipped in this example. According to the cases of factoring the denominator, we have cases 1 and 2.

Step 3: Find the partial fraction decomposition.

Since the denominator g(x) has repeated factors, then

2x2−25x−33
(x+1)2(x−5)

=
A

x+1
+

B
(x+1)2 +

C
x−5

=
A(x2−4x−5)+B(x−5)+C(x2 +2x+1)

(x+1)2(x−5)
.

Coefficients of the numerators:

coefficients of x2: A+C = 2→ 1

coefficients of x: −4A+B+2C =−25→ 2

constants: −5A−5B+C =−33→ 3

Illustration:

5× 2 + 3 :

−25A+11C =−158→ 4

25× 1 + 4 :
36C =−108⇒C =−3

By solving the system of equations, we have A = 5, B = 1 and C =−3.

Step 4: Integrate the result of step 3.

∫ 2x2−25x−33
(x+1)2(x−5)

dx =
∫ 5

x+1
dx+

∫ 1
(x+1)2 dx+

∫ −3
x−5

dx

= 5ln | x+1 |+
∫
(x+1)−2 dx−3ln | x−5 |

= 5ln | x+1 | − 1
(x+1)

−3ln | x−5 |+c.

� Example 4.35 Evaluate the integral
∫ x+1

x(x2 +1)
dx.

Solution:

Steps 1 and 2 can be skipped in this example. Here we have cases 1 and 3 of factoring the denominator.

Step 3: Find the partial fraction decomposition.

x+1
x(x2 +1)

=
A
x
+

Bx+C
x2 +1

=
Ax2 +A+Bx2 +Cx

x(x2 +1)
.

Coefficients of the numerators:

coefficients of x2: A+B = 0→ 1

coefficients of x: C = 1→ 2

constants: A = 1→ 3

We have A = 1, B =−1 and C = 1.
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Step 4: Integrate the result of step 3.∫ x+1
x(x2 +1)

dx =
∫ 1

x
dx+

∫ −x+1
x2 +1

dx

= ln | x | −
∫ x

x2 +1
dx+

∫ 1
x2 +1

dx

= ln | x | −1
2

ln(x2 +1)+ tan−1 x+ c.
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Exercises

1 - 38 Evaluate the integral.

1
∫

sec2(3x−5) dx

2
∫ dx√

16− x2

3
∫

xe2x dx

4
∫

xcos(2x) dx

5
∫

sin−1 x dx

6
∫ dx

x2− x−2

7
∫

x(2x2−3)8 dx

8
∫ cos 3

√
x

3
√

x2
dx

9
∫ 3

0
(2− x+ x2) dx

10
∫ 1

−1
(x2 +3x+1) dx

11
∫ π

2

0
cos x dx

12
∫ π

4

0
(sin x+ cos x) dx

13
∫ π

3

π

4

sec x (tan x+ sec x) dx

14
∫ 4

−2
2 dx

15
∫ 5

0
(3− x) dx

16
∫ 4

−1
(2x2 + x−1) dx

17
∫ 2

2
(6x2 +3) dx

18
∫ 1

0
(x3−4x4) dx

19
∫ 2

−1
x
√

x2 +1 dx

20
∫ 5

0
| x−1 | dx

21
∫

x ln
√

x dx

22
∫ 3

1
(x2 +1) dx

23
∫ 5

e

1
x−2

dx

24
∫ 6

3

( 1
x−2

+
2

x+1

)
dx

25
∫

π/2

0
(1+
√

cosx)2 sinx dx

26
∫ 10

0
(x

3
2 +1) dx

27
∫ 2

1

2√
x

dx

28
∫ 2

0
| x−1 | dx

29
∫ 1

−1
| 3x+1 | dx

30
∫ π

2

π

3

1
sin2 x

dx

31
∫ 3

0
| 2x−3 | dx

32
∫ 3

1
(x−2)(x+3) dx

33
∫

π

0
sin x dx

34
∫ π

4

0
cos 2x dx

35
∫

π

0
sec x (tan x− sec x) dx

36
∫

x cos x2 dx

37
∫ csc2 √x√

x
dx

38
∫ secx+ tanx

cosx
dx

39 - 52 Evaluate the integral.
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39
∫ √

x lnx dx

40
∫

x sec2 x dx

41
∫

x e−4x dx

42
∫
(lnx)2 dx

43
∫ 1

(x−3)(x−1)2 dx

44
∫ 1

x2 +6x+8
dx

45
∫ x

x2− x−2
dx

46
∫ 1

x2 +2x−3
dx

47
∫ 7

3

x2

x2− x−2
dx

48
∫ 3x2−10

x2−4x+4
dx

49
∫ x2−9

x−1
dx

50
∫ 2x4−3x3−10x2 +2x+11

x3− x2−5x−3
dx

51
∫ 1

1+ ex dx

52
∫ 2x3−18x2 +29x−4

(x+1)(x−2)3 dx

53 - 58 If
∫ b

a
f (x) dx = 2,

∫ c

b
f (x) dx = 2 and

∫ b

a
g(x) dx = 3 where c ∈ (a,b), evaluate the integral.

53
∫ a

b
f (x) dx

54
∫ c

a
f (x) dx

55
∫ b

a

(
2 f (x)+g(x)

)
dx

56
∫ a

b

(
5 f (x)−3g(x)

)
dx

57
∫ b

a

(1
3

f (x)+7g(x)
)

dx

58
∫ a

a

(
4 f (x)+g(x)

)
dx

59 - 64 Use the properties of the definite integrals to prove the inequality without evaluating the integrals.

59
∫ 1

0
x dx≥

∫ 1

0
x2 dx

60
∫ 3

0

x
x3 +2

dx≥
∫ 3

0
x dx

61
∫ 4

1
(2x+2) dx≥

∫ 4

1
(3x+1) dx

62
∫ 3

0
(x2−3x+4) dx≥ 0

63
∫ 2

1

√
5− x dx≥

∫ 2

1

√
x+1 dx

64 2 <
∫ 2

−1

√
1+ x2 dx
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65 - 71 Choose the correct answer.

65 The value of the integral
∫ sin x√

2+ cos x
dx is equal to

(a) −2
√

2+ cos x+ c
(b)
√

2+ cos x+ c
(c) −

√
2+ cos x+ c

(d) 2
√

2+ cos x+ c

66 The value of the integral
∫ sin (tan x)

cos2 x
dx is equal to

(a) cos (tan x)+ c
(b) sin (tan x)+ c

(c) −cos (tan x)+ c
(d) −sin (tan x)+ c

67 The integral
∫

x
√

x2 +1 dx is equal to

(a) 1
2 x2
√

x2 +1+ c

(b) 2
3 (x

2 +1)
3
2 + c

(c) − 2
3 (x

2 +1)
3
2 + c

(d) 1
3 (x

2 +1)
3
2 + c

68 The integral
∫ x

cos2 x2 dx is equal to

(a) 1
2 tan x2 + c

(b) tan x2 + c
(c) 1

2 tan x+ c
(d) − 1

cos x2 + c

69 The value of the integral
∫ sec2 x

cot2 x
dx is equal to

(a) 1+cos2 x
3cos3 x + c

(b) 1−3cos2 x
3cos3 x + c

(c) cot4 x
4 + c

(d) tan3 x
3 + c

70 The value of the integral
∫ cos x√

4+ sin x
dx

(a) 1
2
√

sin x+4+ c
(b)
√

sin x+4+ c
(c) 2
√

sin x+4+ c
(d) −2

√
sin x+4+ c

71 The value of the integral
∫ 1

−1
2 | x |3 dx

(a) 2 (b) 1 (c) 0 (d) −1
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Chapter 5

APPLICATIONS OF INTEGRATION

5.1 Areas

As shown in Chapter 4, if the function f is bounded and non-negative on a closed bounded interval [a,b] and P = {x0 = a,x1, . . . ,xn = b}
is a partition of that interval where ω = (ω1,ω2, ...,ωn) is a mark on the partition P, then the Riemann sum estimates the area of the
region under the function f (x) from x = a to x = b:

A = lim
‖P‖→0

n

∑
k=1

f (ωk)∆xk =
∫ b

a
f (x) dx .

In this section we find the area of ??the regions for the following cases:

The region bounded by a graph of a function and x-axis from x = a to x = b.

The region bounded by a graph of a function and y-axis from y = c to y = d.

The region bounded by graphs of two or more functions.

Figure 5.1

5.1.1 Region Bounded by a Curve and x-axis

Consider the region between the graph of the function y = f (x), the x-axis, and the ordinates x = a and x = b as shown in Figure 5.2.
Now we want to find the area of the shaded region.
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Figure 5.2: The region R bounded by the graph of y = f (x), and the
ordinates x = a and x = b.

Remember
See the explanation on page 57.

As mentioned in Chapter 4, we divide the interval [a,b] into n
subintervals and choose x∗i in the ith subinterval. As shown in Figure
5.3, the amount f (x∗1)∆x1 is the area of the rectangle A1, f (x∗2)∆x2
is the area of the rectangle A2 and so on.

The sum of the rectangles areas approximates the area of the whole
region under the graph of the function f from x = a to x = b, where
as the number of the subintervals increases n→ ∞ (||P|| → 0), the
estimation becomes better.

From Definition ??, we have

A = lim
||P||→0

n

∑
i=1

f (x∗i )∆xi =
∫ b

a
f (x) dx

where P is a partition of [a,b].

Thus, if y = f (x) is continuous and f (x) ≥ 0 on [a,b], the definite

integral
∫ b

a
f (x) dx is exactly the area of the region under the graph

of y = f (x) from a to b:

A =
∫ b

a
f (x) dx

Figure 5.3: The region R bounded by the graph of y = f (x), and the
ordinates x = a and x = b.

� Example 5.1 Express the area of the shaded region as a definite integral then find the area.
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(1)

x

R

1 3

y

f (x) = 2x+1

(2)

1 4

f (x) = x2

R

x

y

Figure 5.4

Solution:

(1) A =
∫ 3

1
(2x+1) dx =

[
x2 + x

]3

1
=
[
(32 +3)− (12 +1)

]
= 12−2 = 10.

(2) A =
∫ 4

1
x2 dx = 1

3

[
x3
]4

1
= 1

3

[
64−1

]
= 63

3 = 21.

� Example 5.2 Sketch the region bounded by the graph of y =
√

x from x = 0 to x = 3, then find its area.

Solution:
The region bounded by the graph of the function y =√

x in the interval [0,3] is shown in the figure.

The area of the region is

A =
∫ 3

0

√
x dx

=
2
3

[
x3/2

]3

0

= 2
√

3.

3

y =
√

x

x

y

Figure 5.5

5.1.2 Region Bounded by a Curve and y-axis

Consider the region between the graph of the function x = f (y), the y-axis, and the ordinates y = c and y = d as shown in Figure 5.6.
Now we want to find the area of the shaded region.
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Figure 5.6: The region R bounded by the graph of x = f (y), and the ordinates y = c and y = d.

Divide the interval [c,d] into n subintervals and choose y∗i in the ith subinterval. As shown in Figure ??, the area of the rectangle A1 is
f (y∗1)∆y1, the area of the rectangle A2 is f (y∗2)∆y2 and so on.

The sum of the areas of the rectangles approximates the area of the whole region under the graph of the function x = f (y) from y = c to
y = d where as the number of the subintervals increases n→ ∞ (||P|| → 0), the estimation becomes better.

From Definition ??, we have

A = lim
||P||→0

n

∑
i=1

f (y∗i )∆yi =
∫ d

c
f (y) dx

where P is a partition of [c,d]. Thus, if x = f (y) is continuous and f (y)≥ 0 on [c,d], the definite integral
∫ d

c
f (y) dy is exactly the area

of the region under the graph of x = f (y) from y = c to y = d:

A =
∫ d

c
f (y) dy

� Example 5.3 Sketch the region bounded by the graph of x = y+1 and y-axis over the interval [−1,0], then find its area.

Solution: Figure 5.7 shows the region bounded by the
function x = y+1 and y-axis over the interval [−1,0].

The area of the region is

A =
∫ 0

−1
(y+1) dy

=
[ y2

2
+ y

]0

−1

=
[

0− (
1
2
−1)

]0

−1

=
1
2
.

1

x = y+1
x

y

Figure 5.7
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� Example 5.4 Sketch the region bounded by the graph of x =
√

y from y = 0 to y = 1, then find its area.

Solution: The region bounded by the function x =
√

y
in the interval [0,1] is shown in Figure 5.8.

The area of the region is

A =
∫ 1

0

√
y dy

=
2
3

[
y3/2

]1

0

=
2
3
.

x

y

1

x =
√

y

Figure 5.8

5.1.3 Region Bounded by Two Curves

If f (x) and g(x) are continuous functions such that f (x)≥ g(x) ∀x ∈ [a,b], then the area A of the region R bounded by the graphs of
f (x) (the upper boundary of R) and g(x) (the lower boundary of R) from x = a to x = b is subtracting the area of the region under g(x)
from the area of the region under f (x). This can be stated as follows:

A =
∫ b

a

(
f (x)−g(x)

)
dx

If f (y) and g(y) are continuous functions such that f (y)≥ g(y) ∀y ∈ [c,d], then the area A of the region R bounded by the graphs of
f (y) (the right boundary of R) and g(y) (the left boundary of R) from y = c to y = d is subtracting the area of the region bounded by g(y)
from the area of the region bounded by f (y). This can be stated as follows:

A =
∫ d

c

(
f (y)−g(y)

)
dy
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a b

f (x)

g(x)

R

x

y

c

d

f (y)g(y)

R

x

y

Figure 5.9: The area of the region bounded by the graphs of the tow functions f and g.

� Example 5.5 Express the area of the shaded region as a definite integral, then find the area.

(1)

1 2 3

f (x) = x

g(x) = 2x−1

x

y

(2)

1 2 3 4

f (x) = x2 +2

g(x) = x+4

x

y

Figure 5.10

Solution:
(1) The area of the region bounded by the two curves f (x) and g(x) is

A =
∫ 3

2
(2x−1)− x dx =

∫ 3

2
(x−1) dx =

[x2

2
− x
]3

2
=
[
9

9
2
−3)− (2−2)

]
=

3
2
.
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(2) We have two regions:

Region (1) is in the interval [1,2].

Upper graph: y = x+4
Lower graph: y = x2 +2

A1 =
∫ 2

1

(
(x+4)− (x2 +2)

)
dx

=
∫ 2

1

(
2+ x− x2) dx

=
[
2x+

x2

2
− x3

3

]2

1
=

13
6

. 1 2

f (x) = x2 +2
g(x) = x+4

x

y

Figure 5.11

Region (2) is in the interval [2,4].

Upper graph: y = x2 +2
Lower graph: y = x+4

A2 =
∫ 4

2

(
(x2 +2)− (x+4)

)
dx

=
∫ 4

2

(
x2 + x−2

)
dx

=
[x3

3
− x2

2
−2x

]4

2
=

26
3

.

The total area is A = A1 +A2 =
13
6

+
26
3

=
65
6

. 2 4

f (x) = x2 +2

g(x) = x+4

x

y

Figure 5.12

� Example 5.6 Sketch the region bounded by the graphs of y = x2 and y = x+6 over the interval [−2,3], then find its area.

Solution: The region bounded by the two functions is shown in Figure 5.13.
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The area of the region is

A =
∫ 3

−2
(x+6− x2) dx

=
[ x2

2
+6x− x3

3

]3

−2

=
[ 27

2
+

22
3

]
=

125
6

.

-2 3

y = x2

y = x+6

x

y

Figure 5.13

� Example 5.7 Sketch the region bounded by the graphs of y = x3 and y = x in the interval [−1,1], then find its area.

Solution:
The figure on the right shows the region bounded by the two functions. The region is divided into two regions as follows:

Region (1) is in the interval [−1,0]
Upper graph: y = x3

Lower graph: y = x

A1 =
∫ 0

−1
(x3− x) dx =

[x4

4
− x2

2

]0

−1
=
[
0− (

1
4
− 1

2
)
]

=
1
4
.

Region (2) is in the interval [0,1]
Upper graph: y = x
Lower graph: y = x3

A2 =
∫ 1

0
(x− x3) dx =

[x2

2
− x4

4

]1

0
=
[
(

1
2
− 1

4
)−0

]
=

1
4
.

The total area is A = A1 +A2 =
1
4
+

1
4
=

1
2

.

-1 1

y = x3

y = x

x

y

Figure 5.14

� Example 5.8 Sketch the region bounded by the graphs of y = x2 and x = y2 over [0,1], then find its area.

Solution:
The region bounded by the graphs of y = x2 and x = y2 over [0,1] is displayed in Figure 5.15. We write the two functions in terms of x,
so the upper graph:

x = y2⇒ y =
√

x .
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The area of the region is

A =
∫ 1

0
(
√

x− x2) dx

=
[ 2

3
x

3
2 − x3

3

]1

0

=
[ 2

3
− 1

3

]
=

1
3
.

1

y = x2
x = y2

x

y

Figure 5.15

� Example 5.9 Sketch the region determined by the graphs of y = sin x, y = cos x and y-axis over the interval [0, π

4 ]. Then find its
area.

Solution:
The figure on the right shows the region bounded by the two functions. Over the interval [0, π

4 ], the two curves intersect at π

4 .

Hence, the area of the shaded region is

A =
∫ π

4

0

(
cos x− sin x

)
dx

=
[

sin x+ cos x
] π

4

0

=
[( 1√

2
+

1√
2

)
−
(
1
)]

=
√

2−1.

π/4

y = sinx

y = cosx

x

y

Figure 5.16

� Example 5.10 Sketch the region bounded by the graphs of x = 2y and x = y
2 +3, then find its area.

Solution:
Let f (y) = y

2 +3 and g(y) = 2y. To sketch the region bounded by the two functions, we find out whether the two functions are intersected.
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f (y) = g(y)

⇒ y
2
+3 = 2y

⇒ y+6 = 4y

⇒ y = 2.

Substitute y = 2 in f (y) or g(y), we have x = 4. Thus, the two curves intersect at (4,2).

Based on the region given in Figure 5.17, the area is

A =
∫ 2

0
(

y
2
+3−2y) dy

=
∫ 2

0
(−3

2
y+3) dy

=
[
− 3

4
y2 +3y

]2

0

=−3+6 = 3.

1 2 3 4 5

1

2

3

4

x = 2y

x = y/2+3

x

y

Figure 5.17

5.2 Solids of Revolution

Definition 5.1 If R is a plane region, the solid of revolution S is a solid generated from revolving R about a line in the same
plane where the line is called the axis of revolution.

In the following examples, we show some simple solids of revolution.

� Example 5.11 Let y = f (x)≥ 0 be a continuous function for every x ∈ [a,b]. Let R be a region bounded by the graph of f and the
x-axis from x = a to x = b. The region revolution about x-axis generates a solid given in Figure 5.18 (right).

Figure 5.18: Revolution of the region R about x-axis. The figure on the left shows the region under the continuous function y = f (x) ≥ 0 over the
interval [a,b]. The figure on the right shows the solid S generated by revolving the region about x-axis.
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� Example 5.12 Let y = f (x) be a constant function from x = a to x = b, as in Figure 5.19. The region R is a rectangle and by
revolving it about x-axis, we obtain a circular cylinder.

Figure 5.19: Revolution of the rectangular region R about x-axis. The figure on the left shows the region under the constant function f (x) = c over the
interval [a,b]. The figure on the right shows the circular cylinder generated by revolving the region about x-axis.

� Example 5.13 Consider a region R bounded by the graph of x = f (y) from y = c to y = d. Revolution of R about y-axis generates a
solid given in Figure 5.20.

Figure 5.20: Revolution of the region R about y-axis. The figure on the left displays the region under the function x = f (y) over the interval [c,d]. The
figure on the right displays the solid S generated by revolving the region about y-axis.

5.3 Volumes of Revolution Solids

One of the interesting applications of the definite integral is computing the solids revolution. In this section, we study three methods to
compute the volumes of the revolution solids known as disk method, washer method and cylindrical shells method.

5.3.1 Disk Method

Let y = f (x)≥ 0 be a continuous function for every x ∈ [a,b] and let R be a region bounded by the graph of f and x-axis form x = a to
x = b. Let S be a solid generated by revolving R about x-axis. Assume that P is a partition of [a,b] and ω = (ω1,ω2, ...,ωn) is a mark
where ωk ∈ [xk−1,xk]. From each subinterval [xk−1,xk], we form a vertical rectangle with high f (ωk) and width ∆xk.
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The revolution of the vertical rectangle about x-axis generates a
circular disk as shown in Figure 5.21.

The volume of the circular disk with radius r and high h is

V = πr2h .

Figure 5.21
From Figure 5.22, revolution of the rectangular k generates a circular disk with radius r = f (ωk) and high h = ∆xk. Thus the volume of
the generated circular disk is

Vk = π( f (ωk))
2
∆xk, k = 1,2, ...,n .

The sum of the volumes of the circular disks approximates the volume of the revolution solid:

V =
n

∑
k=1

Vk = lim
‖P‖→0

n

∑
k=1

π
(

f (ωk)
)2

∆xk = π

∫ b

a

[
f (x)

]2
dx.

Figure 5.22: The volume of the revolution solid about x-axis by the disk method. The figure on the left shows the region R bounded by the function
y = f (x)≥ 0 on the interval [a,b] and the figure on the right shows the solid S generated by revolving R about x-axis.

Similarly, we can find the volume of the revolution solid generated by revolving a region R about y-axis. Let f be continuous on [c,d]
and R be a region bounded by the graph of f and y-axis from y = c to y = d. Let S be a solid generated by revolving R about y-axis.
Assume that P is a partition of [c,d] and ω = (ω1,ω2, ...,ωn) is a mark where ωk ∈ [yk−1,yk]. From each subinterval [yk−1,yk], we form
a horizontal rectangle, its high and width are f (ωk) and ∆yk, respectively.

The revolution of each horizontal rectangle about y-axis generates a circular disk as shown in Figure 5.23 with radius r = f (ωk) and high
h = ∆yk. Therefore, the volume of each circular disk is

Vk = π( f (ωk))
2
∆yk, k = 1,2, ...,n .
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Figure 5.23: The volume of the revolution solid about y-axis by the disk method. The figure on the left shows the region R bounded by the function f
on the interval [c,d] and the figure on the right shows the solid S generated by revolving R about y-axis.

The sum of the volumes of the circular disks approximates the volume of the revolution solid given in Figure 5.23 (right):

V =
n

∑
k=1

Vk = lim
‖P‖→0

n

∑
k=1

π( f (ωk))
2
∆yk

= π

∫ d

c

[
f (y)

]2
dy.

These considerations are summarized in the following theorem:

Theorem 5.2
1. If R is a region bounded by the graph of f on the interval [a,b], the volume of the revolution solid generated by revolving

R about x-axis is

V = π

∫ b

a

[
f (x)

]2
dx.

2. If R is a region bounded by the graph of f on the interval [c,d], the volume of the revolution solid generated by revolving
R about y-axis is

V = π

∫ d

c

[
f (y)

]2
dy.

� Example 5.14 Sketch the region R bounded by the graph of y = x+ 1 on the interval [0,2]. Then, find the volume of the solid
generated by revolving R about x-axis.

Solution: First, we sketch the graph of the function y = x+1 and determine the region R in the interval [0,2]. Then, we sketch the solid
generated by revolving R about the x-axis.
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Figure 5.24

From the figure, we have a vertical disk with radius y = x+1 and thickness dx. Thus, the volume of the solid S is as follows:

V = π

∫ 2

0
(x+1)2 dx =

π

3

[
(x+1)3

]2

0
=

π

3
(27−1) =

26π

3
.

� Example 5.15 Sketch the region R bounded by the graph of y =
√

x from x = 0 to x = 4. Then, find the volume of the solid generated
by revolving R about x-axis.

Solution: Figure 5.25 shows the region R and the solid S generated by revolving the region about the x-axis.

Figure 5.25

Since the revolution is about the x-axis, we have a vertical disk with radius y =
√

x and thickness dx.
Thus, the volume of the solid S is as follows:

V = π

∫ 4

0
(
√

x)2 dx = π

∫ 4

0
x dx =

π

2

[
x2
]4

0
=

π

2

[
16−0

]
= 8π.

� Example 5.16 Sketch the region R bounded by the graph of the function y = x2 and x-axis from x =−2 to x = 2. Then, find the
volume of the solid generated by revolving R about x-axis.

Solution: The figure on the left shows the region R bounded by the graph of y = x2 in the interval [−2,2]. The figure to the right shows
the solid S generated by revolving the region about the x-axis.
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Figure 5.26

From the figure, we have a vertical disk with radius y = x2 and thickness dx. Thus, the volume of the solid S is as follows:

V = π

∫ 2

−2
(x2)2 dx =

π

5

[
x5
]2

−2
=

64π

5
.

� Example 5.17 Sketch the region R bounded by the graph of the equations x = y+1, y = 1,y = 3. Then, find the volume of the solid
generated by revolving R about y-axis.

Solution: The figure shows the region R and the solid S generated by revolving the region about the y-axis.

Figure 5.27

From the figure, we have a vertical disk with radius x = y+1 and thickness dy. Thus, the volume of the solid S is as follows:

V = π

∫ 3

1
(y+1)2 dy =

π

3

[
(y+1)3

]3

1
=

56π

3
.

� Example 5.18 Sketch the region R bounded by the graph of the equation x = y2 on the interval [0,2]. Then, find the volume of the
solid generated by revolving R about y-axis.

Solution: The figure on the left shows the region R bounded by the graph of x = y2 in the interval [0,2]. The figure to the right shows the
solid S generated by revolving the region about the y-axis.
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Figure 5.28

Since the revolution of R is about the y-axis, we have a horizontal disk with radius x = y2 and thickness dy. Thus, the volume of the solid
S is as follows:

V = π

∫ 2

0
(y2)2 dy =

π

5

[
y5
]2

0
=

32π

5
.

� Example 5.19 Sketch the region R bounded by the graph of the equation x =
√

y−1 from y = 1 to y = 3. Then, find the volume of
the solid generated by revolving R about y-axis.

Solution: The figure shows the region R and the solid S generated by revolving the region about the y-axis.

Figure 5.29

Since the revolution of R is about the y-axis, we have a horizontal disk with radius x =
√

y−1 and thickness dy. Thus, the volume of the
solid S is as follows:

V = π

∫ 3

1
(
√

y−1)2 dy = π

[ y2

2
− y

]3

1
= 2π.

5.3.2 Washer Method
When we have an area defined by a single function, the revolution around an axis generates a disk. Thus, when the region is bound by
two functions, the revolution generates two disks, an inner disk and an outer disk. In this case, we say we have a washer method.
Let R be a region bounded by the graphs of f (x) and g(x) from x = a to x = b such that f (x)≥ g(x) for all x ∈ [a,b] as shown in Figure
5.30. The volume of the solid S generated by revolving the region R about x-axis can be found by calculating the difference between the
volumes of the two solids generated by revolving the regions under f and g about the x-axis as follows:
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The outer radius: y1 = f (x)
The inner radius: y2 = g(x)
The thickness: dx
The volume of a washer is dV = π

[
(the outer radius)2− (the inner radius)2

]
. thickness.

This implies dV = π

[
( f (x))2− (g(x))2

]
dx.

Hence, the volume of the solid over the interval [a,b] is

V = π

∫ b

a

[(
f (x)

)2−
(
g(x)

)2
]

dx.

Figure 5.30: The volume of the solid generated by revolving the region about the x-axis using the washer method.

Similarly, let R be a region bounded by the graphs of f (y) and g(y) such that f (y)≥ g(y) for all y ∈ [c,d] as shown in Figure 5.31. The
volume of the solid S generated by revolving R about the y-axis is

V = π

∫ d

c

[(
f (y)

)2−
(
g(y)

)2
]

dy.

Figure 5.31: The volume of the solid generated by revolving the region about the y-axis using the washer method.

The following theorem summarizes the washer method.



Volumes of Revolution Solids 91

Theorem 5.3
1. If R is a region bounded by the graphs of f and g on the interval [a,b] such that f ≥ g, the volume of the revolution solid

generated by revolving R about x-axis is

V = π

∫ b

a

[(
f (x)

)2−
(
g(x)

)2
]

dx.

2. If R is a region bounded by the graphs of f and g on the interval [c,d] such that f ≥ g, the volume of the revolution solid
generated by revolving R about y-axis is

V = π

∫ d

c

[(
f (y)

)2−
(
g(y)

)2
]

dy.

� Example 5.20 Let R be a region bounded by the graphs of the functions y = x2 and y = 2x. Evaluate the volume of the solid
generated by revolving R about x-axis.

Solution:
Let f (x) = x2 and g(x) = 2x. First, we check whether the graphs of the two functions are intersecting or not.

f (x) = g(x)⇒ x2 = 2x⇒ x2−2x = 0

⇒ x(x−2) = 0

⇒ x = 0 or x = 2.

Note

The graphs of two functions f (x)
and g(x) intersect at x = x0 if
f (x0) = g(x0).

Substituting x = 0 into f (x) or g(x) gives y = 0. Similarly, substitute x = 2 into any of the two functions gives y = 2. Thus, the two
curves intersect in two points (0,0) and (2,4).

Figure 5.32

The figure shows the region R and the solid generated by revolving the region about the x-axis. A vertical rectangle generates a washer
where
the outer radius: y1 = 2x,
the inner radius: y2 = x2 and
the thickness: dx.
The volume of the washer is dV = π

[
(2x)2− (x2)2

]
dx.
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Hence, the volume of the solid over the interval [0,2] is

V = π

∫ 2

0

(
(2x)2− (x2)2

)
dx = π

∫ 2

0
(4x2− x4) dx

= π

[4x3

3
− x5

5

]2

0

= π

[32
3
− 32

5

]
=

64
15

π.

� Example 5.21 Consider the same region as in Example 5.20 enclosed by the graphs of y = x2 and y = 2x. Revolve the region about
y-axis instead and find the volume of the generated solid.

Solution: The figure shows the region R and the solid generated by revolving the region about the y-axis.

Figure 5.33

Since the revolution is about the y-axis, we need to rewrite the equations in term of y i.e., x = f (y) and x = g(y).

y = x2⇒ x =
√

y = f (y) and x =
y
2
= g(y) .

The two horizontal rectangles generate a washer where
the outer radius: x1 =

√
y,

the inner radius: x2 =
y
2 and

the thickness: dy.
The volume of the washer is dV = π

[
(
√

y)2− ( y
2 )

2
]

dy.

Hence, the volume of the solid over the interval [0,4] is

V = π

∫ 4

0

(
(
√

y)2− (
y
2
)2
)

dy = π

∫ 4

0

(
y− y2

4

)
dy

= π

[y2

2
− y3

12

]4

0

=
8
3

π.

� Example 5.22 Consider a region R bounded by the graphs of the functions y =
√

x, y = 6− x and x-axis. Revolve the region about
y-axis and find the volume of the generated solid.

Solution: Since the revolution is about the y-axis, we need to rewrite the functions in terms of y i.e., x = f (y) and x = g(y).

y =
√

x⇒ x = y2 = f (y) and y = 6− x⇒ x = 6− y = g(y).
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Now, we find the intersection points: f (y) = g(y)⇒ y2 = 6− y⇒ y2 + y−6 = 0⇒ y =−3 or y = 2.

Since y =
√

x, we ignore the value y =−3. By substituting y = 2 into the two functions, we have x = 4. Thus, the two curves intersect in
one point (4,2). The solid S generated by revolving the region R about y-axis is shown in Figure 5.34.

Also, the revolution is about the y-axis, so we have a horizontal rectangle that generates a washer where
the outer radius: x1 = 6− y,
the inner radius: x2 = y2 and
the thickness: dy.
The volume of the washer is dV = π

[
(6− y)2− (y2)2] dy.

The volume of the solid over the interval [0,2] is

V = π

∫ 2

0

[
(6− y)2− (y2)2] dy = π

[
− (6− y)3

3
− y5

5

]2

0

= π

[(
− 64

3
− 32

5
)
−
(
− 216

3
−0
)]

=
664
15

π.

Figure 5.34

� Example 5.23 Consider the same region as in Example 5.22 enclosed by the graphs of y =
√

x, y = 6− x and x-axis. Revolve the
region about x-axis instead and find the volume of the generated solid.

Solution: From the figure, we find that the solid is made up of two separate regions and each requires its own integral. Hence, we use the
disk method to evaluate the volume of the solid generated by revolving each region.

From revolution of the first region R1 about the x-axis, we have a vertical disk with radius y = x2 and thickness dx. Thus, the volume of
the solid S1 is as follows:

V1 = π

∫ 4

0
(
√

x)2 dx = π

∫ 4

0
x dx

=
π

2

[
x2
]4

0
=

32
3

π.

From revolution of the first region R2 about the x-axis, we have a vertical disk with radius y = 6− x and thickness dx. Thus, the volume
of the solid S2 is as follows:
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V2 = π

∫ 6

4
(6− x)2 dx = π

∫ 6

4
(6− x)2 dx

=−π

3

[
(6− x)3

]6

4
=

32
3

π.

Note
Use the substitution method to do
the second integral with

u = 6− x and −du = dx

The volume of the total solid is

V =V1 +V2

= 8π+
8
3

π =
32
3

π.

Figure 5.35

5.3.3 Method of Cylindrical Shells
In this section, we study a new method to evaluate the volume of revolution solid called cylindrical shells method. In the washer method,
we assume that the rectangle from each subinterval is vertical to the revolution axis while in the cylindrical shells method, the rectangle
will be parallel to the revolution axis.

Figure 5.36 shows a cylindrical shell. Let

r1 be the inner radius of the shell,

r2 be the outer radius of the shell,

h be high of the shell,

∆r = r2− r1 be the thickness of the shell,

r = r1+r2
2 be the average radius of the shell.

Figure 5.36
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The volume of the cylindrical shell is

V =V2−V1

= πr2
2h−πr2

1h

= π(r2
2− r2

1)h

= π(r2 + r1)(r2− r1)h

= 2π(
r2 + r1

2
)h(r2− r1)

= 2πrh∆r.

Note

V︸︷︷︸
volume of the cylindrical shell

= V2︸︷︷︸
volume of the outer cylinder

− V1︸︷︷︸
volume of the inner cylinder

Now, let R be a region R on the interval [a,b] and S be a solid generated by revolving the region about y-axis (Figure 5.37). Let P be a
partition of the interval [a,b] and let ω = (ω1,ω2, ...,ωn) be a mark on P where ωk is the midpoint of [xk−1,xk].

The revolution of the rectangle about the y-axis generates a cylindrical shell where
the high = f (ωk),
the average radius = ωk,
the thickness = ∆xk.

A B

Figure 5.37: The volume of the revolution solid about the y-axis by the cylindrical shells method.

Hence, the volume of the cylindrical shell is Vk = 2πωk f (ωk)∆xk. To evaluate the volume of the whole solid, we sum the volumes of all
cylindrical shells. This implies

V =
n

∑
k=1

Vk = 2π

n

∑
k=1

ωk f (ωk)∆xk.

From the Riemann sum

lim
‖P‖→0

n

∑
k=1

ωk f (ωk)∆xk =
∫ b

a
x f (x) dx .

This implies

V = 2π

∫ b

a
x f (x) dx.

Similarly, we can find that if the revolution of the region is about x-axis, the volume of the revolution solid is

V = 2π

∫ d

c
y f (y) dy.
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Theorem 5.4
1. If R is a region bounded by the graph of f on the interval [a,b], the volume of the revolution solid generated by revolving

R about y-axis is

V = 2π

∫ b

a
x f (x) dx.

2. If R is a region bounded by the graph of f on the interval [a,b], the volume of the revolution solid generated by revolving
R about x-axis is

V = 2π

∫ d

c
y f (y) dy.

Note: The importance of the cylindrical shells method appears when solving equations for one variable in terms of another (i.e., solving
x in terms of y). For example, let S be a solid generated by revolving the region bounded by y = 2x2− x3 and y = 0 about y-axis. By the
washer method, we have to solve the cubic equation for x in terms of y, but this is not simple.

� Example 5.24 Sketch the region R bounded by the graph of y = 2x− x2 and x-axis. Then, by the cylindrical shells method, find the
volume of the solid generated by revolving R about y-axis.

Solution:
The figure shows the region R and the solid S generated by revolving the region about the y-axis.

Figure 5.38

Try to solve Exercise 5.24 using the
disk method.

Since the revolution is about the y-axis, the rectangle is vertical and by revolving it, we obtain a cylindrical shell where
the high: y = 2x− x2,
the average radius: x,
the thickness: dx.

The volume of the cylindrical shell is dV = 2πx(2x− x2) dx = 2π(2x2− x3) dx.

Thus, the volume of the solid over the interval [0,2] is

V = 2π

∫ 2

0
(2x2− x3) dx

= 2π

[2x3

3
− x4

4

]2

0

= 2π
(16

3
− 16

4
)
=

8π

3
.
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� Example 5.25 Sketch the region R bounded by the graphs of the equations x =
√

y and y = 4, and y-axis. Then, find the volume of
the solid generated by revolving R about x-axis.

Solution:

Figure 5.39

Since the revolution is about the x-axis, the rectangle is horizontal and by revolving it, we have a cylindrical shell where
the high: x =

√
y,

the average radius: y,
the thickness: dy.

The volume of the cylindrical shell is dV = 2π y
√

y dy.

Thus, the volume of the solid over the interval [0,4] is

V = 2π

∫ 4

0
y
√

y dy = 2π

∫ 4

0
y

3
2 dy

=
4π

5

[
y

5
2

]4

0

=
4π

5

[
32−0

]
=

128π

5
.
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Exercises

1 - 36 Sketch the region bounded by the graphs of the given equations, then find its area.

1 y = x+2 and x-axis over [−2,1]

2 y = x3 and x-axis over [0,2]

3 y = x2, y = 4

4 x = y3 and y-axis from y = 0 to y = 2

5 x = y2 and y-axis from y =−1 to y = 1

6 y = x3, y =−x, y = 8

7 y = x+1, y = 2x and x-axis

8 x = y3−1 and y-axis from y = 1 to y = 2

9 y = x, x = 2− y, y = 0

10 y = x, y = x−1 over [0,2]

11 x2 + y = 4, y = 0

12 x = 2y, y+6 = 2x, x = 0

13 y = x2, y =
√

x

14 x = y2, y = x+1, y = 1, y = 2

15 y−1 = 3x and y−2 = x from x = 0 to x = 1

16 y =
√

x+1 and y = x−1 over [1,3]

17 y = x3, y = x2

18 y = (x+1)2 and x-axis over [−2,0]

19 y = x2 +1 and y = x+1 from x = 0 to x = 1

20 x =
√

y and 2x = y from y = 0 to y = 4

21 y =
√

x+1, y = x+1

22 y = x2, y =
√

x

23 y = x2 +1, y = 2x and x = 0

24 y = sin x and y = cos x from x = 0 to x = π

2

25 y = ex and x-axis over [0, ln4]

26 y = 3x, y =−x+2 and x-axis

27 y = e−x from x =−1 to x = 2

28 y = sin x and y = cos x over [0, π

6 ]

29 y = ex and y-axis from x = 0 to x = ln2

30 y = x, y =−x+2 and x-axis

31 y = cos 2x and x-axis over [0, π

4 ]

32 y = sin x, x = π

4 , x = π

2

33 y = sec2 x, y = 0, x = −π

4 , x = π

4

34 y = tan x and x-axis from x = 0 to x = π

4

35 y = x2−1, x = 1, x = 2

36 y = lnx, y = 0, x = e2
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37 - 54 Sketch the region R bounded by the graphs of the given equations and find the volume of the solid generated by revolving R
about x-axis.

37 y = 2x and x-axis over [0,1]

38 y = x, x+ y = 4 and y-axis

39 y = x2, y = 4− x2

40 y = 1
x and x-axis over [1,3]

41 y = x2, y =
√

x

42 y = x2, y = 1− x2

43 y = x2, y = x3

44 y = 1+ x3, x = 1, x = 2, y = 0

45 x = y+1, x = 2y−3, x = 1, x = 3

46 x = y, x =
√

y

47 y = x3, y = x2, x = 1, x = 3/2

48 y = 4x− x2 and x-axis

49 y = ex over [0,2]

50 y = x2, y = 9

51 y = x2, y = x

52 y = lnx over [1,4]

53 y = sin x and y = cos x from x = 0 to x = π

4 (use
cos2 x = 1+cos2x

2 , sin2 x = 1−cos2x
2 )

54 y = sin x from x = 0 to x = π

2

55 - 72 Sketch the region R bounded by the graphs of the given equations and find the volume of the solid generated by revolving R
about y-axis.

55 x = 3y and x-axis over [0,1]

56 x = y2, x = 2y

57 y = x3 and y-axis over [0,1]

58 y = x2, y = 0 and x = 2

59 x = y2, y = x−2

60 y = cos x, x = 0, x = π

2

61 y = cos x, y = sin x, x = 0, x = π

4

62 y2 = 1− x, x = 0

63 x = 3y and x = y+2 from y = 0 to y = 1

64 x = y, x = y+1, y = 0, y = 2

65 y = x2−1, y = 0, x = 1, x = 2

66 x = y3, x = y, y = 0, y = 1

67 (x−2)2 + y = 1, y = 0

68 y = 1− x2, y = 1− x

69 y = x2 +1 and x-axis over [0,1]

70 y = 6−3x and y-axis

71 y = 1− x2, x = 0, x = 1

72 y = (x−1)2 and x-axis over [0,2]
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73 - 78 Choose the correct answer.

73 The area of the region bounded by the graphs of the functions y = x2 and y = 2− x2 is equal to
(a) 2 (b) 4 (c) 3

8 (d) 8
3

74 The area of the region bounded by the graphs of the functions x =−y2 and x =−1 is equal to
(a) 4

3 (b) 1
9 (c) 1

6 (d) 8
3

75 The area of the region bounded by the graphs of the functions y = x and y =−x and y = 1 is equal to
(a) 1 (b) 0 (c) 2 (d) 1

2

76 The area of the region bounded by the graphs of the functions y = 2x and y = x and 0≤ x≤ 1 is equal to
(a) 1

2 (b) 1
4 (c) 2 (d) 1

3

77 The area of the region bounded by the graphs of the functions y = cos x, y = sin x, x = 0 and x = π

4 is equal to
(a)
√

2−1 (b) 0 (c)
√

2+1 (d) 1−
√

2

78 The area of the region bounded by the graphs of the functions x = y2 and x = 2− y2 is equal to
(a) 1

3 (b) 8 (c) 1 (d) 8
3
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Chapter 6

PARTIAL DERIVATIVES

6.1 Functions of Several Variables

Definition 6.1
1. A function of two variables is a rule that assigns an ordered pair (x1,x2) to a real number w:

f : R2 −→ R

(x1,x2)−→ w .

2. A function of three variables is a rule that assigns an ordered triple (x1,x2,x3) to a real number w:

f : R3 −→ R

(x1,x2,x3)−→ w .

� Example 6.1
(1) f (x,y) = x2 + y2 is a function of two variables x and y. The function f (x,y) takes (x,y) ∈ R2 to ω ∈ R. For example, f (1,2) =

12 +22 = 5 i.e., the function f takes (1,2) ∈ R2 to 5 ∈ R.

(2) f (x,y,z) = x2 + y2 + z is a function of three variables x, y and z. The function f (x,y,z) takes (x,y,z) ∈ R3 to ω ∈ R. For example,
the function f takes (1,2,−1) ∈ R3 to 4 ∈ R.

Definition 6.2 A function of n variables is a rule that assigns an ordered n-tuple (x1,x2, ...,xn) to a real number w:

f : Rn −→ R

(x1,x2, ...,xn)−→ w .

� Example 6.2 f (x,y,z,u,v) = x2 + y2−7zu+ v2 is a function of five variables. The function f (x,y,z,u,v) takes (x,y,z,u,v) ∈ R5 to
ω ∈ R. For example, the function f takes (1,0,1,1,2) ∈ R5 to −2 ∈ R.

6.2 Partial Derivatives

For one variable y = f (x), the derivative dy/dx gives the change rate of y with respect to x. A similar thing occurs with functions of
more than one variable. For example, for a function of two variables ω = f (x,y), the independent variables are x and y while ω is the
dependent variable i.e. as x and y vary the value of ω traces out a surface.
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6.2.1 Partial Derivatives of Functions of Several Variables

Definition 6.3 Let w = f (x,y) be a function of two variables.
1. The partial derivative of ω = f (x,y) with respect to x denoted ∂ f

∂x ,
∂w
∂x , fx or wx is calculated by applying the rules of

differentiation to x holding y constant.

2. The partial derivative of ω = f (x,y) with respect to y denoted ∂ f
∂y ,

∂w
∂y , fy or wy is calculated by applying the rules of

differentiation to y holding x constant.

� Example 6.3 If f (x,y) = x2y3 + xy ln(x+ y), calculate (1) fx and (2) fy.

Solution:

(1) fx = 2xy3 + y ln(x+ y)+ xy
( 1

x+y
)
= 2xy3 + y ln(x+ y)+ xy

x+y .

(2) fy = 3x2y2 +x ln(x+y)+xy
( 1

x+y
)
= 3x2y2 +x ln(x+y)+ xy

x+y .

If u = g(x) is differentiable, then

d
dx

(lnu) =
u′

u

� Example 6.4 If f (x,y) = 2x
y + sin(xy), calculate (1) fx and (2) fy.

Solution:

(1) fx = 2
y + ycos(xy) .

(2) fy =− 2x
y2 + xcos(xy) .

If u = g(x) is differentiable, then

d
dx

(sin(u)) = cos(u) u′

Definition 6.4 Let w = f (x,y,z) be a function of three variables.
1. The partial derivative of ω = f (x,y,z) with respect to x denoted ∂ f

∂x ,
∂w
∂x , fx or wx is calculated by applying the rules of

differentiation to x holding y and z constants.

2. The partial derivative of ω = f (x,y,z) with respect to y denoted ∂ f
∂y ,

∂w
∂y , fy or wy is calculated by applying the rules of

differentiation to y holding x and z constants.

3. The partial derivative of ω = f (x,y,z) with respect to z denoted ∂ f
∂z ,

∂w
∂z , fz or wz is calculated by applying the rules of

differentiation to z holding x and y constants.

� Example 6.5 If f (x,y) = z2y3− y2(x3 + z), calculate (1) fx (2) fy (3) fz.

Solution:
(1) fx = 0− y2(3x2) =−3y2x2 .

(2) fy = 3z2y2−2y(x3 + z) .

(3) fz = 2zy3− y2(1) = 2zy3− y2 .

6.2.2 Second Partial Derivatives
In derivative calculus with one variable, we saw that the second derivative is often useful. It tells how the curve is sharp and determines
the maximum and minimum points. In a more complicated case, the second derivative will be used for multi-variable functions. With
two variables f (x,y), there are four possible second derivatives:

∂2 f
∂x2 ,

∂2 f
∂x∂y

,
∂2 f
∂y∂x

,
∂2 f
∂y2 .

Therefore, as number of variables increases, the number of second derivatives increases. Now, let ω = f (x,y) be a function of x and y,
then
• ∂2 f

∂x2 means the second derivative with respect to x holding y constant.
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• ∂2 f
∂y2 means the second derivative with respect to y holding x constant.

• ∂2 f
∂x∂y means differentiate first with respect to y and then with respect to x.

Definition 6.5 Let w = f (x,y) be a function of two variables, then
1. ∂2 f

∂x2 = ∂

∂x (
∂ f
∂x ) = ∂

∂x fx = fxx.

2. ∂2 f
∂y2 = ∂

∂y (
∂ f
∂y ) = ∂

∂y fy = fyy.

3. ∂2 f
∂x∂y = ∂

∂x (
∂ f
∂y ) = ∂

∂x fy = fyx.

4. ∂2 f
∂y∂x = ∂

∂y (
∂ f
∂x ) = ∂

∂y fx = fxy.

The second partial derivatives of functions of three variables are defined in the same manner given in the previous definition.

Theorem 6.6
(1) Let f (x,y) be a function of two variables. If the second partial derivatives fxy and fyx exist and are continuous, then

fxy = fyx.

(2) Let f (x,y,z) be a function of three variables. If the partial derivatives fxy, fyx, fxz, and fzx exist and are continuous, then
fxy = fyx, fxz = fzx and fyz = fzy.

� Example 6.6 If f (x,y) = x3 +2x2y2 + y3, calculate (1) fxy (2) fyx.

Solution:
(1) fx = 3x2 +4xy2, then fxy = 8xy.

(2) fy = 4x2y+3y2, then fyx = 8xy.
From this example, we have fxy = fyx.

� Example 6.7 If f (x,y,z) = z3x+ y2(x+ yz), calculate
(1) fx, fy and fz at (1,1,1).

(2) fxx, fyy and fzz.

(3) fxy, fyz and fzx at (0,−1,1).

Solution:
(1) fx = z3 + y2, fy = 2y(x+ yz)+ y2z = 2xy+3y2z and fz = 3xz2 + y3. At (1,1,1), we have fx = 2, fy = 5 and fz = 4.

(2) fxx = 0, fyy = 2x+6yz and fzz = 6xz.

(3) fxy = 2y, fyz = 3y2 and fzx = 3z2. At (0,−1,1), we have fxy =−2, fyz = 3 and fzx = 3.

6.3 Chain Rule for Partial Derivatives

A chain rule for ordinary derivatives is to differentiate a function of a function (composite functions). If f (x) and g(x) are two
functions, then the composite function of the two functions is ( f ◦g)(x) = f

(
g(x)

)
. For example, if f (x) = cos x and g(x) = x2, then

( f ◦g) = f
(
g(x)

)
= cos x2. To differentiate such function, we apply the chain rule given in the following definition.
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Definition 6.7 If g is a differentiable function at x and f is differentiable at g(x), then the composite function F = f ◦ g
defined by F(x) = f

(
g(x)

)
is differentiable at x as follows:

dF
dx

=
d f

dg(x)
dg(x)

dx
.

� Example 6.8 If y = cos x2, calculate dy
dx .

Solution:
Let f (x) = cos x and g(x) = x2, then ( f ◦g)(x) = f

(
g(x)

)
= cos x2.

It follows that
d f

dg(x)
=−sin

(
g(x)

)
and

dg(x)
dx

= 2x .

By applying the chain rule, we have

dy
dx

=
d f

dg(x)
dg(x)

dx

=−sin
(
g(x)

)
(2x) =−2x sin x2 .

In the following, we expanded the chain rule for composite functions of two or three functions. Thus, we need to use the chain rule more
than once.
1. If w = f (x,y), x = g(t), and y = h(t) such that f , g and h are differentiable, then

d f
dt

=
dw
dt

=
∂w
∂x

dx
dt

+
∂w
∂y

dy
dt

.

2. If w = f (x,y), x = g(t,s), and y = h(t,s) such that f , g and h are differentiable, then

∂ f
∂t

=
∂w
∂t

=
∂w
∂x

∂x
∂t

+
∂w
∂y

∂y
∂t

.

∂ f
∂s

=
∂w
∂s

=
∂w
∂x

∂x
∂s

+
∂w
∂y

∂y
∂s

.

3. If w = f (x,y,z), x = g(t,s), y = h(t,s), and z = k(t,s) such that f , g, h and k are differentiable, then

∂ f
∂t

=
∂w
∂t

=
∂w
∂x

∂x
∂t

+
∂w
∂y

∂y
∂t

+
∂w
∂z

∂z
∂t

.

∂ f
∂s

=
∂w
∂s

=
∂w
∂x

∂x
∂s

+
∂w
∂y

∂y
∂s

+
∂w
∂z

∂z
∂s

.

Note that the previous result can be proven by repeating the chain rule.

� Example 6.9 If f (x,y) = xy+ y2, x = s2t, and y = s+ t, calculate (1) ∂ f
∂t (2) ∂ f

∂s .

Solution:
(1) ∂ f

∂t = ∂ f
∂x

∂x
∂t +

∂ f
∂y

∂y
∂t

= y s2 +(x+2y)(1)
= (s+ t)s2 + s2t +2s+2t
= s3 +2s2t +2s+2t .

(2) ∂ f
∂s = ∂ f

∂x
∂x
∂s +

∂ f
∂y

∂y
∂s

= y (2st)+(x+2y)(1)
= (s+ t)(2st)+ s2t +2s+2t
= 3s2t +2st2 +2s+2t .
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� Example 6.10 If f (x,y,z) = x+ sin(xy)+ cos(xz), x = ts,y = s+ t, and z = s
t , calculate (1) ∂ f

∂t (2) ∂ f
∂s .

Solution:
(1) ∂ f

∂t = ∂ f
∂x

∂x
∂t +

∂ f
∂y

∂y
∂t +

∂ f
∂z

∂z
∂t

= (1+ ycos(xy)− zsin(xz))s+ xcos(xy)(1)− xsin(xz)(−s
t2 )

= s+
(
(s+ t)s+ ts

)
cos(ts(s+ t))+

(
( s

t2 )ts− ( s
t )s
)

sin(s2)

= s+(s2 +2ts)cos(ts(s+ t)) .

(2) ∂ f
∂s = ∂ f

∂x
∂x
∂s +

∂ f
∂y

∂y
∂s +

∂ f
∂z

∂z
∂s

= (1+ ycos(xy)− zsin(xz))t + xcos(xy)(1)− xsin(xz)( 1
t )

= t +
(
(s+ t)s+ ts

)
cos(ts(s+ t))−

(
( s

t )t +( s
t )t
)

sin(s2)

= s+(s2 +2ts)cos(ts(s+ t))−2ssin(s2) .

6.4 Implicit Differentiation

Sometimes a function can be defined implicitly by an equation of the form f (x,y) = 0. We can solve y in terms of x to have a function
y = y(x) such that f (x,y(x)) = 0 for all x. For example, consider the following equation 2y+8x = 6. We can rewrite the equation as
y = 3−4x which is in the form y = f (x). By taking the derivative, we have dy

dx =−4.
Alternatively, we know that y is a function of x i.e. y = y(x). By differentiating the equation 2y+8x = 6 implicitly, we have

2
dy
dx

+8
dx
dx

=
d6
dx

2
dy
dx

+8 = 0 .

Now, rearrange to have dy
dx ,

2
dy
dx

+8 = 0⇒ dy
dx

=−8
2
=−4

and this what we obtained before.
Suppose we cannot find y explicitly as a function of x, only implicitly through the equation F(x,y) = 0. For example, consider a circle of
radius r centered at the origin and represented by the formula x2 + y2 = r2. The graph of the circle is not the graph of a function because
it fails the vertical line test. By solving y in terms of x, we have y =±

√
r2− x2. This formula of the circle cannot be expressed as one

function, so how we can find dy
dx . The answer is by implicit differentiation.

We know that F(x,y) = 0 defines y as a function of x, y = y(x). Now, differentiate both sides of F(x,y(x)) = 0 by using the chain rule.
This implies

∂F
∂x

(1)+
∂F
∂y

dy
dx

= 0⇒ dy
dx

=−∂F/∂x
∂F/∂y

.

The following definition summarizes the implicit differentiation.

Definition 6.8
1. Suppose that the equation F(x,y) = 0 defines y implicitly as a function of x, y = f (x) such that f is differentiable. Then,

dy
dx

=−Fx

Fy
.

2. Suppose that the equation F(x,y,z) = 0 defines z implicitly as a function of x and y, z = f (x,y) such that f is differentiable.
Then,

∂z
∂x

=−Fx

Fz
and

∂z
∂x

=−
Fy

Fz
.

� Example 6.11 Let y2− xy+3x2 = 0, find dy
dx .

Solution:
Let F(x,y) = y2− xy+3x2 = 0, then Fx =−y+6x and Fy = 2y− x. Hence,

dy
dx

=−Fx

Fy
=−−y+6x

2y− x
=

y−6x
2y− x

.
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� Example 6.12 Let F(x,y,z) = x2y+ z2 + sin(xyz) = 0, calculate (1) ∂z
∂x (2) ∂z

∂y .

Solution:
Fx = 2xy+ yzcos(xyz), Fy = x2 + xzcos(xyz) and Fz = 2z+ xycos(xyz). Hence,

(1)
∂z
dx

=−Fx

Fz
=−2xy+ yzcos(xyz)

2z+ xycos(xyz)
.

(2)
∂z
dy

=−
Fy

Fz
=− x2 + xzcos(xyz)

2z+ xycos(xyz)
.
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Exercises

1 - 26 Find fx, fy, fxx and fyy.

1 f (x,y) = 2x4y3− xy2 +3y+1

2 f (x,y) = 4ex2y3

3 f (x,y) = 3x+4y

4 f (x,y) = xy3 + x2y2

5 f (x,y) = x3y+ ex

6 f (x,y) = xe2x+3y

7 f (x,y) = x−y
x+y

8 f (x,y) = 2xsin(x2y)

9 f (x,y) = x2 siny+ y2 cosx

10 f (x,y) = x3 + xy2 + y

11 f (x,y) = x2y2 + xy2

12 f (x,y) = x3 + x+2y2 + y

13 f (x,y) = yx3 + xy4−3x−3y

14 f (x,y) = y
x lnx

15 f (x,y) = 1
x2+y2

16 f (x,y) = x2 + xy− y2

17 f (x,y) = ln(x2− y)

18 f (x,y) = xcosy+ yex

19 f (x,y) = ysinxy

20 f (x,y) = 4x2−8xy4 +7y3−3

21 f (x,y) = sinxy

22 f (x,y) = x3 +3x2y+ y2 +4x+2

23 f (x,y) = x2y+4xy3

24 f (x,y) = x2 tany+ y2

25 f (x,y) = x3 lny+ xy4

26 f (x,y) = x3y− y3x

27 - 41 Find fxy, fxz, fyz, and fzz at the given point.

27 f (x,y,z) = xcosz+ x2y3ez, (1,1,0)

28 f (x,y,z) = 2y− sin(xz), (0,1,0)

29 f (x,y,z) = ln(z+ xy2), (1,1,1)

30 f (x,y,z) = x2 + xy+ y2z3, (1,−1,1)

31 f (x,y,z) = xy+ yz, (2,2,1)

32 f (x,y,z) = x3z+ x+ y2z, (1,−2,1)

33 f (x,y,z) = x2y+ xz3, (−3,2,1)

34 f (x,y,z) = xyz− exz, (0,1,0)

35 f (x,y,z) = x2 + yz+2z3, (1,0,0)

36 f (x,y,z) = cosxy+2z2 + xy2z3, (0,0,−1)

37 f (x,y,z) = 4x3y+ zx+ y, (1,1,1)

38 f (x,y,z) = 3x2 +2y2 + xy3 + z2, (1,−1,1)

39 f (x,y,z) = x2 + xy2 + y2z3, (1,1,1)

40 f (x,y,z) = x3 + x2y2 +2y3 +2x+ z3, (2,2,1)

41 f (x,y,z) = xyz+ y2 + x3 + z, (1,−1,2)
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42 - 57 Find ∂ f
∂s and ∂ f

∂t at the given point.

42 f (x,y) = x2 +2xy, x = 2s+ t, y = s ln t, (1,1)

43 f (x,y) = x2y, x = st2, y = st3, (−1,1)

44 f (x,y) = xy, x = st, y = t2− s2, (1,1)

45 f (x,y) = x2y, x = sin(st), y = t2− s2, (0,1)

46 f (x,y) = xy2, x = sin t, y = s(t2 +1), (1,1)

47 f (x,y) = cos(x2y)+ y3, x = s+ t2, y = st, (1,−1)

48 f (x,y) = ex2+y2
, x = 3t, y = s+ t, (−1,1)

49 f (x,y) = xy ln(xy), x = s+ t, y = 2st, (1,1)

50 f (x,y) = 1
xy , x = st, y = s2t, (1,1)

51 f (x,y,z) = y+ cos(xy)+ sin(xz), x = st, y = s+ t, z = t(s+1) (1,1)

52 f (x,y,z) = y+ tan(xz)+ cosy, x = s2t, y = s
t , z = st (0,1)

53 f (x,y,z) = xyz, x = t2 + s, y = st, z = t3 (1,1)

54 f (x,y,z) = (x+ y)z, x = t + s, y = st, z = t2 (1,−1)

55 f (x,y,z) = (cosx+ y)z, x = 2t + s, y = st, z = 3t (1,1)

56 f (x,y,z) = ex+y+z, x = 3t + s, y = s2, z = t2 (1,1)

57 f (x,y,z) = x2yz, x = ssin t, y = t2 +1, z = s+1 (1,1)

58 - 75 By using the implicit function differentiation, find dy
dx .

58 x3−3xy2 + y3 = 5

59 x−√xy+3y = 4

60 4x+6y = 5

61 x2 + y2 = 1

62 4y+2x = 8

63 y2 + x2 = 16

64 5y3 +4x5 = 20

65 x2 + y3 = 2

66 y2− x3(2− x) = 0

67 ysiny+ x = 1

68 x2 + y2−4 = 0

69 √xy− y2 +2x = 2

70 y
1
2 −2x2 +5y = 1

71 x2y3 + x = 2

72 lnx+ lny = 4

73 sin−1 x− y = 0

74
√

1+ x2y2 = 2xy

75 2x3 + x2y+ y3 = 1
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Chapter 7

DIFFERENTIAL EQUATIONS

7.1 Definition of Differential Equations

A differential equation is an equation which contains derivatives of the unknown. There are two classes of the differential equations:
ordinary differential equations (O.D.E.) and partial differential equations (P.D.E.). In this book, we only consider the ordinary differential
equations.

Definition 7.1 An equation that involves x,y,y′,y′′,y′′′,y(4), ...,y(n) for a function y(x) with nth derivative of y with respect to
x is an ordinary differential equation of order n.

� Example 7.1
(1) y′ = x2 +5 is a differential equation of order 1.

(2) y′′+ x(y′)3− y = x is a differential equation of order 2.

(3) (y(4))3 + x2y′′ = 2x is a differential equation of order 4.

Remark 7.2 y = y(x) is called a solution of a differential equation if it satisfies that differential equation.

� Example 7.2 Verify that y = 3x2 +4x is a solution of the differential equation y′ = 6x+4.

Solution:
We want to see whether the function y satisfies the equation. By taking the derivative, we obtain y′ = 6x+ 4 and this is the given
differential equation.

Note:
1. y = y(x)+ c is the general solution of the differential equation.

2. If an initial condition was added to the differential equation to assign a certain value for c, then y = y(x) is called the particular solution
of the differential equation.

� Example 7.3 Verify that y = 4x3+2x2+x is a solution of the differential equation y′ = 12x2+4x+1. Then, with the initial condition
y(0) = 2, find the particular solution of the equation.

Solution:
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First, we want to check whether the function y satisfies the differential equation. By taking the derivative, we have y′ = 12x2 +4x+1
and this is the given differential equation. Hence, y = 4x3 +2x2 + x+ c is the general solution of the given differential equation. Now,
since y(0) = 2, then

y(0) = 403 +202 +0+ c = 2⇒ c = 2 .

Therefore, y = 4x3 +2x2 + x+2 is the particular solution of the differential equation y′ = 12x2 +4x+1.

7.2 Separable Differential Equations

A differential equation is separable if the equation can be written in the form

M(x)+N(y)y′ = 0

where M(x) and N(y) are continuous functions and y′ = dy
dx .

To solve the separable differential equation, we have the following steps:
1. Write the equation as M(x)dx+N(y)dy = 0. This implies N(y)dy =−M(x)dx.

2. Integrate the left-hand side with respect to y and the right-hand side with respect to x:
∫

N(y)dy =
∫
−M(x)dx.

3. Solve for y to write the solution in the form y = y(x).

� Example 7.4 Solve the differential equation y′− y2ex = 0.

Solution: Manipulate the differential equation to become N(y)dy =−M(x)dx.

y′− y2ex = 0⇒ dy
dx

= y2ex⇒dy
y2 = ex dx

⇒
∫

y−2 dy =
∫

ex dx integrate both sides

⇒ y−1

−1
= ex + c

⇒y =− 1
ex + c

. solve for y

� Example 7.5 Solve the differential equation dy
dx = y2ex, with y(0) = 1.

Solution: Write the differential equation in the form N(y)dy =−M(x)dx.

dy
dx

= yx⇒ dy
y

= x dx

⇒
∫ 1

y
dy =

∫
x dx integrate both sides

⇒ ln |y|= x2 + c

⇒y = ex2+c . solve for y

With y(0) = 1, we have 1 = ec. This implies c = ln(1) = 0. Hence, the particular solution is y = ex2
.

� Example 7.6 Solve the differential equation dy− (1+ y2)sinx dx = 0.

Solution: Write the differential equation in the form N(y)dy =−M(x)dx.

dy− (1+ y2)sinx dx = 0⇒ dy
1+ y2 = sinx dx

⇒
∫ 1

1+ y2 dy =
∫

sinx dx integrate both sides

⇒ tan−1 y =−cosx+ c

⇒y = tan(−cosx+ c) . solve for y by taking tan function for both sides
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� Example 7.7 Solve the differential equation dy
dx −

1
2 y = 3

2 , with y(0) = 4.

Solution: Manipulate the differential equation to become N(y)dy =−M(x)dx.

dy
dx
− 1

2
y =

3
2
⇒ 2

dy
dx
− y = 3⇒ dy

3+ y
= 2 dx

⇒
∫ 1

3+ y
dy =

∫
2 dx integrate both sides

⇒ ln |3+ y|= 2x+ c

⇒y = e2x+c−3 . solve for y

With y(0) = 4, we have 4 = ec−3. Hence, ec = 7 and this implies c = ln(7). Therefore, the particular solution is y = 7e2x−3.

� Example 7.8 Solve the differential equation e−y sinx− y′ cos2 x = 0

Solution: Write the differential equation in the form N(y)dy =−M(x)dx.

e−y sinx− y′ cos2 x = 0⇒ e−y− cos2 x
sinx

dy
dx

= 0⇒ey =
sinx

cos2 x
dx

⇒
∫

ey dy =
∫

tanx secx dx integrate both sides

⇒ey = secx+ c

⇒y = ln |secx+ c| . solve for y by taking ln for both sides

� Example 7.9 Solve the differential equation y′ = 1− y+ x2− yx2 .

Solution: Write the differential equation in the form N(y)dy =−M(x)dx.

y′ = 1− y+ x2− yx2⇒ y′ = (1− y)+ x2(1− y)⇒dy = (1− y)(1+ x2)dx

⇒
∫ 1

1− y
dy =

∫
(1+ x2) dx integrate both sides

⇒− ln |1− y|= x+
x3

3
+ c

⇒1− y = e−(x+
x3
3 +c) solve for y

⇒y = 1− e−(x+
x3
3 +c) .

7.3 First-Order Linear Differential Equations

The first-order linear differential equation has the form

y′+P(x)y = Q(x) ,

where P(x) and Q(x) are continuous functions of x.
To solve the first-order linear equation, first rewrite the equation (if necessary) in the standard form above, then multiply both sides by
the integrating factor µ(x) = e

∫
P(x) dx. This implies
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y′+P(x)y = Q(x)⇒ µ(x)y′+µ(x)P(x)y = µ(x)Q(x)

⇒ µ(x)
dy
dx

+ e
∫

P(x) dxP(x)y = µ(x)Q(x)

⇒ µ(x)
dy
dx

+ y
d
dx

(
e
∫

P(x) dx)= µ(x)Q(x)

⇒ µ(x)
dy
dx

+ y
dµ(x)

dx
= µ(x)Q(x)

⇒ d
dx

(
µ(x)y

)
= µ(x)Q(x)

⇒ µ(x)y =
∫

µ(x)Q(x) dx

⇒ y =
1

µ(x)

∫
µ(x)Q(x) dx .

From this, to solve the first-order linear differential equation, we do the following steps:
1. Compute the integrating factor µ(x) = e

∫
P(x) dx.

2. Find the general solution by using the formula:

y(x) =
1

µ(x)

∫
µ(x)Q(x) dx .

� Example 7.10 Solve the differential equation x dy
dx + y = x2 +1.

Solution: Write the differential equation in the form y′+P(x)y = Q(x).

x
dy
dx

+ y = x2 +1⇒ y′+
1
x

y =
x2 +1

x
.

From this, we have P(x) = 1
x and Q(x) = x2+1

x . Hence, the integrating factor is µ(x) = e
∫ 1

x dx = eln |x| = x.
The general solution of the first-order linear differential equation is

y(x) =
1
x

∫
x
(x2 +1

x

)
dx

=
1
x

∫
(x2 +1) dx

=
1
x
(

x3

3
+ x)+ c

=
x2

3
+1+

c
x
.

� Example 7.11 Solve the differential equation y′− 2
x y = x2ex, with y(1) = e.

Solution: The differential equation is in the form y′+P(x)y = Q(x) where P(x) =− 2
x and Q(x) = x2ex. Hence, the integrating factor is

µ(x) = e−2
∫ 1

x dx = e−2ln |x| = x−2.
The general solution of the first-order linear differential equation is

y(x) = x2
∫ 1

x2 (x
2ex) dx

= x2
∫

ex dx

= x2(ex + c
)
.

With y(1) = e, we have e = 1+ c and this implies c = e−1. The particular solution is y = x2(ex + e−1).

� Example 7.12 Solve the differential equation y′+ y = cos(ex) .
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Solution: The differential equation takes the form y′+P(x)y = Q(x) where P(x) = 1 and Q(x) = cos(ex). Hence, the integrating factor
is µ(x) = e

∫
1 dx = ex.

The general solution of the first-order linear differential equation is

y(x) = e−x
∫

ex cos(ex) dx

= e−x(sin(ex)+ c
)
.

Use integration by substitution
with u = ex and du = ex dx

� Example 7.13 Solve the differential equation xy′−3y = x .

Solution: The differential equation is in the form y′+P(x)y = Q(x) where P(x) =−3 and Q(x) = x. Hence, the integrating factor is
µ(x) = e

∫
−3 dx = e−3x.

The general solution of the first-order linear differential equation is

y(x) = e3x
∫

x e−3x dx

= e3x(− x2

3
e−3x− 1

9
e−3x + c

)
.

Use integration by parts with
u = x and dv = e−3x dx
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Exercises

1 - 16 Solve the differential equation.

1 x2dy+ y2dx = 0

2 cos2 xdy− y2dx = 0

3 x dy
dx −2y = x3 secx tanx

4 y′ = 1+ y

5 y′+3y = e−2x

6 dy
dx = (1+ y2)sinx

7 y′+ y = e2x

8 xy′− y = x3ex

9 xy′− y = x2e−x,x > 0

10 2y′− y = 4

11 y′ = 3x2+2x−1
2y

12 y′ = ycosx

13 xy′+2y = 4x3

14 y′− y = e−x

15 y′+ 2x
1+x2 y = 1

16 dy
dx + y− 1

ex+1 = 0

17 - 40 Solve the differential equation with the given initial condition.

17 y′+2y = x, y(0) = 1

18 dy
dx +2y = e−x, y(0) = 3

4

19 dy
dx −2xy = x, y(0) = 0

20 (1+ x2)y′+4xy = x
(1+x2)2 , y(0) = 1

21 xy′+ y = sinx, y( π

3 ) = 2

22 y′− 1
3 y = e−x, y(0) = a

23 xy′+2y = 4x2, y(1) = 2

24 dy
dx = 3x2+4x+2

2y , y(0) =−1

25 y′ = 3x2 +3x2y, y(0) = 0

26 xy′+ y = x3, y(−1) = 3

27 y′− 1
x y = x, y(1) = 2

28 y′− y2 = 0, y(0) = 1

29 y′ = 1+3x2

3y2 , y(0) = 1

30 cosxy′+ sinxy = 2cos3 xsinx, y( π

4 ) = 3
√

2,0≤ x < π

2

31 dy
dx = 5y2x, y(1) = 1

25

32 y′ = 3x2+4x−4
2y , y(1) = 3

33 y′ = xy2
√

1+x2 , y(0) =−1

34 y′ = e−y(2x−4), y(5) = 0

35 dy
dx = y2

x , y(1) = 2

36 y′ = ex−siny sec(y), y(0) = 0

37 xy′+ y = x3, y(1) =−3

38 y′ = 1+2x
tany , y(0) = 0

39 y′ = 2x2 +2x2y2, y(0) = 0

40 xy′+2y = x2− x+1, y(1) = 1
2
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Chapter 8

Polar Coordinates System

8.1 Polar Coordinates

So far we have used functions of the form y = f (x) or x = f (y) to describe curves by determining points (x,y) in a Cartesian (rectangular)
coordinate system. In this chapter, we are going to study a new coordinate system called a polar coordinate system. Figure 8.1 shows the
Cartesian and polar coordinates system.

Definition 8.1 The polar coordinate system is a two-dimensional system consisted of a pole and polar axis (half line). Each
point P in a polar plane is determined by a distance r from a fixed point O called the pole (or origin) and an angle θ from a fixed
direction.

Figure 8.1: The Cartesian coordinate system (on the left) and the polar coordinate system (on the right).

Note:
1. The point P in the polar coordinate system is represented by the ordered pair (r,θ) where r and θ are called polar coordinates.

2. The angle θ takes positive numbers if it is measured counterclockwise from the polar axis, but if the angle is measured clockwise, it
takes negative numbers.

3. In the polar coordinate system, if r > 0, the point P(r,θ) will be in the same quadrant as θ. However, if r < 0, the point will be in the
quadrant on the opposite side of the pole. That is, the points P(r,θ) and P(−r,θ) lie in the same line through the pole O, but on opposite
sides.

4. In the Cartesian coordinate system, every point has only one representation while in the polar coordinate system, each point has many
representations. The following formula gives all representations of the point P(r,θ) in the polar coordinate system
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P(r,θ+2nπ) = P(r,θ) = P(−r,θ+(2n+1)π), n ∈ Z .

Figure 8.2

� Example 8.1 Plot the points whose polar coordinates are given.

(1) (2,5π/4)

(2) (2,−3π/4)

(3) (2,13π/4)

(4) (−2,π/4)
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Solution:
(1) (2)

(3) (4)

Figure 8.3

8.2 The Relationship between Cartesian and Polar Coordinates

Let (x,y) be a Cartesian coordinate and (r,θ) be a polar coordinate of the same point P. Let the pole be at the origin of the Cartesian
coordinates system, and let the polar axis lies on the positive x-axis and the line θ = π

2 lies on the positive y-axis as shown in Figure 8.4.

From the right triangle, we have

cos θ =
x
r
⇒ x = r cos θ and

sin θ =
y
r
⇒ y = r sin θ.

Hence,

x2 + y2 = (r cosθ)2 +(r sinθ)2

= r2(cos2
θ+ sin2

θ)

= r2 cos2
θ+ sin2

θ = 1

This implies, x2 + y2 = r2 and tan θ = y
x for x 6= 0.

Figure 8.4: The relationship between the Cartesian and polar
coordinates.

The previous relationships can be summarized as follows:
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x = r cos θ, y = r sin θ

tan θ =
y
x

for x 6= 0

x2 + y2 = r2

� Example 8.2 Convert from polar coordinates to Cartesian coordinates.
(1) (1,π/4)

(2) (2,π)

(3) (2,−2π/3)

(4) (4,3π/4)

Solution:
(1) From the polar point (1,π/4), we have r = 1 and θ = π

4 . Hence,

x = r cos θ = (1)cos
π

4
=

1√
2
,

y = r sin θ = (1)sin
π

4
=

1√
2
.

Therefore, in the Cartesian coordinates, the point (1,π/4) is represented by ( 1√
2
, 1√

2
).

(2) From the polar point (2,π), we have r = 2 and θ = π. Hence,

x = r cos θ = 2cos π =−2 ,

y = r sin θ = 2sin π = 0.

Hence, the polar point (2,π) is (−2,0) in the Cartesian coordinates.

(3) From the polar point (2,−2π/3), we have r = 2 and θ = −2π

3 . Hence,

x = r cos θ = 2cos
−2π

3
=−1 ,

y = r sinθ = 2sin
−2π

3
=−
√

3.

Therefore, the Cartesian coordinate (−1,−
√

3) is the point corresponding to the polar point (2,−2π/3).

(4) From the polar point (4,3π/4), we have r = 4 and θ = 3π

4 . Hence,

x = r cos θ = 4cos
3π

4
=−2

√
2 ,

y = r sin θ = 4sin
3π

4
= 2
√

2.

In the Cartesian coordinates, the point (4,3π/4) is represented by (−2
√

2,2
√

2).

� Example 8.3 For the given Cartesian point, find one representation in the polar coordinates.
(1) (1,−1)

(2) (2
√

3,−2)

(3) (−2,2)

(4) (1,1)

Solution:

(1) From the given Cartesian point, we have x = 1 and y =−1. Hence,

x2 + y2 = r2⇒ r =
√

2,

tanθ =
y
x
=−1⇒ θ =−π

4
.

In the polar coordinates, the Cartesian point (1,−1) can be represented by (
√

2,− π

4 ).
Remember, there are infinitely polar representations of the point (x,y) (see Note 4 on page 115).
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(2) From the Cartesian point, we have x = 2
√

3 and y =−2. Hence,

x2 + y2 = r2⇒ r = 4,

tanθ =
y
x
=
−1√

3
⇒ θ =

5π

6
.

Therefore, the polar point (4, 5π

6 ) is one representation of the Cartesian point (2
√

3,−2).

(3) From the Cartesian point, we have x =−2 and y = 2. Hence,

x2 + y2 = r2⇒ r = 2
√

2,

tanθ =
y
x
=−1⇒ θ =

3π

4
.

The polar point (2
√

2, 3π

4 ) is one representation of the Cartesian point (−2,2).

(4) From the Cartesian point, we have x = 1 and y = 1. Hence,

x2 + y2 = r2⇒ r =
√

2,

tanθ =
y
x
= 1⇒ θ =

π

4
.

The Cartesian point (1,1) can be represented by (
√

2, π

4 ) in the polar coordinates.

In the Cartesian coordinates, the function y = f (x) is a dependent relation which can be represented by a curve in the Cartesian plane. In
polar coordinates, the function r = f (θ) is a dependent relation between coordinates r and θ which also can be represented by a curve
called a polar curve. For example, r = 2cos θ is a polar equation represents the dependent relation between coordinates r and θ:

θ 0 π

6
π

4
π

3
π

2
r 2

√
3 2/

√
2 1 0

Table 8.1

� Example 8.4 Find a polar equation that has the same graph as the equation in x and y.
(1) x =−5

(2) y = 3

(3) x2 + y2 = 2

(4) y2 = 9x

Solution:
(1) x = 7⇒ r cos θ =−5⇒ r =−5secθ.

(2) y =−3⇒ r sin θ = 3⇒ r = 3cscθ.

(3) x2 + y2 = 2⇒ r2 cos2
θ+ r2 sin2

θ = 2

⇒ r2(cos2
θ+ sin2

θ) = 2

⇒ r2 = 2 .

(4) y2 = 9x⇒ r2 sin2
θ = 9r cos θ

⇒ r sin2
θ = 9cos θ

⇒ r = 9cot θcsc θ.

� Example 8.5 Find an equation in x and y that has the same graph as the polar equation.
(1) r = 4

(2) r = 3sin θ

(3) r = 6cos θ

(4) r = sec θ

Solution:
(1) r = 4⇒

√
x2 + y2 = 4⇒ x2 + y2 = 4.

(2) r = 3sinθ⇒ r = 3 y
r ⇒ r2 = 3y⇒ x2 + y2 = 3y⇒ x2 + y2−3y = 0.
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(3) r = 6cos θ⇒ r = 6 x
r ⇒ r2 = 6x⇒ x2 + y2−6x = 0.

(4) r = sec θ⇒ r = 1
cos θ

⇒ r cos θ = 1⇒ x = 1.

8.3 Polar Curves

Before starting sketching the polar curves, we study symmetry in the polar coordinates system.
Symmetry in Polar Coordinates

Theorem 8.2
1. Symmetry about the polar axis.

The graph of r = f (θ) is symmetric with respect to the polar axis if replacing (r,θ) with (r,−θ) or with (−r,π−θ) does
not change the polar equation.

2. Symmetry about the vertical line θ = π

2 .
The graph of r = f (θ) is symmetric with respect to the vertical line θ = π

2 if replacing (r,θ) with (r,π−θ) or with
(−r,−θ) does not change the polar equation.

3. Symmetry about the pole θ = 0.
The graph of r = f (θ) is symmetric with respect to the pole if replacing (r,θ) with (−r,θ) or with (r,θ+π) does not
change the polar equation.

A B C

Figure 8.5: Symmetry of the curves in the polar coordinates system. (A) symmetry about the polar axis, (B) symmetry about the vertical line θ = π

2 ,
and (C) symmetry about the pole θ = 0.

� Example 8.6

(1) The graph of r = 4cos θ is symmetric about the polar axis. By replacing (r,θ) with (r,−θ), we have

4cos (−θ) = 4cos θ = r, thus (r,θ) = (r,−θ) .

Also, by replacing (r,θ) with (−r,π−θ), we have

−4cos(π−θ) = 4cos θ = r, thus (r,θ) = (−r,π−θ) .

(2) The graph of r = 2sin θ is symmetric about the vertical line θ = π

2 . By replacing (r,θ) with (r,π−θ), we obtain

2sin (π−θ) = 2sin θ = r, so (r,θ) = (r,π−θ) .

Also, by replacing (r,θ) with (−r,−θ), we have

−2sin (−θ) = 2sin θ = r, so (r,θ) = (−r,−θ) .
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(3) The graph of r2 = a2 sin 2θ is symmetric about the pole. If we replace (r,θ) with (−r,θ), we have

(−r)2 = a2 sin 2θ and this implies r2 = a2 sin 2θ, thus (r,θ) = (−r,θ) .

Also, if we replace (r,θ) with (r,θ+π), we have

r2 = a2 sin
(
2(π+θ)

)
= a2 sin (2π+2θ) = a2 sin 2θ, thus (r,θ) = (r,θ+π) .

.

Some Special Polar Curves
Lines in polar coordinates system

1. The polar equation of a straight line ax+by = c is r = c
acos θ+bsin θ

.
Since x = r cos θ and y = r sin θ, then

ax+by = c⇒ r(acos θ+bsin θ) = c⇒ r =
c

(acos θ+bsin θ)

2. The polar equation of a vertical line x = k is r = k sec θ .
Let x = k, then r cos θ = k. This implies r = k

cos θ
= k sec θ.

3. The polar equation of a horizontal line y = k is r = k csc θ.
Let y = k, then r sin θ = k. This implies r = k

sin θ
= k csc θ.

4. The polar equation of a line that passes the origin point and makes an angle θ0 with the positive x-axis is θ = θ0.

� Example 8.7 Sketch the graph of θ = π

4 .

Solution:

We are looking for a graph of the set of polar points:

{(r,θ) |,r ∈ R}

θ
π

4
π

4
π

4
π

4
π

4
π

4
r −6 −3 −1 1 3 6

Table 8.2

Figure 8.6

Circles in polar coordinates system
1. The circle equation with center at the pole O and radius |a| is r = a.
2. The circle equation with center at (a,0) and radius |a| is r = 2acos θ.
3. The circle equation with center at (0,a) and radius |a| is r = 2asin θ.
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Figure 8.7: Circles in polar coordinates.

� Example 8.8 Sketch the graph of r = 4sin θ.

Solution: Note that the graph of r = 4sin θ is symmetric about the vertical line θ = π

2 since 4sin (π−θ) = 4sin θ. Therefore, we restrict
our attention to the interval [0,π/2] and by the symmetry, we complete the graph. The following table displays the polar coordinates of
some points on the curve:

θ 0 π

6
π

4
π

3
π

2
r 0 2 4/

√
2 2

√
3 4

Table 8.3

Figure 8.8: The graph of the polar curve r = 4sin θ.

Cardioid curves
1. r = a(1± cos θ) 2. r = a(1± sin θ)

r = a(1+ cos θ) r = a(1− cos θ)
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r = a(1+ sin θ) r = a(1− sin θ)

Figure 8.9: Cardioid curves.

� Example 8.9 Sketch the graph of r = a(1− cos θ) where a > 0.

Solution:
The curve is symmetric about the polar axis since cos (−θ) = cos θ. Therefore, we restrict our attention to the interval [0,π] and by the
symmetry, we complete the graph. The following table displays some solutions of the equation r = a(1− cos θ):

θ 0 π

3
π

2
2π

3 π

r 0 a/2 a 3a/2 2a

Table 8.4

Limaçons curves
1. r = a±bcos θ 2. r = a±bsin θ

r = a+bcos θ
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Figure 8.10: The graph of r = a(1− cos θ) where a > 0.

r = a−bcos θ

Figure 8.11: Limaçons curves r = a±bcos θ.

r = a+bsin θ
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r = a−bsin θ

Figure 8.12: Limaçons curves r = a±bsin θ.
Roses

1. r = a cos (nθ) 2. r = a sin (nθ) where n ∈ N.
r = a cos (nθ)

r = a sin (nθ)
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Figure 8.13: Roses in polar coordinates.
Note that if n is odd, there are n petals; however, if n is even, there are 2n petals.

Spiral of Archimedes
r = a θ

Figure 8.14: Spiral of Archimedes.

8.4 Area in Polar Coordinates

In chapter 5, we have seen how to compute area of the region under a function f (x) over the interval [a,b]. Now, consider what happens
if we use a polar function r = f (θ) for θ in the interval [α,β]. Let r = f (θ) be a continuous function on the interval [α,β] such that
0≤ α≤ β≤ 2π. Let f (θ)≥ 0 over that interval and R be a polar region bounded by the polar equations r = f (θ) from θ = α to θ = β

as shown in Figure 8.15.

Figure 8.15: Areas in polar coordinates.

To find the area of R, let P = {θ1,θ2, ...,θn} be a regular partition of the interval [α,β]. Consider the interval [θi−1,θi] where
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∆θi = θi−θi−1. By choosing ωi ∈ [θi−1,θi], we have a circular sector where its angle and radius are ∆θi and f (ωi), respectively. The
area between θi−1 and θi can be approximated by the area of a circular sector.

Let f (ui) and f (vi) be the maximum and minimum values of f on
[θi−1,θi]. From Figure 8.16, we have

1
2
[

f (ui)
]2

∆θi︸ ︷︷ ︸
Area of the sector of radius f (ui)

≤ ∆Ai ≤
1
2
[

f (vi)
]2

∆θi︸ ︷︷ ︸
Area of the sector of radius f (vi)

Figure 8.16
By summing from i = 1 to i = n, we obtain

n

∑
i=1

1
2
[

f (ui)
]2

∆θi f (ui)≤
n

∑
i=1

∆Ai︸ ︷︷ ︸
=A

≤
n

∑
i=1

1
2
[

f (vi)
]2

∆θi f (vi)

The limit of the sums as the norm ||P|| approaches zero,

lim
||P||→0

n

∑
i=1

1
2
[

f (ui)
]2

∆θi f (ui) = lim
||P||→0

n

∑
i=1

1
2
[

f (ui)
]2

∆θi f (vi) =
∫

β

α

1
2
[

f (θ)
]2 dθ .

Therefore,

A =
1
2

∫
β

α

(
f (θ)

)2 dθ

Similarly, assume f and g are continuous on the interval [α,β] such that f (θ)≥ g(θ). The area of the region bounded by the polar graphs
of f and g on the interval [α,β] is

A =
1
2

∫
β

α

[(
f (θ)

)2−
(
g(θ)

)2
]

dθ

� Example 8.10 Find the area of the region bounded by the graph of the polar equation.

(1) r = 3

(2) r = 2cos θ

(3) r = 4sin θ

(4) r = 6−6sin θ

Solution:
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(1) From Figure 8.17, the area is

A =
1
2

∫ 2π

0
32 dθ =

9
2

∫ 2π

0
dθ =

9
2

[
θ

]2π

0
= 9π.

Note that we can evaluate the area in the first quadrant and multiply
the result by 4 to find the area of the whole region i.e.

A = 4
(1

2

∫ π

2

0
32 dθ

)
= 2

∫ π

2

0
9 dθ = 18

[
θ

] π

2

0
= 9π.

Figure 8.17

(2) We find the area of the upper half circle and multiply the result by 2
as follows:

A = 2
(1

2

∫ π

2

0
(2cos θ)2 dθ

)
=

∫ π

2

0
4cos2

θ dθ

= 2
∫ π

2

0
(1+ cos 2θ) dθ

= 2
[
θ+

sin 2θ

2

] π

2

0

= 2
[

π

2
−0
]

= π.

Figure 8.18

(3) From Figure 8.19, the area of the region is

A =
1
2

∫
π

0
(4sin θ)2 dθ =

16
4

∫
π

0
(1− cos 2θ) dθ

= 4
[
θ− sin 2θ

2

]π

0

= 4
[
π−0

]
= 4π.

Figure 8.19
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(4) From Figure 8.20, the area of the region is

A =
1
2

∫ 2π

0
36(1− sin θ)2 dθ

= 18
∫ 2π

0
(1−2sin θ+ sin2

θ) dθ

= 18
[
θ+2cos θ+

θ

2
− sin 2θ

4

]2π

0

= 18
[
(2π+2+π)−2

]
= 54π.

Figure 8.20

� Example 8.11 Find the area of the region that is between the curves r = 2 and r = 3 in the first quadrant.

Solution: The region bounded by the two curves r1 = 2 and r2 = 3 is displayed in the figure.

A =
1
2

∫ π

2

0
(r2

2− r2
1) dθ

=
1
2

∫ π

2

0
5 dθ

=
5
2

[
θ

] π

2

0

=
5
2

[
π

2
−0
]

=
5π

4
.

Figure 8.21

� Example 8.12 Find the area of the region that is inside the graphs of the equations r = sinθ and r =
√

3cosθ.
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Solution:
First, we find the intersection points of the two curves

sin θ =
√

3cos θ⇒ tan θ =
√

3⇒ θ =
π

3
.

The origin O is in each circle, but it cannot be found by solving the
equations. Therefore, when looking for the intersection points of
the polar graphs, we sometimes take under consideration the graphs.
The region is divided into two small regions: below and above the
line π

3 .

Figure 8.22

Region(1) is in the interval [0, π

3 ].

A1 =
1
2

∫ π

3

0
sin2

θ dθ =
1
4

∫ π

3

0
(1− cos 2θ) dθ

=
1
4

[
θ− sin 2θ

2

] π

3

0

=
1
4

[
π

3
−

sin 2π

3
2

]
=

1
4

[
π

3
−
√

3
4

]
.

Figure 8.23

Region(2) is in the interval [ π

3 ,
π

2 ].

A2 =
1
2

∫ π

2

π

3

(
√

3cos θ)2 dθ =
3
4

∫ π

2

π

3

(1+ cos 2θ) dθ

=
3
4

[
θ+

sin 2θ

2

] π

2

π

3

=
3
4

[(π

2
−0
)
−
(π

3
+

√
3

4
)]

=
3
4

[
π

6
−
√

3
4

]
.

Figure 8.24

Total area A = A1 +A2 =
5π

24 −
√

3
4 .
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� Example 8.13 Find the area of the region that is outside the graph of r = 3 and inside the graph of r = 2+2cosθ.

Solution: The intersection point of the two curves in the first quadrant is

2+2cos θ = 3⇒ cos θ =
1
2
⇒ θ =

π

3
.

As shown in the figure, we find the area in the first quadrant, then we double the result to find the area of the whole region.

A = 2
(1

2

∫ π

3

0

(
4(1+ cos θ)2−9

)
dθ

)
=

∫ π

3

0

(
4(1+2cos θ+ cos2

θ)−9
)

dθ

=
∫ π

3

0
(8cos θ+4cos2

θ−5) dθ

=
[
8sin θ+ sin 2θ−3θ

] π

3

0

=
9
2

√
3−π.

Figure 8.25
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Exercises

1 - 8 Find the corresponding Cartesian coordinates for the given polar coordinates.

1 (2, π

3 )

2 (1, π

2 )

3 (−2, π

6 )

4 (3,π)

5 ( 1
2 ,

3π

2 )

6 (3,2π)

7 (−7, 3π

4 )

8 (3, π

3 )

9 - 16 Find the corresponding polar coordinates for the given Cartesian coordinates for r ≥ 0 and 0≤ θ≤ π.

9 (1,1)

10 (1,
√

3)

11 (−1,1)

12 (
√

3,3)

13 (
√

3,1)

14 ( 1
2 ,

1
2 )

15 (−1,
√

3)

16 (3,0)

17 - 24 Find a polar equation that has the same graph as the equation in x and y and vice versa.

17 x = 4

18 x2 + y2 = 5

19 r = csc θ

20 r = 6cos θ

21 x2 = 2y

22 x2− y2 = 9x

23 r = 3
1−sin θ

24 r = 2−3sin θ

25 - 28 Sketch the curve of the polar equations.

25 r = 3sec θ

26 r = 4cos θ

27 r = 2+2sin θ

28 r = 3+2cos θ

29 - 34 Find the area of the region bounded by the graph of the polar equation.

29 r = 3sin θ

30 r = 1+ sin θ

31 r = 2

32 r = 4cos θ

33 r = 6(1+ cos θ)

34 r = 2(1− sin θ)
35 - 41 Find the area of the region bounded by the graph of the polar equations.

35 inside r = 2

36 between r = 2 and r = 3

37 inside r = 1+ cos θ and outside r = 3cos θ

38 inside r = 2+2cos θ and outside r = 3

39 outside r = 2−2cos θ and inside r = 4

40 inside both graphs r = 1+ cos θ and r = 1

41 inside both graphs r = 2cos θ and r = 2sin θ
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Appendix (1): Integration Rules and Integrals Table

Integration Rules:∫ (
f (x)±g(x)

)
dx =

∫
f (x) dx±

∫
g(x) dx

∫
k f (x) dx = k

∫
f (x) dx

∫
f ′
(
g(x)

)
g′(x) dx = f

(
g(x)

)
+ c

∫ b

a
f ′(x) dx = f (b)− f (a)

Elementary Integrals:∫
xr dx =

xr+1

r+1
if r 6=−1

∫
sinx dx = cosx

∫
cosx dx =−sinx

∫
sec2 x dx = tanx

∫
csc2 x dx =−cotx

∫
secx tanx dx = secx

∫
cscx cotx dx =−cscx

∫ 1√
a2− x2

dx = sin−1 x
a∫ 1

a2 + x2 dx =
1
a

tan−1 x
a∫ 1

x
√

x2−a2
dx =

1
a

sec−1 | x
a
|

Inverse Trigonometric Integrals:

∫
sin−1 x dx = xsin−1 x+

√
1− x2 + c

∫
tan−1 x dx = x tan−1 x− 1

2
ln(1+ x2)+ c

∫
sec−1 x dx = xsec−1 x− ln | x+

√
x2−1 |+c

∫
xn sin−1 x dx =

xn+1

n+1
sin−1 x− 1

n+1

∫ xn+1√
1− x2

dx+ c if n 6=−1

∫
xn tan−1 x dx =

xn+1

n+1
tan−1 x− 1

n+1

∫ xn+1

1+ x2 dx+ c if n 6=−1

∫
xn sec−1 x dx =

xn+1

n+1
sec−1 x− 1

n+1

∫ xn√
x2−1

dx+ c if n 6=−1
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Trigonometric Integrals:∫
sin2 x dx =

x
2
− sin2x

4
+ c

∫
cos2 x dx =

x
2
+

sin2x
4

+ c

∫
tan2 x dx = tanx− x+ c

∫
cot2 x dx =−cotx− x+ c

∫
sec3 x dx =

1
2

secx tanx+
1
2

ln | secx + tanx |+c

∫
sec3 x dx =

1
2

cscx cotx+
1
2

ln | cscx − cotx |+c

∫
sinn x dx =− 1

n
sinn−1 x cosx+

n−1
n

∫
sinn−2 x dx+ c

∫
cosn x dx =

1
n

cosn−1 x sinx+
n−1

n

∫
cosn−2 x dx+ c

∫
tann x dx =

tann−1 x
n−1

−
∫

tann−2 x dx+ c if n 6= 1

∫
cotn x dx =− cotn−1 x

n−1
−

∫
cotn−2 x dx+ c if n 6= 1

∫
secn x dx =

1
n−1

secn−2 x tanx+
n−2
n−1

∫
secn−2 x dx+ c if n 6= 1

∫
cscn x dx =− 1

n−1
cscn−2 x cotx+

n−2
n−1

∫
cscn−2 x dx+ c if n 6= 1

∫
sinn x cosm x dx =− sinn−1 xcosm+1 x

n+m
+

n−1
n+m

∫
sinn−2 x cosm x dx+ c if n 6= m

∫
sinn x cosm x dx =

sinn+1 xcosm−1 x
n+m

+
m−1
n+m

∫
sinn x cosm−2 x dx+ c if m 6= n

∫
xn sinx dx =−xn cosx+n

∫
xn−1 cosx dx+ c

∫
xn cosx dx = xn sinx−n

∫
xn−1 sinx dx+ c

Miscellaneous Integrals:∫
x(ax+b)−1 dx =

x
a
− b

a2 ln |ax+b|+ c

∫
x(ax+b)−2 dx =

1
a2

(
ln | ax+b |+ b

ax+b

)
+ c

∫
x(ax+b)n dx =

(ax+b)n+1

a2

( ax+b
n+2

− b
n−1

)
+ c

∫ a
(a2± x2)n dx =

1
2a2(n−1)

( x
(a2± x2)n−1 +(2n−3)

∫ 1
(a2± x2)n−1 dx

)
if n 6=−1

∫
x
√

ax+b dx =
2

15a2 (3ax−2b)(ax+b)3/2 + c

∫
xn√ax+b dx =

2
a(2n+3)

(
xn(ax+b)3/2−nb

∫
xn−1√ax+b dx

)
∫ x√

ax+b
dx =

2
3a2 (ax−2b)

√
ax+b+ c

∫ xn
√

ax+b
dx =

2
a(2n+1)

(
xn√ax+b−nb

∫ xn−1
√

ax+b
dx
)

∫ 1
x
√

ax+b
dx =

1√
b

ln |
√

ax+b−
√

b√
ax+b+

√
b
|+c if b > 0

∫ 1
x
√

ax+b
dx =

1√
−b

tan−1
√

ax+b
−b

+ c if b < 0

∫ 1
xn
√

ax+b
dx =−

√
ax+b

b(n−1)xn−1 −
(2n−3)a
2(n−1)b

∫ 1
xn−1

√
ax+b

dx if n 6= 1

∫ √
2ax− x2 dx =

x−a
2

√
2ax− x2 +

a2

2
cos−1(

a− x
a

)+ c

∫
x
√

2ax− x2 dx =
2x2−ax−3a3

6

√
2ax− x2 +

a3

2
cos−1(

a− x
a

)+ c

∫ √
2ax− x2

x
dx =

√
2ax− x2 +acos−1(

a− x
a

)+ c

∫ √
2ax− x2

x2 dx =− 2
√

2ax− x2

x
− cos−1(

a− x
a

)+ c

∫ dx√
2ax− x2

= cos−1(
a− x

a
)+ c
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∫ x√
2ax− x2

dx =−
√

2ax− x2 +acos−1(
a− x

a
)+ c

∫ x2√
2ax− x2

dx =− (x+3a)
2

√
2ax− x2 +

3a2

2
cos−1(

a− x
a

)+ c

∫ 1

x
√

2ax− x2
dx =−

√
2ax− x2

ax
+ c
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Appendix (2): Answers to Exercises
Chapter 1:

1 (y−2)2 = 2(x+4)

2 (y−6)2 =− 4
3 (x−2)

3 (x+1)2 = (y−1)

4 (x−2)2 = 12(y−1)

5 (y+2)2 =−2x

6 (x−5)2 =− 1
2 (y−3)

7 (x−1)2 = 4(y−2)

8 (x−4)2 =−12(y+3)

9 (x+3)2 =−4(y+5)

10 (y−1)2 = 8(x−2)

11 (x−4)2 = 2
3 (y+5)

12 (x+8)2 =−20(y−2)

13 (x−3)2 = 8(y−4)

14 x2
16 + y2

9 = 1

15 x2
9 + y2

5 = 1

16 (x−2)2
4 +(y−2)2 = 1

17 (x−1)2
9 +

(y+1)2
4 = 1

18 (x+2)2
4 +

(y−3)2
16 = 1

19 (x−2)2
4 +4

(y− 1
2 )2

25 = 1

20 (x+1)2
16 +

(y−4)2
25 = 1

21 (x−7)2
25 +

(y+2)2
16 = 1

22 y2
4 −

x2
9 = 1

23 y2
36 −

x2
28 = 1

24 (x−6)2
25 − (y−1)2

9 = 1

25 x2
16 −

y2
16 = 1

26 x2− y2
4 = 1

27 y2
25 −

x2
9 = 1

28 4 y2
49 −

x2
49 = 1

29 (y−5)2
36 − (x−3)2

4 = 1

30 (x−4)2
25 − (y−2)2 = 1

31 (x−7)2− (y+2)2
8 = 1

32 V (1,−1),F(1,1),D : y =−3

33 V (2,−2),F(2,− 9
4 ),D : y =− 7

4

34 V (−2,3),F(−2, 8
3 ),D : y = 10

3

35 V (−2,−5),F(−2,− 9
2 ),D : y =− 11

2

36 V (1,1),F(1, 15
16 ),D : y = 17

16

37 V (−3,−11),F(−3,−10 15
16 ),D : y =−11 1

16

38 V (5,−7),F(5,−6 15
16 ),D : y =−7 1

16

39 V (−4,9),F(−4,8 19
20 ),D : y = 9 1

20

40 V (4,−9),F(4,−8 3
4 ),D : y =−9 1

4

41 V1(5,0),V2(−5,0),F1(
√

15,0),F2(−
√

15,0)

42 V1(6,0),V2(−6,0),F1(4
√

2,0),F2(−4
√

2,0)

43 V1(10,0),V2(−10,0),F1(
√

51,0),F2(−
√

51,0)

44 V1(0,
√

7),V2(0,−
√

7),F1(0,
√

2),F2(0,−
√

2)

45 V1(7,0),V2(−7,0),F1(
√

13,0),F2(−
√

13,0)

46 V1(1,2),V2(−7,2),F1(−3+
√

7,2),F2(−3−
√

7,2)

47 V1(0,9),V2(0,−9),F1(0,3
√

5),F2(0,−3
√

5)

48 V1(0,
√

30),V2(0,−
√

30),F1(0,
√

15),F2(0,−
√

15)

49 V1(
√

55,0),V2(−
√

55,0),F1(2
√

7,0),F2(−2
√

7,0)

50 V1(8,0),V2(−8,0),F1(3
√

6,0),F2(−3
√

6,0)

51 V1(3,−2+
√

10),V2(3,−2−
√

10),F1(3,−2+
√

6),F2(3,−2−
√

6)

52 V1(0,7),V2(0,−3),F1(0,6),F2(0,−2)

53 V1(0,7),V2(0,−7),F1(0,3
√

5),F2(0,−3
√

5)

54 V (−7,9),F(−7,8 7
8 ),D : y = 9 1

8

55 V (−3,−4),F(−3,−3 3
4 ),D : y =−4 1

4

56 V (4,−3),F(4,−2 7
8 ),D : y =−3 1

8

57 V (−4,−3),F(−4,−3 1
8 ),D : y =−2 6

8

58 V (5,3),F(5 1
4 ,3),D : x = 4 3

4

59 V (−3,−1),F(−3 1
8 ,−1),D : x =−2 7

8

60 V1(−3+
√

5,4),V2(−3−
√

5,4),F1(−1,4),F2(−5,4)

61 V (−1, 3
2 ),F(−1,1),D : y = 2

62 V1(5,0),V2(−5,0),F1(
√

34,0),F2(−
√

34,0)

63 V1(4,0),V2(−4,0),F1(5,0),F1(−5,0)

64 V1(0,7),V2(0,−7),F1(0,
√

74),F2(0,−
√

74)

65 V1(2,0),V2(−2,0),F1(
√

53,0),F2(−
√

53,0)

66 V1(5,0),V2(−5,0),F1(
√

106,0),F2(−
√

106,0)

67 V1(0,8),V2(0,−8),F1(0,
√

89),F2(0,−
√

89)

68 V1(6,0),V2(−6,0),F1(2
√

14,0),F2(−2
√

14,0)

69 V1(1,2),V2(−7,2),F1(2,2),F2(−8,2)

70 V1(7,0),V2(−3,0),F1(2+
√

41,0),F2(2−
√

41,0)

71 V1(6,13),V2(6,−3),F1(6,5+
√

89),F2(6,5−
√

89)

72 V1(5,5),V2(−13,5),F1(−4+2
√

34,5),F2(−4−2
√

34,5)

73 V1(0,
√

10),V2(0,−
√

10),F1(0,
√

35),F2(0,−
√

35)

74 V1(0,7),V2(0,−7),F1(0,
√

39),F2(0,−
√

39)

75 V1(−4,−3 +
√

5),V2(−4,−3−
√

5),F1(−4,−3 +
√

6),F2(−4,−3−√
6)
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Chapter 2:

1

 3 0
1 11
15 14



2

 4 0
2 29
35 31



3

−7 0
−1 3
−5 −8


4 Not possible

5

28 34
81 50
29 58


6 Not possible

7

1 5 0
3 −4 9
2 6 2



8

3 15 0
9 −12 27
6 18 6


9 −2

10 −16

11

2 0
4 11
3 11



12

20 −5
5 25
10 35



13

−16 5
3 −3
−4 −13


14 Not possible

15

−5 3 1
46 27 16
65 39 23


16

 7 1 1
57 36 21
37 22 13


17 Not possible

18
[
−2 3 1
1 6 4

]
19

[
8 2 4
−2 10 14

]

20

4 −1
1 5
2 7


21 −21
22 −6
23 −3
24 −6
25 11
26 −43
27 29
28 638
29 5
30 −104
31 73
32 12

Chapter 3:

1 X =

5
6
7



2 X =

0
3
1



3 X =

 4
3
−3
− 11

3



4 X =

 8
7
− 9

7
− 9

7



5 X =

 1
3
3
7
3



6 X =

 3
10
4
5
7

10



7 X =

− 9
4

1
2
5
4



8 X =

 6
8

10



9 X =

5
6
7



10 X =

 3
10
4
5
7
10



11 X =

 7
3
5
11
29
33



12 X =

 13
5
− 43

10
29
10



13 X =

2
0
1



14 X =

 25
2
2
− 11

2



15 X =

 79
5
−10

96
5



16 X =

6
4
2



17 X =

 7
2
− 7

2
7



18 X =

 3
10
4
5
7

10



19 X =

 7
2
−1

1
2



20 X =

0
3
1



21 X =

− 16
3

17
3
10
3



22 X =

−1
13
4
− 5

4



23 X =

 19
10
7
5
− 21

10


24 X =

 6
8

10



Chapter 4:

1 1
3 tan(3x−5)+ c

2 sin−1 x
4 + c

3 1
2 xe2x− 1

4 e2x + c

4 x
2 sin2x+ 1

4 cos2x+ c

5 xsin−1 x+
√

1− x2 + c

6 − 1
3 ln |x+1|+ 1

3 ln |x−2|+ c

7 1
36 (2x2−3)9 + c

8 3sin 3√x+ c

9 21
2

10 8
3

11 1

12 1

13 1+ 1√
3
−
√

2

14 12

15 5
2

16 275
6

17 0

18 − 11
20

19 1
3
(
5
√

5−2
√

2
)

20 17
2

21 1
4 x2 ln |x|− 1

8 x2 + c

22 32
3

23 ln(3)− ln(e−2)

24 2ln(7)− ln(4)

25 17
6

26 40
√

10+10

27 4(
√

2−1)

28 1
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29 10
3

30 1√
3

31 9
2

32 2
3

33 2

34 1
2

35 −2

36 1
2 sinx2 + c

37 −2cot
√

x+ c

38 tanx+ secx+ c

39 2
3 x

3
2 ln |x|− 4

9 x
3
2 + c

40 x tanx+ ln |cosx|+ c

41 − x
4 −

1
16 e−4x + c

42 x(lnx)2−2x ln |x|+2x+ c

43 − 1
4 ln |x−1|+ 1

2(x−1) +
1
4 ln |x−3|+ c

44 1
2 ln |x+2|− 1

2 ln |x+4|+ c

45 1
3 ln |x+1|+ 2

3 ln |x−2|+ c

46 − 1
4

(
ln | x+1

2 +1|− ln | x+1
2 −1|

)
+ c

47 4+ 2
3 ln(50)− ln(2)

48 − 3x2−10
x−2 +6(x−2+2ln |x−2|)+ c

49 (x−1)2
2 +2(x−1)−8ln |x−1|+ c

50 x2− x− 3
2 ln |x+1|+ 1

x+1 + 1
2 ln |x−3|+ c

51 x− ln(ex +1)+ c

52 53
27 ln |x+1|+ 1

27 ln |x−2|+ 55
9(x−2) +

1
3(x−2)2

+ c

53 −2

54 4

55 7

56 −1

57 65
3

58 0

65 (a)

66 (c)

67 (d)

68 (a)

69 (d)

70 (c)

71 (b)

Chapter 5:

1 9
2

2 4

3 32
3

4 4

5 2
3

6 44

7 1

8 11
4

9 1

10 3
2

11 32
3

12 12

13 1
3

14 11
6

15 1
2

16 23−8
√

2
6

17 1
6

18 4
3

19 9
2

20 4
3

21 1
6

22 1
3

23 1
3

24 2
√

2−2

25 3

26 3
2

27 e3−1
e2

28
√

3−1
2

29 2ln(2)−1

30 1

31 1
2

32
√

2−1√
2

33 2

34 ln(
√

2)

35 4
3

36 e2 +1

37 4
3 π

38 16π

39 64
√

2
3 π

40 2
3 π

41 3
10 π

42 2
√

2
3 π

43 2
35 π

44 373
14 π

45 10π

46 2
15 π

47 4387
4480 π

48 512
15 π

49 (e4−1)
2 π

50 1944
5 π

51 2
15 π

52
(
16ln2(2) − 16ln(2) +

6
)
π

53 π
2

54 π2
4

55 3π

56 64
15 π

57 3
5 π

58 8π

59 72
5 π

60 (π−2)π

61
(

π√
2
−2
)
π

62 16
15 π

63 10
3 π

64 6π

65 9
2 π

66 4
21 π

67 16
3 π

68 π

6

69 3
2 π

70 8π

71 π
2

72 4
3 π

73 (d)

74 (a)

75 (a)

76 (a)

77 (a)

78 (d)

Chapter 6:

1 fx = 8x3y3− y2

fy = 6x4y2−2xy+3

fxx = 24x2y3

fyy = 12x4y−2x

2 fx = 8xy3ex2y3

fy = 12x2y2ex2y3

fxx = 8y3ex2y3
+16x2y6ex2y3

fyy = 24x2yex2y3
++36x4y4ex2y3
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3 fx = 3
fy = 4
fxx = 0
fyy = 0

4 fx = y3 +2xy2

fy = 3xy2 +2x2y

fxx = 2y2

fyy = 6xy+2x2

5 fx = 3x2y+ ex

fy = x3

fxx = 6xy+ ex

fyy = 0

6 fx = e2x+3y +2xe2x+3y

fy = 3xe2x+3y

fxx = 4e2x+3y +4xe2x+3y

fyy = 9xe2x+3y

7 fx = 2y
(x+y)2

fy = −2x
(x+y)2

fxx = −4y
(x+y)3

fyy =
4x

(x+y)3

8 fx = 2sin(x2y)+4x2ycos(x2y)

fy = 2x3 cos(x2y)

fxx = 12xycos(x2y)−8x3y2 sin(x2y)

fyy =−2x5 sin(x2y)

9 fx = 2xsiny− y2 sinx

fy = x2 cosy+2ycosx

fxx = 2siny− y2 cosx

fyy = x2 siny+2cosx

10 fx = 3x2 + y2

fy = 2xy+1
fxx = 6x

fyy = 2x

11 fx = 2xy2 + y2

fy = 2x2y+2xy

fxx = 2y2

fyy = 2x(x+1)

12 fx = 3x2 +1
fy = 4y+1
fxx = 6x

fyy = 4

13 fx = 3yx2 + y4−3
fy = x3 +4xy3−3
fxx = 6yx

fyy = 12xy2

14 fx =− y
x2 lnx+ y

x2

fy = lnx
x

fxx = 2y
x3 lnx− 3y

x3

fyy = 0

15 fx = −2x
(x2+y2)2

fy =
−2y

(x2+y2)2

fxx = 6x2−2y2

(x2+y2)3

fyy =
6y2−2x2

(x2+y2)3

16 fx = 2x+ y

fy = x−2y

fxx = 2
fyy =−2

17 fx = 2x
x2−y

fy =− 1
x2−y

fxx =
−2(x2+y)
(x2−y)2

fyy =
−1

(x2−y)2

18 fx = cosy+ yex

fy =−xsiny+ ex

fxx = yex

fyy =−xcosy

19 fx = y2 cos(xy)

fy = sin(xy)+ xycos(xy)

fxx =−y3 sin(xy)

fyy = 2xcos(xy)− x2ysin(xy)

20 fx = 8x−8y4

fy =−32xy3 +21y2

fxx = 8
fyy =−96xy2 +42y

21 fx = ycos(xy)

fy = xcos(xy)

fxx =−y2 sin(xy)

fyy =−x2 sin(xy)

22 fx = 3x2 +6xy+4
fy = 3x2 +2y

fxx = 6x+6y

fyy = 2

23 fx = 2xy+4y3

fy = x2 +12xy2

fxx = 2y

fyy = 24xy

24 fx = 2x tany

fy = x2 sec2 y+2y

fxx = 2tany

fyy = 2x2 sec2 y tany+2

25 fx = 3x2 lny+ y4

fy = x3
y +4xy3

fxx = 6x lny

fyy =− x3

y2 +12xy2

26 fx = 3x2y+ y3

fy = x3−3xy2

fxx = 6xy

fyy =−6xy

27 6, 2, 3, 1

28 0, −1, 0, 0

29 3
4 , −

1
4 , −

1
2 , −

1
4

30 1, 0, −6, 6

31 1, 0, 1, 0

32 0, 3, −4, 0

33 −6, 3, 0, −18

34 0, 0, 0, 0



140

35 0, 0, 1, 0

36 0, 0, 0, 4

37 12, 1, 0, 0

38 3, 0, 0, 2

39 2, 0, 6, 6

40 16, 0, 0, 6

41 2, −1, 1, 0

42 12, 12

43 3, −7

44 −2, 2

45 0, 0

46 8sin(1), 4cos(1)+8sin(1)

47 −8sin(4)+3, 4sin(4)+3

48 0, 18e9

49 6(ln(4)+1), 6(ln(4)+1)

50 −3, −2

51 −3sin(2)+3cos(2)+1, −3sin(2)+4cos(2)+1

52 1, 0

53 3, 10

54 0, 4

55 3−3sin(3), 6−6sin(3)+3cos(3)

56 3e6 , 5e6

57 10sin2(1), 4sin(1)
(
2cos(1)+ sin(1)

)
58 y2−x2

2xy+y2

59 y−2
√

xy
6
√

xy−x

60 − 2
3

61 − x
y

62 − 1
2

63 − x
y

64 − 4x4

3y2

65 − 2x
3y2

66 3x2−2x3
y

67 − 1
siny+ycosy

68 − x
y

69 y+4
√

xy
4y
√

xy−x

70 8x

y−
1
2 +10

71 − 2xy3+1
3x2y2

72 − y
x

73 1√
1−x2

74
2y
√

1+x2y2−xy2

x2y−2x
√

1+x2y2

75 − 6x+2xy
x2+3y2

Chapter 7:

1 y =− x
1+cx

2 y =− 1
tanx+c

3 y = x2(secx+ c)

4 y = ex(−e−x + c)

5 y = e−3x(ex + c)

6 y = tan(−cosx+ c)

7 y = e−x( 1
3 e3x + c

)
8 y = x(xex− ex + c)

9 y = x(−e−x + c)

10 y = e
x
2
(
4e−

x
2 + c

)
11 y =

√
x3 + x2− x+ c

12 y = esinx+c

13 y = 1
x2
( 4

5 x5 + c
)

14 y = ex(− 1
2 e−2x + c

)
15 y = 1

1+x2
(
x+ x3

3 + c
)

16 y = e−x( ln(ex +1)+ c
)

17 y = e−2x( x
2 e2x− 1

4 e2x + 5
4
)

18 y = e−2x(ex− 1
4 )

19 y = ex2 (− 1
2 e−x2

+ 1
2
)

20 y = 1
1+x2

( 1
2 ln(1+ x2)+1

)
21 y = 1

x
(
− cos x+ 4π+3

6
)

22 y = e
x
3
(
− 3

4 e−
4
3 x

+a+ 3
4

)
23 y = 1

x2

(
x4 +1

)
24 y =

√
x3 +2x2 +2x+1

25 y = ex3 (− e−x3
+1
)

26 y = 1
x
( x4

4 −
13
4
)

27 y = x(x+1)

28 y =− 1
x−1

29 y = 3√x3 + x+1

30 y = cosx
(

sin2 x+ 11
2
)

31 y =− 1
5
2 (x2−11)

32 y =
√

x3 +2x2−4x+10

33 y =− 1√
1+x2

34 y = ln |x2−4x−4|

35 y =− 1
ln |x|− 1

2

36 y = sin−1 x

37 y = 1
x
( x4

4 −
13
4
)

38 y = 2
π

cos−1 (e−(x2+x))
39 y = tan

( 2
3 x3)

40 y = 1
x2
( x4

4 −
x3
3 + x2

2 + 1
12
)
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Chapter 8:

1 (1,
√

3)

2 (0,1)

3 (−
√

3,−1)

4 (−3,0)

5 (0,− 1
2 )

6 (3,0)

7 ( 7√
2
,− 7√

2
)

8 ( 3
2 ,

3
√

3
2 )

9 (
√

2, π
4 )

10 (2, π
3 )

11 (
√

2, 3π
4 )

12 (2
√

3, π
3 )

13 (2, π

6 )

14 ( 1√
2
, π

4 )

15 (2, 5π

6 )

16 (3,0)

17 r = 4secθ

18 r =
√

5

19 y = 1

20 x2 + y2−6x = 0

21 r = 2tanθsecθ

22 r = 9cosθ

cos2 θ−sin2 θ

23
√

x2 + y2− y−3 = 0

24 x2 + y2−2
√

x2 + y2 +3y = 0

25

26

27

28

29 9π
4

30 3π
2

31 4π

32 4π

33 36( 3π
4 +2)

34 6π

35 4π

36 5π

37 2π

38 9
√

3
2 −π

39 10π

40 5π−8
4

41 π−2
2



Basic Mathematical Concepts

In this part of the book, we prepared some mathematical concepts that hopefully help students to understand the main ideas of the book.
By taking into account the different scientific levels of the students, it is necessary to present these concepts with some examples and
figures. The necessity of this part is not limited to this course, but it is for other courses. I personally recommend the students to give this
additional part a primary attention before starting the course, where the necessity of it is not limited to this course, but it is for other
courses.

Mathematical Expressions
1. ⇒ is the symbol for implying.
2. ⇔ is the symbol for “⇒ and⇐". Also, the expression “iff" means if and only if .
3. b > a means b is greater than a and a < b means a is less than b.
4. b≥ a means b is greater than or equal to a.

Sets of Numbers & Notations

1. Natural numbers N= {1,2,3, ...}.

2. Whole numbers W= {0,1,2,3, ...}.

3. Integers Z= {...,−3,−2,−1,0,1,2,3, ...}.

4. Rational numbers Q= { a
b | a,b ∈ Z and b 6= 0}.

5. Irrational numbers I= {x | x is a real number that is not rational}.

6. Real numbers R contains all the previous sets.

Figure A.1: Sets of Numbers.
Fractions Operations

• Adding or subtracting two fractions
To add or subtract two fractions, we do the following steps:

1. Find the least common denominator.
2. Write both original fractions as equivalent fractions with the least common denominator.
3. Add (or subtract) the numerators.
4. Write the result with the denominator.

� Example A.14
(1) 2

3 +
4
5 = 10

15 +
12
15 = 10+12

15 = 22
15

(2) 3
7 +

5
7 = 3+5

7 = 8
7

(3) 4
7 −

1
6 = 24

42 −
7

42 = 24−7
42 = 14

42 = 7
21

(4) 3
7 −

5
7 = 3−5

7 =− 2
7

•Multiplying two fractions
To multiple two fractions, we do the following steps:

1. Multiply the numerator by the numerator.
2. Multiply the denominator by the denominator.

a
b
× c

d
=

ac
bd

where b 6= 0 and d 6= 0 .

� Example A.15
(1) 3

4 ×
2
9 = 3×2

4×9 = 6
36 = 1

6 (2) 2
5 ×

−3
7 =

2×(−3)
5×7 =− 6

35
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• Dividing two fractions
To divide two fractions, we do the following steps:

1. Find the multiplicative inverse of the second fraction.
2. Multiply the two fractions.

a
b
÷ c

d
=

a
b
× d

c
=

ad
bc

where b 6= 0 and d 6= 0 .

� Example A.16
(1) 2

5 ÷
4
9 = 2

5 ×
9
4 = 2×9

5×4 = 18
20 (2) 3

7 ÷
−2
5 = 3

7 ×
5
−2 = 3×5

7×(−2) =−
15
14

Logarithmic and Exponential Functions
The Natural Logarithmic Function
• The natural logarithmic function is defined as follows:

ln : (0,∞)→ R ,

lnx =
∫ x

1

1
t

dt

for every x > 0.
• Some properties:

If a,b > 0 and r ∈Q, then
1. lnab = lna+ lnb.

2. ln a
b = lna− lnb.

3. lnar = r lna.
• Differentiating the natural logarithmic function:

If u = g(x) is differentiable, then

d
dx

(
ln | u |

)
=

1
u

u′ .

1 2 3 4

−2

−1

1 y = lnx

x

y

Figure A.2: The graph of the function y = lnx.

� Example A.17 Find the derivative of the function.
(1) y = ln(x2 +1) (2) y = ln

√
x

Solution:
(1) y′ = 2x

x2+1

(2) y′ = 1√
x

1
2
√

x = 1
2x

Exponents
Assume n is a positive integer and a is a real number. The nth power of a is

an = a . a . . . a .

The Natural Exponential Function

The natural exponential function is defined as follows:

exp : R−→ (0,∞) ,

y = exp x⇔ lny = x

Some properties: If a,b > 0 and r ∈Q, then
• 1. eaeb = ea+b

2.
ea

eb = ea−b

3. (ea)r = ear

• Note that ex and lnx are inverse functions, so

lnex = x, ∀x ∈ R , and elnx = x, ∀x ∈ (0,∞).

• Differentiating the natural exponential function:
If u = g(x) is differentiable, then

d
dx

eu = euu′.

1

y = ex

x

y

Figure A.3: The graph of the function y = ex.
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� Example A.18 Find the derivative of the function.
(1) y = e

√
x (2) y = ecos x

Solution:
(1) y′ = e

√
x
(

1
2
√

x

)
(2) y′ = esin x cos x

General Exponential Function
• The general exponential function is defined as follows:

ax : R→ (0,∞) ,

ax = ex lna for every a > 0.

1

y = ax

x

y

Figure A.4: The function y = ax for a > 1.

1

y = ax

x

y

Figure A.5: The function y = ax for a < 1.

• Properties of the general exponential function:
For every x,y > 0 and a,b ∈ R,

1. x0 = 1

2. xaxb = xa+b

3. xa

xb = xa−b

4. (xa)b = xab

5. (xy)a = xaya

6. x−a = 1
xa

� Example A.19
(1) 242−7 = 23−7 = 2−3 = 1

23 = 1
8

(2) 32

3−2 = 32−(−2) = 34 = 81

(3) (5x)2 = 25x2

(4) x6y3

(xyz)5 = x6y3

x5y5z5 = x6

x5
y3

y5
1
z5 = x6−5y3−5 1

z5 = x
y2z5

• Differentiating the general exponential function:
If u = g(x) is differentiable, then

d
dx

(
au)= au lna u′

� Example A.20 Find the derivative of the function.
(1) y = 2

√
x (2) y = 3tan x

Solution:
(1) y′ = 2

√
x ln2

(
1

2
√

x

)
(2) y′ = 3sin x ln3 cos x

General Logarithmic Function
• The general logarithmic function is defined as follows:

loga : (0,∞)→ R ,
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x = ay⇔ y = loga x.

1

y = loga x
x

y

Figure A.6: The function y = loga x for a > 1.

1
y = loga x

x

y

Figure A.7: The function y = loga x for a < 1.

• Properties of general logarithmic function:
If x,y > 0 and r ∈ R, then

1. loga xy = loga x+ loga y

2. loga
x
y = loga x− loga y

3. loga xr = r loga x

• Differentiating the general logarithmic function:
If u = g(x) is differentiable, then

d
dx

(
loga |u|

)
=

d
dx

( ln |u|
lna

)
=

1
u lna

u′

� Example A.21 Find the derivative of the function.
(1) y = log2(x

2 +1)

(2) y = log3
√

x

Solution:
(1) y′ = 2x

(x2+1) ln2

(2) y′ = 1√
x ln3

1
2
√

x = 1
2x ln3

Algebraic Expressions
Let a and b be real numbers. Then,

1. (a+b)2 = a2 +2ab+b2

2. (a−b)2 = a2−2ab+b2

3. (a+b)(a−b) = a2−b2

4. (a+b)3 = a3 +3a2b+3ab2 +b3

5. (a−b)3 = a3−3a2b+3ab2−b3

6. a3 +b3 = (a+b)(a2−ab+b2)

7. a3−b3 = (a−b)(a2 +ab+b2)

8. an−bn = (a−b)(an−1 +an−2b+an−3b2 + ...+abn−2 +bn−1)

� Example A.22
(1) (x±2)2 = x2±4x+4
(2) x2−25 = (x−5)(x+5)

(3) (x±2)3 = x3±6x2 +12x±8
(4) x3±27 = (x±3)(x2∓3x+9)

Absolute Value
The absolute value of x is defined as follows:

| x |=
{

x : x≥ 0
−x : x < 0

� Example A.23 |2|= 2, |−2|= 2, |0|= 0 .
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Equations and Inequalities
If b > 0,

1. |x−a|= b⇔ x = a−b or x = a+b .
2. |x−a|< b⇔ a−b < x < a+b .
3. |x−a|> b⇔ x < a−b or x > a+b .

� Example A.24 Solve for x.
(1) |3x−4|= 7 (2) |2x+1|< 1

Solution:
(1) |3x−4|= 7⇔ 3x−4 = 7 or 3x−4 =−7. Thus, x = 11

3 or x =−1.
(2) |2x+1|< 1⇔−1 < 2x+1 < 1. By subtracting 1 and then dividing by 2, we have −1 < x < 0.

Functions
A function f : D→ S is a mapping that assigns each element in D to an element in S. The set D is called the domain of the function f .
All values of f (x) belong to a set R⊆ S called the range.
• Domains and Ranges
In the following, we show the domain and range of some functions:

1. Polynomials anxn +an−1xn−1 + ...+a1x+a0 .
Domain: R Range: R

2. Square Roots f (x) =
√

g(x) .
Domain: ∀x ∈ R such that g(x)≥ 0 Range: R+

3. Rational Functions q(x) = f (x)
g(x) .

To determine the domain, we need to find the intersection of the domains of f and g. Then, we remove zeros of the function g.

� Example A.25 Find the domain of the function.
(1) f (x) =

√
x−1

(2) q(x) = x+1
2x−1

(3) q(x) = 3x2+x+2√
x+2

Solution:
(1) We need to find all x ∈ R such that x−1≥ 0. By solving the inequality, we have x−1≥ 0⇒ x≥ 1. Thus, the domain is [1,∞). Now,
∀x ∈ D( f ), f (x) =

√
g(x)≥ 0 i.e., the range is [0,∞).

(2) The domain of the numerator and the denominator is R. The denominator g(x) = 0 if x = 1
2 . Thus, the domain is R\

{ 1
2 } .

(3) The domain of the numerator is R, but the domain of the denominator is [−2,∞). Also, the denominator g(x) = 0 if x =−2. Thus, the
domain is (−2,∞).

• Operations on Functions
Let f and g be two functions, then

1. ( f ±g)(x) = f (x)±g(x) .
2. ( f g)(x) = f (x)g(x) .
3. ( f

g )(x) =
f (x)
g(x) where g(x) 6= 0 .

� Example A.26 If f (x) = x2−1 and g(x) = x−1, find the following:
(1) ( f +g)(x) (2) ( f g)(x) (3) ( f

g )(x)
Solution:

(1) ( f +g)(x) = f (x)+g(x) = (x2−1)+(x−1) = x2 + x−2.
(2) ( f g)(x) = f (x)g(x) = (x2−1)(x−1) = x3− x2− x+1.
(3) ( f

g )(x) =
f (x)
g(x) =

x2−1
x−1 =

(x−1)(x+1)
(x−1) = x+1.

• Composition of Functions
Let f and g be two functions. The composition of the two functions is ( f ◦g)(x) = f (g(x)) where D( f ◦g) = {g(x) ∈ D( f )∀x ∈ D(g)}.

� Example A.27 If f (x) = x2 and g(x) = x+2, find ( f ◦g)(x).
Solution:
( f ◦g)(x) = f (g(x)) =

(
x+2

)2
= x2 +4x+4.

• Inverse Functions
A function f has an inverse function f−1 if it is one to one: y = f−1(x)⇔ x = f (y).1

1The −1 in f−1 is not exponent where 1
f (x) is written as

(
f (x)

)−1.
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Properties of inverse functions:
1. D( f−1) is the range of f .

2. The range of f−1 is the domain of f .

3. f−1( f (x)
)
= x,∀x ∈ D( f ).

4. f
(

f−1(x)
)
= x,∀x ∈ D( f−1).

5. ( f−1)−1(x) = f (x),∀x ∈ D( f ).

Figure A.8: Inverse functions.
• Even and Odd Functions
Let f be a function and −x ∈ D( f ).

1. If f (−x) =− f (x) ∀x ∈ D( f ), the function f is odd.
2. If f (−x) = f (x) ∀x ∈ D( f ), the function f is even.

� Example A.28
(1) The function f (x) = 2x3 + x is odd because f (−x) = 2(−x)3 +(−x) =−2x3− x =−(2x3 + x) =− f (x).
(2) The function f (x) = x4 +3x2 is even because f (−x) = (−x)4 +3(−x)2 = x4 +3x2 = f (x).

Roots of Linear and Quadratic Equations
• Linear Equations
A linear equation can be written in the form ax+b = 0 where x is the unknown, and a,b ∈R and a 6= 0. To solve the equation, subtract b
from both sides and then divide the result by a:

ax+b = 0⇒ ax+b−b = 0−b⇒ ax =−b⇒ x =
−b
a

.

� Example A.29 Solve for x the equation x+2 = 5.
Solution:

3x+2 = 5⇒ 3x = 5−2⇒ 3x = 3⇒ x =
3
3
= 1 .

• Quadratic Equations
A quadratic equation can be written in the form ax2 +bx+ c = 0 where a, b, and c are constants and a 6= 0. The quadratic equations can
be solved by using the factorization method, the quadratic formula, or the completing the square.
Factorization Method
The factorization method depends on finding factors of c that add up to b. Then, we use the fact that if x,y ∈ R, then

xy = 0⇒ x = 0 or y = 0 .

� Example A.30 Solve for x the following quadratic equations:
(1) x2 +2x−8 = 0
(2) x2 +5x+6 = 0

Solution:
(1) a = 1,b = 2 and c =−8. by factoring c, we have c = 2× (−4) or c =−2×4. However, b 6= (−2)+4, so we consider 2 and −4. Thus,

x2 +2x−8 = (x−2)(x+4) = 0⇒ x−2 = 0 or x+4 = 0⇒ x = 2 or x =−4 .

(2) By factoring the left side, we have

(x+2)(x+3) = 0⇒ x+2 = 0 or x+3 = 0⇒ x =−2 or x =−3 .

Quadratic Formula Solutions
We can solve the quadratic equations by the quadratic formula:

x =
−b±

√
b2−4ac

2a
.

Remark: The expression b2−4ac is called the discriminant of the quadratic equation ax2 +bx+ c = 0.
1. If b2−4ac > 0, the quadratic equation has two distinct real solutions.

2. If b2−4ac = 0, the quadratic equation has one distinct real solution.
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3. If b2−4ac < 0, the quadratic equation has no real solutions.

� Example A.31 Solve for x the following quadratic equations:
(1) x2 +2x−8 = 0
(2) x2 +2x+1 = 0
(3) x2 +2x+8 = 0

Solution:
(1) a = 1, b = 2, c =−8. Since b2−4ac = 22−4(1)(−8)> 0, then there are two solutions x = 2 and x =−4.
(2) a = 1, b = 2, c = 1. Since b2−4ac = 22−4(1)(1) = 0, then there is one solution x =−1.
(3) a = 1, b = 2, c = 8. Since b2−4ac = 22−4(1)(8)< 0, then there are no real solutions.

Completing the Square Method
To solve the quadratic equation by the completing the square method, we need to do the following steps:
Step 1: Divide all terms by a (the coefficient of x2).
Step 2: Move the term ( c

a ) to the right side of the equation.
Step 3: Complete the square on the left side of the equation and balance this by adding the same value to the right side.
Step 4: Take the square root of both sides and subtract the number that remains on the left side.

� Example A.32 Solve for x the quadratic equation x2 +2x−8 = 0 .
Solution: a = 1, b = 2, c =−8 .
Step 1 can be skipped in this example since a = 1.
Step 2: x2 +2x = 8 .
Step 3: To complete the square, we need to add ( b

2 )
2 since a = 1.

x2 +2x+1 = 8+1⇒ (x+1)2 = 9 .

Step 4: x+1 =±3⇒ x =±3−1⇒ x = 2 or x =−4.

Systems of Equations
A system of equations consists of two or more equations with the same set of unknowns. The equations in the system can be linear or
non-linear, but for the purpose of this book, we only consider the linear ones.
Consider a system of two equations in two unknowns x and y

ax+by = c

dx+ ey = f .

To solve the system, we try to find values of the unknowns that will satisfy each equation in the system. To do this, we can use elimination
or substitution.

� Example A.33 Solve the following system of equations:

x−3y = 4→ 1

2x+ y = 6→ 2

Solution:
• By using the elimination method.
Multiply equation 2 by 3, then add the result to equation 1 . This implies 7x = 22⇒ x = 22

7 . Substitute the value of x into the first
or the second equation to obtain y =− 2

7 .
• By using the substitution method.
From the first equation, we have x = 4+3y. By substituting that into the second equation, we obtain

2(4+3y)+ y = 6⇒ 7y+8 = 6⇒ y =−2
7

Substitute value of y into x = 4+3y to have x = 22
7 .

Pythagorean Theorem
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If c denotes the length of the hypotenuse and a
and b denote the lengths of the other two sides, the
Pythagorean theorem can be expressed as follows:

a2 +b2 = c2 or c =
√

a2 +b2 .

If a and c are known and b is unknown, then

b =
√

c2−a2 .

Similarly, if b and c are known and a is unknown, then

a =
√

c2−b2

The trigonometric functions for a right triangle are

cosθ =
a
c

sinθ =
b
c

tanθ =
b
a

a

b
c

θ

Figure A.9
a is adjacent to the angle θ

b is opposite
c is hypotenuse

� Example A.34 Find value of x. Then find cosθ, and sinθ.

Solution:
a = 3, b = 4⇒ x2 = 42 +32 = 25⇒ x = 5
cosθ = 3

5
sinθ = 4

5 3

4
x

θ

Figure A.10

Trigonometric Functions

• If (x,y) is a point on the unit circle, and if the ray
from the origin (0,0) to that point (x,y) makes an angle
θ with the positive x-axis, then

cosθ = x , sinθ = y ,

• Each point (x,y) on the unit circle can be written as
(cosθ,sinθ).
• Since x2 + y2 = 1, then cos2 θ + sin2

θ = 1.
Therefore,

1+ tan2
θ = sec2

θ and cot2 θ+1 = csc2
θ. Figure A.11: Trigonometric functions.

Also,

tanθ =
sinθ

cosθ
cotθ =

cosθ

sinθ
secθ =

1
cosθ

cscθ =
1

sinθ

• Trigonometric functions of negative angles

cos(−θ) = cos(θ), sin(−θ) =−sin(θ), tan(−θ) =− tan(θ)

• Double and half angle formulas

sin2θ = 2sinθcosθ, cos2θ = cos2
θ− sin2

θ = 1−2sin2
θ = 2cos2

θ−1

tan2θ =
2tanθ

1− tan2 θ

sin2 θ

2
=

1− cosθ

2
, cos2 θ

2
=

1+ cosθ

2
• Angle addition formulas

sin(θ1±θ2) = sinθ1 cosθ2± cosθ1 sinθ2
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cos(θ1±θ2) = cosθ1 cosθ2∓ sinθ1 sinθ2

tan(θ1±θ2) =
tanθ1± tanθ2

1∓ tanθ1 tanθ2

• Values of trigonometric functions of most commonly used angles

Degrees 0 30 45 60 90 120 135 150 180 210 225 240 270 300 315 330 360
Radians 0 π

6
π

4
π

3
π

2
2π

3
3π

4
5π

6 π
7π

6
5π

4
4π

3
3π

2
5π

3
7π

4
11π

6 2π

sinθ 0 1
2

1√
2

√
3

2 1
√

3
2

1√
2

1
2 0 −1

2
−1√

2
−
√

3
2 −1 −

√
3

2
−1√

2
−1
2 0

cosθ 1
√

3
2

1√
2

1
2 0 −1

2
−1√

2
−
√

3
2 −1 −

√
3

2
−1√

2
−1
2 0 1

2
1√
2

√
3

2 1

Table A.1

• Graphs of trigonometric functions

− π

4
π

4

−1

1

y = sinx
y = cosx

x

y

Figure A.12: The graphs of sinx and cosx.

−π/4 π/4
−2

2

y = tanx
x

y

Figure A.13: The graph of tanx.
Distance Formula

Let P1 = (x1,y1) and P2 = (x2,y2) be two points in the
Cartesian plane. The distance between P1 and P2 is

D =
√
(x2− x1)2 +(y2− y1)2 .

� Example A.35 Find the distance between the two
points P1(1,1) and P2(−3,4).

Solution:

D =
√
(−3−1)2 +(4−1)2 =

√
16+9 =

√
25 = 5 .

Figure A.14: The distance between two points.
Differentiation of Functions

Differentiation Rules
d
dx
(

f (x)+g(x)
)
= f ′(x)+g′(x)

d
dx
(

f (x)g(x)
)
= f ′(x)g(x)+ f (x)g′(x)

d
dx
( f (x)

g(x)

)
=

f ′(x)g(x)− f (x)g′(x)(
g(x)
)2

d
dx
( 1

g(x)

)
=
−g′(x)(
g(x)
)2

d
dx
(
c f (x)

)
= c f ′(x)

Elementary Derivatives
d
dx xr = rxr−1 d

dx
1
x =− 1

x2
d
dx
√

x = 1
2
√

x
Derivative of Composite Functions (Chain Rule)
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Let y = f (u) and u = g(x) such that dy/du and du/dx exist. Then, the derivative of the composite function ( f ◦g)(x) exists and

dy
dx

=
dy
du

du
dx

= f ′(u)g′(x) = f ′
(
g(x)

)
g′(x) .

Derivative of Inverse Functions
If a function f has an inverse function f−1, then d

dx f−1(x) = 1
f ′
(

f−1(x)
) .

Graphs of Functions
• The First and Second Derivative Test

1. Let f be continuous on [a,b] and f ′ exists on (a,b).
• If f ′(x)> 0,∀x ∈ (a,b), then f is increasing on [a,b].
• If f ′(x)< 0,∀x ∈ (a,b), then f is decreasing on [a,b].

2. Let f be continuous at a critical number c and differentiable on an open interval (a,b), except possibly at c.
• f (c) is a local maximum of f if f ′ changes from positive to negative at c.
• f (c) is a local minimum of f if f ′ changes from negative to positive at c.

Figure A.15: The local maximum and minimum value of the function f .

3. If f ′′ exists on an open interval I,
• the graph of f is concave upward on I if f ′′(x)> 0 on I.
• the graph of f is concave downward on I if f ′′(x)< 0 on I.

• Shifting Graphs
Let y = f (x) is be function.

1. Replacing each x in the function with x− c shifts the graph c units horizontally.
• If c > 0, the shift will be to the right.
• If c < 0, the shift will be to the left.

2. Replacing y in the function with y− c shifts the graph c units vertically.
• If c > 0, the shift will be upward.
• If c < 0, the shift will be downward.

• Symmetry about the y-axis and the origin
1. If the function f is odd, the graph of f is symmetric about the origin.
2. If the function f is even, the graph of f is symmetric about the y-axis.

• Lines
The general linear equation in two variables x and y can be written in the form:

ax+by+ c = 0 ,

where a, b and c are constants with a and b not both 0.

� Example A.36

2x+ y = 4
a = 2, b =−1, c =−4
To plot the line, we rewrite the equation to become
y =−2x+4. Then, we use the following table to make
points on the plane:

x 0 2
y 4 0

The line 2x+ y = 4 passes
through the points (0,4)
and (2,0).

Figure A.16: The line 2x+ y = 4.

Slope
1. The slope of a line passing through the points P1(x1,y1) and P2(x2,y2) is m = y2−y1

x2−x1
.

2. Point-Slope form: y− y1 = m(x− x1).
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3. Slope-Intercept form:
If b 6= 0, the general linear equation can be rewritten as

ax+by+ c = 0⇒ by =−ax− c⇒ y =−a
b

x− c
b
⇒ y = mx+d ,

where m is the slope.

� Example A.37 Find the slope of the line 2x−5y+9 = 0.
Solution: 2x−5y+9 = 0⇒−5y =−2x−9⇒ y = 2

5 x+ 9
5 .

Thus, the slope is 2
5 . Alternatively, take any two points on that line say (−2,1) and (3,3). Then,

m =
y2− y1

x2− x1
=

3−1
3− (−2)

=
2
5
.

Special cases of lines in a plane
1. If m is undefined, the line is vertical.

Figure A.17

2. If m = 0, the line is horizontal.

Figure A.18

3. Let L1 and L2 be two lines in a plane, and let m1 and m2 be the corresponding slopes, respectively.
• If L1 and L2 are parallel, then m1 = m2.

Figure A.19

• If L1 and L2 are vertical, then m1 =
−1
m2

.

Figure A.20

• Graph of Some Functions
y = mx+b y = a x = a
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y = x2 y = x2 +a y = x2−a

y = (x+a)2 y = (x−a)2 x =
√

y

x = y2−a x = (y−a)2 y =
√

x

x = y2 y = x3 y =| x |

Figure A.21

Areas and Volumes of Special Shapes
Area = x2 Area = xy Area = 1

2 bh

Area = πr2 Volume = πr2h Volume = 4
3 πr3
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Volume = xyz Volume = 1
3 xyh Volume = 1

3 πr2h

Figure A.22
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