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We study the regularity of the solutions of the surface quasi-geostrophic equation with subcritical exponent 1/2 < 𝛼 ≤ 1. We prove
that if the initial data is small enough in the critical space �̇�2−2𝛼(R2), then the regularity of the solution is of exponential growth
type with respect to time and its �̇�2−2𝛼(R2) norm decays exponentially fast. It becomes then infinitely differentiable with respect
to time and has value in all homogeneous Sobolev spaces �̇�𝑠(R2) for 𝑠 ≥ 2 − 2𝛼. Moreover, we give some general properties of the
global solutions.

1. Introduction

We consider the 2𝐷 dissipative quasi-geostrophic equation
with subcritical exponent 1/2 < 𝛼 ≤ 1:

𝜕
𝑡
𝜃 + (−Δ)

𝛼
𝜃 + (𝑢 ⋅ ∇) 𝜃 = 0 in R

+
×R
2
,

𝜃 (0, 𝑥) = 𝜃
0
(𝑥) in R

2
,

(S
𝛼
)

where 𝑥 ∈ R2, 𝑡 > 0, 𝜃 = 𝜃(𝑥, 𝑡) is the unknown potential
temperature, and 𝑢 = (𝑢

1
, 𝑢
2
) is the divergence free velocity

which is determined by the Riesz transformation of 𝜃 in the
following sense:

𝑢
1
= −R

2
𝜃 = −𝜕

2
(−Δ)
−1/2

𝜃,

𝑢
2
= R
1
𝜃 = 𝜕
1
(−Δ)
−1/2

𝜃.

(1)

The critical homogeneous Sobolev space is �̇�2−2𝛼(R2) andwe
have


𝜆
2𝛼−1

𝑓 (𝜆.)
�̇�2−2𝛼

=
𝑓
�̇�2−2𝛼

, ∀𝜆 > 0. (2)

In [1], we studied the existence of global solutions of (S
𝛼
)

if the initial data 𝜃0 is small in the critical space �̇�2−2𝛼(R2)
and the subcritical exponent 𝛼 ∈ (1/2, 1]. In use of Theorem
4.2 in [2] with 𝑝 = 𝑞 = 2, we proved the followingTheorem.

Theorem 1 (see [1]). For 𝛼 ∈ (1/2, 1] and 𝜃0 ∈ �̇�
2−2𝛼

(R2),
there exists a constant 𝑐

𝛼
> 0 such that if

𝜃
0�̇�2−2𝛼

< 𝑐
𝛼
, (3)

the initial value problem (S
𝛼
) has a unique solution in

C
𝑏
(R+, �̇�2−2𝛼(R2)) ∩ 𝐿2(R+, �̇�2−𝛼(R2)). Moreover,

‖𝜃(𝑡)‖
2

�̇�
2−2𝛼 + ∫

𝑡

0

‖𝜃(𝜏)‖
2

�̇�
2−𝛼𝑑𝜏 ≤


𝜃
0

2

�̇�
2−2𝛼

, ∀𝑡 ≥ 0. (4)

We proved also the following result.

Theorem 2 (see [1]). Let 2/3 ≤ 𝛼 ≤ 1.

(i) If 𝜃 ∈ C(R+, �̇�2−2𝛼(R2)) is a global solution of (S
𝛼
),

then

lim
𝑡→∞

‖𝜃(𝑡)‖
�̇�
2−2𝛼 = 0. (5)

(ii) If 𝜃 ∈ C(R+, 𝐻2−2𝛼(R2)) is a global solution of (S
𝛼
),

then

lim
𝑡→∞

‖𝜃(𝑡)‖𝐻2−2𝛼 = 0. (6)

In this paper, we describe the long time behavior of these
solutions with respect to the homogeneous Sobolev norm
‖ ⋅ ‖
�̇�
𝑠 , for 𝑠 ≥ 2 − 2𝛼. We prove the following.
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Theorem 3. There exists 𝑐
𝛼

> 0 such that, for all 𝜃0 ∈

�̇�
2−2𝛼

(R2), ‖𝜃0‖
�̇�
2−2𝛼 < 𝑐

𝛼
, and there exists a global solution

𝜃 ∈ C
𝑏
(R+, �̇�2−2𝛼(R2)) ∩ 𝐿2(R+, �̇�2−𝛼(R2)) such that, for all

𝑠 > 2 − 2𝛼, 𝜃(𝑡) ∈ �̇�𝑠(R2) for all 𝑡 > 0, and

‖𝜃(𝑡)‖
�̇�
𝑠 = 𝑂 (𝑡

−(𝑠−(2−2𝛼))/2𝛼
) , 𝑡 → ∞. (7)

When the initial data is in �̇�
2−2𝛼

(R2) ∩ 𝐿
2
(R2) and

small enough in the homogeneous space �̇�2−2𝛼(R2), we prove
that the Leray solution is also in all Sobolev spaces �̇�𝑠(R2).
Moreover, we describe the long time behavior of its homo-
geneous Sobolev norm ‖ ⋅ ‖

�̇�
𝑠 , for 𝑠 ≥ 0. We state also the

following.

Theorem 4. There exists 𝑐
𝛼

> 0 such that, for all 𝜃0 ∈

𝐻
2−2𝛼

(R2), ‖𝜃0‖
�̇�
2−2𝛼 < 𝑐

𝛼
, and there exists a global solution

𝜃 ∈ C
𝑏
(R+, 𝐻2−2𝛼(R2)) ∩ 𝐿2(R+, �̇�2−𝛼(R2)) such that, for all

𝑠 ≥ 0,

‖𝜃(𝑡)‖
�̇�
𝑠 = 𝑂 (𝑡

−𝑠/2𝛼
) , 𝑡 → ∞. (8)

The paper is organized as follows. We start by recalling
some preliminary background and stating useful preliminary
results on Sobolev spaces. Sections 3 and 4 are devoted to the
proof of the main results, Theorems 3 and 4. In Section 5, we
give some general properties for any global solutions of the
system (S

𝛼
).

2. Notations and Preliminary Results

2.1. Notations and Technical Lemmas. In this short section,
we collect some notations and definitions that will be used
later and we give some technical lemmas.

(i) The Fourier transformation in R2 is normalized as

F (𝑓) (𝜉) = 𝑓 (𝜉) = ∫

R2
exp (−𝑖𝑥 ⋅ 𝜉) 𝑓 (𝑥) 𝑑𝑥,

𝜉 = (𝜉
1
, 𝜉
2
) ∈ R
2
.

(9)

(ii) The inverse Fourier formula is

F
−1
(𝑔) (𝑥) = (2𝜋)

−2
∫ exp (𝑖𝜉 ⋅ 𝑥) 𝑓 (𝜉) 𝑑𝜉,

𝑥 = (𝑥
1
, 𝑥
2
) ∈ R
2
.

(10)

(iii) For 𝑠 ∈ R, 𝐻𝑠(R2) denotes the usual nonhomo-
geneous Sobolev space on R2 and ⟨⋅, ⋅⟩

𝐻
𝑠 its scalar

product.
(iv) For 𝑠 ∈ R, �̇�𝑠(R2) denotes the usual homogeneous

Sobolev space on R2 and ⟨⋅, ⋅⟩
�̇�
𝑠 its scalar product.

(v) The convolution product of a suitable pair of func-
tions 𝑓 and 𝑔 on R2 is given by

(𝑓 ∗ 𝑔) (𝑥) := ∫

R2
𝑓 (𝑦) 𝑔 (𝑥 − 𝑦) 𝑑𝑦. (11)

(vi) For any Banach space (𝐵, ‖ ⋅ ‖), any real number 1 ≤

𝑝 ≤ ∞, and any time 𝑇 > 0, we will denote by 𝐿𝑝
𝑇
(𝐵)

the space ofmeasurable functions 𝑡 ∈ [0, 𝑇] → 𝑓(𝑡) ∈

𝐵 such that (𝑡 → ‖𝑓(𝑡)‖) ∈ 𝐿
𝑝
([0, 𝑇]).

(vii) If 𝑓 = (𝑓
1
, 𝑓
2
) and 𝑔 = (𝑔

1
, 𝑔
2
) are two vector fields,

we set

𝑓 ⊗ 𝑔 := (𝑔
1
𝑓, 𝑔
2
𝑓) ,

div (𝑓 ⊗ 𝑔) := (div (𝑔
1
𝑓) , div (𝑔

2
𝑓)) .

(12)

(viii) For any subset𝑋 of a set 𝐸, 1
𝑋
denotes the character-

istic function of𝑋.

We recall a fundamental lemma concerning some product
laws in homogeneous Sobolev spaces.

Lemma 5 (see [3]). Let 𝑠
1
, 𝑠
2
be two real numbers such that

𝑠
1
< 1, 𝑠

1
+ 𝑠
2
> 0. (13)

There exists a constant 𝐶 := 𝐶(𝑠
1
, 𝑠
2
), such that, for all 𝑓, 𝑔 ∈

�̇�
𝑠
1(R2) ∩ �̇�𝑠2(R2),

𝑓𝑔
�̇�𝑠1+𝑠2−1

≤ 𝐶 (

𝑓
�̇�𝑠1


𝑔
�̇�𝑠2

+

𝑓
�̇�𝑠2


𝑔
�̇�𝑠1

) . (14)

If 𝑠
1
, 𝑠
2
< 1 and 𝑠

1
+𝑠
2
> 0, there exists a constant 𝑐 = 𝑐(𝑠

1
, 𝑠
2
),

such that, for all 𝑓 ∈ �̇�
𝑠
1(R2) and 𝑔 ∈ �̇�

𝑠
2(R2),

𝑓𝑔
�̇�𝑠1+𝑠2−1

≤ 𝑐
𝑓
�̇�𝑠1

𝑔
�̇�𝑠2

. (15)

For the proof of the main results, we need the following
lemma.

Lemma 6. Under the same conditions as in Theorem 3, for all
𝜎 ≥ 0 and 𝜀 ≥ 0,

∫

R2

𝜉


2𝜎

𝑒
2𝜀𝑡|𝜉|

|F ((𝑢 ⋅ ∇) 𝜃)F (𝑤)| 𝑑𝜉

≤ 𝐶
𝜃𝜀

�̇�2−2𝛼
𝜃𝜀

�̇�𝜎+𝛼
𝑤𝜀

�̇�𝜎+𝛼
,

(16)

whereF(𝜃
𝜀
) = 𝑒
2𝜀𝑡|𝜉|F(𝜃) andF(𝑤

𝜀
) = 𝑒
2𝜀𝑡|𝜉|F(𝑤)(𝑡, 𝜉) and

𝑤
𝜀
∈ �̇�
𝜎+𝛼

(R2).

Remarks 7. (i) If 𝜎 = 0, formula (16) gives

∫

R2
𝑒
2𝜀𝑡|𝜉|

|F ((𝑢 ⋅ ∇) 𝜃) 𝑤| 𝑑𝜉 ≤ 𝐶

𝜃
𝜀

�̇�2−2𝛼

𝜃
𝜀

�̇�𝛼

𝑤
𝜀

�̇�𝛼
.

(17)

(ii) If 𝜀 = 0 and 𝜎 = 0, formula (16) gives

∫

R2
|F ((𝑢 ⋅ ∇) 𝜃) 𝑤| 𝑑𝜉 ≤ 𝐶‖𝜃‖

�̇�
2−2𝛼‖𝜃‖

�̇�
𝛼‖𝑤‖
�̇�
𝛼 . (18)

(iii) If 𝜀 = 0 and 𝜎 = 2 − 2𝛼, formula (16) gives

∫

R2

𝜉


2(2−2𝛼)

𝑒
2𝜀𝑡|𝜉|

|F ((𝑢 ⋅ ∇) 𝜃) 𝑤| 𝑑𝜉

≤ 𝐶‖𝜃‖
�̇�
2−2𝛼‖𝜃‖

�̇�
2−𝛼‖𝑤‖

�̇�
2−𝛼 .

(19)
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Proof of Lemma 6. By the Cauchy-Schwarz inequality, we get

∫
𝜉


2𝜎

𝑒
2𝜀𝑡|𝜉|

|F ((𝑢 ⋅ ∇) 𝜃) 𝑤| 𝑑𝜉

≤ ∫
𝜉


𝜎−𝛼

𝑒
𝜀𝑡|𝜉|

|F ((𝑢 ⋅ ∇) 𝜃)| 𝑒
𝜀𝑡|𝜉|𝜉



𝜎+𝛼

|𝑤| 𝑑𝜉

≤ (∫
𝜉


2(𝜎−𝛼)

𝑒
2𝜀𝑡|𝜉|

|F ((𝑢 ⋅ ∇)𝜃)|
2
𝑑𝜉)

1/2
𝑤𝜀

�̇�𝜎+𝛼
.

(20)

Using the weak derivatives properties, the elementary
inequality 𝑒𝑎|𝜉| ≤ 𝑒

𝑎|𝜉−𝜂|
𝑒
𝑎|𝜉|, with 𝑎 ≥ 0 and 𝜉, 𝜂 ∈ R2, and

the product laws (Lemma 5), with 𝑠
1
+𝑠
2
= 𝜎−𝛼+2 > 0, 𝑠

1
=

2−2𝛼 < 1, and 𝑠
2
= 𝜎+𝛼, we can dominate the nonlinear part

of (20) as follows:

∫
𝜉


2(𝜎−𝛼)

𝑒
2𝜀𝑡|𝜉|

|F ((𝑢 ⋅ ∇)𝜃)|
2
𝑑𝜉

≤ ∫
𝜉


2(𝜎−𝛼+1)

𝑒
2𝜀𝑡|𝜉|

(

𝜃

∗

𝜃

)
2

𝑑𝜉

≤ ∫
𝜉


2(𝜎−𝛼+1)

⋅ (𝑒
2𝜀𝑡|⋅| 

𝜃

∗ 𝑒
2𝜀𝑡|⋅| 

𝜃

)
2

𝑑𝜉

≤ 𝐶
𝜃𝜀



2

�̇�
2−2𝛼

𝜃𝜀


2

�̇�
𝜎+𝛼 .

(21)

3. Proof of Theorem 3

To proveTheorem 3, we need the following result.

Proposition 8. There exists 𝑐
𝛼
> 0 such that, for all 𝜃0 ∈

�̇�
2−2𝛼

(R2), ‖𝜃0‖
�̇�
2−2𝛼
(R2) < 𝑐

𝛼
, and there exists a global solution

𝜃 ∈ C
𝑏
(R+, �̇�2−2𝛼(R2)) ∩ 𝐿2(R+, �̇�2−𝛼(R2)) such that

∫ 𝑒
𝑡
1/2𝛼
|𝜉|𝜉



2(2−2𝛼)
𝜃(𝑡, 𝜉)



2

𝑑𝜉

+ ∫

𝑡

0

∫ 𝑒
𝜏𝑡
−1+1/2𝛼
|𝜉|𝜉



2(2−𝛼)
𝜃(𝜏, 𝜉)



2

𝑑𝜉 𝑑𝜏

≤ 2

𝜃
0

2

�̇�
2−2𝛼

.

(22)

Proof. The proof is done in two steps.

First Step. For a nonnegative integer 𝑛, Friedrich’s operator 𝐽
𝑛

is defined by

𝐽
𝑛
(𝑓) := F

−1
(1
{1/𝑛<|𝜉|<𝑛}

𝑓) . (23)

Consider the following approximate system (S𝑛
𝛼
) onR

+
×R2:

𝜕
𝑡
𝜃 + (−Δ)

𝛼
𝐽
𝑛
𝜃 + 𝐽
𝑛
(𝐽
𝑛
𝑢 ⋅ ∇𝐽
𝑛
𝜃) = 0,

𝑢 = (−Δ)
−1/2

(−𝜕
2
𝜃, 𝜕
1
𝜃) ,

𝜃 | 𝑡 = 0 = 𝐽
𝑛
𝜃
0
.

(24)

Then, by the ordinary differential equations theory, the
system (S𝑛

𝛼
) has a unique maximal solution 𝜃

𝑛
in the space

C1([0, 𝑇∗
𝑛
), 𝐿
2
(R2)), 𝑇∗

𝑛
> 0. Using the uniqueness and the

fact that 𝐽2
𝑛
= 𝐽
𝑛
, we obtain 𝐽

𝑛
𝜃
𝑛
= 𝜃
𝑛
and

𝜕
𝑡
𝜃
𝑛
+ (−Δ)

𝛼
𝜃
𝑛
+ 𝐽
𝑛
(𝑢
𝑛
⋅ ∇𝜃
𝑛
) = 0,

𝑢
𝑛
= (−Δ)

−1/2
(−𝜕
2
𝜃
𝑛
, 𝜕
1
𝜃
𝑛
) ,

𝜃
𝑛
| 𝑡 = 0 = 𝐽

𝑛
𝜃
0
.

(25)

Taking the scalar product in𝐿2(R2), we obtain, for 𝑡 ∈ [0, 𝑇∗
𝑛
),

𝜕
𝑡

𝜃𝑛


2

𝐿
2 + 2

𝜃𝑛


2

�̇�
𝛼 ≤ 0. (26)

It follows that, for all 𝑡 ∈ [0, 𝑇
∗

𝑛
), ‖𝜃
𝑛
(𝑡)‖
2

𝐿
2 ≤ ‖𝐽

𝑛
𝜃
0
‖
2

𝐿
2 , which

implies that 𝑇∗
𝑛
= +∞.

Now, taking scalar product in �̇�2−2𝛼(R2), we obtain

𝜕
𝑡

𝜃𝑛


2

�̇�
2−2𝛼 + 2

𝜃𝑛


2

�̇�
2−𝛼

≤ 2
⟨𝐽𝑛 (𝑢𝑛 ⋅ ∇𝜃𝑛) , 𝜃𝑛⟩�̇�2−2𝛼

 ,

⟨𝐽𝑛 (𝑢𝑛 ⋅ ∇𝜃𝑛) , 𝜃𝑛⟩�̇�2−2𝛼


=
⟨𝑢𝑛 ⋅ ∇𝜃𝑛, 𝐽𝑛𝜃𝑛⟩�̇�2−2𝛼



=
⟨div (𝜃𝑛𝑢𝑛) , 𝜃𝑛⟩�̇�2−2𝛼



≤
div(𝜃𝑛𝑢𝑛)

�̇�2−𝛼
𝜃𝑛

�̇�2−𝛼

≤
𝜃𝑛𝑢𝑛

�̇�2−3𝛼+1
𝜃𝑛

�̇�2−𝛼
.

(27)

Using product law (15) with 𝑠
1
= 2−2𝛼 < 1 and 𝑠

2
= 2−𝛼,

we obtain
⟨𝐽𝑛 (𝑢𝑛 ⋅ ∇𝜃𝑛) , 𝜃𝑛⟩�̇�2−2𝛼



≤ 𝑐 (𝛼) (
𝜃𝑛

�̇�2−2𝛼
𝑢𝑛

�̇�2−𝛼
+
𝜃𝑛

�̇�2−𝛼
𝑢𝑛

�̇�2−2𝛼
)
𝜃𝑛

�̇�2−𝛼
.

(28)

But

𝑢𝑛


2

�̇�
𝑠 = ∫

𝜉


2𝑠
𝜃
𝑛
(𝑡, 𝜉)



2


(
𝑖𝜉
2

𝜉


,
−𝑖𝜉
1

𝜉


)



2

𝑑𝜉 =
𝜃𝑛



2

�̇�
𝑠 ,

⟨𝐽𝑛(𝑢𝑛 ⋅ ∇𝜃𝑛), 𝜃𝑛⟩�̇�2−2𝛼
 ≤ 𝑐 (𝛼)

𝜃𝑛
�̇�2−2𝛼

𝜃𝑛


2

�̇�
2−𝛼 .

(29)

Then,

𝜕
𝑡


𝜃
𝑛



2

�̇�
2−2𝛼 + 2


𝜃
𝑛



2

�̇�
2−𝛼 ≤ 𝑐 (𝛼)


𝜃
𝑛

�̇�2−2𝛼

𝜃
𝑛



2

�̇�
2−𝛼 . (30)

Let

𝑇
𝑛
:= sup {𝑡 ≥ 0,

𝜃𝑛
𝐿∞
𝑡
(�̇�
2−2𝛼
)
< 2𝑐
𝛼
} . (31)

For 0 ≤ 𝑡 < 𝑇
𝑛
, by (30), we have

𝜃𝑛(𝑡)


2

�̇�
2−2𝛼 + 2∫

𝑡

0

𝜃𝑛


2

�̇�
2−𝛼 ≤


𝜃
0

2

�̇�
2−2𝛼

+ ∫

𝑡

0

𝜃𝑛


2

�̇�
2−𝛼𝑑𝜏;

𝜃𝑛(𝑡)


2

�̇�
2−2𝛼 + ∫

𝑡

0

𝜃𝑛


2

�̇�
2−𝛼 ≤


𝜃
0

2

�̇�
2−2𝛼

< 𝑐
2

𝛼
,

(32)
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then 𝑇
𝑛
= ∞, and, for all 𝑡 ≥ 0, we have


𝜃
𝑛
(𝑡)


2

�̇�
2−2𝛼 + ∫

𝑡

0


𝜃
𝑛



2

�̇�
2−𝛼 ≤


𝜃
0

2

�̇�
2−2𝛼

. (33)

If we take the limit when 𝑛 goes to the infinity, we find a
solution 𝜃 ∈ C

𝑏
(R+, �̇�2−2𝛼(R2)) ∩ 𝐿

2
(R+, �̇�2−𝛼(R2)) which

satisfies

‖𝜃(𝑡)‖
2

�̇�
2−2𝛼 + ∫

𝑡

0

‖𝜃‖
2

�̇�
2−𝛼 ≤


𝜃
0

2

�̇�
2−2𝛼

, (34)

which proves the first result of Theorem 3.

Second Step. Back to the approximate system,

𝜕
𝑡
𝜃
𝑛
+
𝜉


2𝛼

𝜃
𝑛
+ 1
1/𝑛<|𝜉|<𝑛

F (𝑢
𝑛
⋅ ∇𝜃
𝑛
) = 0,

𝜕
𝑡


𝜃
𝑛



2

+ 2
𝜉


2𝛼
𝜃
𝑛



2

+ 2Re (F (𝑢
𝑛
⋅ ∇𝜃
𝑛
) (𝜉) ⋅ 𝜃

𝑛
(−𝜉)) = 0.

(35)

For 𝜀 > 0, we define

𝑓
𝑛
= 𝑓
𝑛,𝜀

:= F
−1
(𝑒
𝜀𝑡|𝜉|

𝜃
𝑛
) ,

𝑓
𝑛
= 𝑒
𝜀𝑡|𝜉|

𝜃
𝑛
.

(36)

Then,

𝜕
𝑡


𝑓
𝑛



2

+ 2
𝜉


2𝛼
𝑓
𝑛



2

= 2𝜀

𝑓
𝑛



2

− 2Re 𝑒2𝜀𝑡|𝜉| (F (𝑢
𝑛
⋅ ∇𝜃
𝑛
) (𝜉) ⋅ 𝜃

𝑛
(−𝜉))

= 2𝜀
𝜉
 ⋅

𝑓
𝑛



2

− 2Re (𝑒𝜀𝑡|𝜉|F (𝑢
𝑛
⋅ ∇𝜃
𝑛
) (𝜉) ⋅ 𝑒

𝜀𝑡|𝜉|
𝜃
𝑛
(−𝜉))

= 2𝜀
𝜉
 ⋅

𝑓
𝑛



2

− 2Re (𝑒𝜀𝑡|𝜉|F (𝑢
𝑛
⋅ ∇𝜃
𝑛
) (𝜉) ⋅ 𝑓

𝑛
(−𝜉))

= 2𝜀
𝜉
 ⋅

𝑓
𝑛



2

− 2Re (𝑒𝜀𝑡|𝜉|F (div (𝜃
𝑛
𝑢
𝑛
)) (𝜉) ⋅ 𝑓

𝑛
(−𝜉))

≤ 2𝜀
𝜉
 ⋅

𝑓
𝑛



2

+ 2𝑒
𝜀𝑡|𝜉| 𝜉

 ⋅
F (𝜃
𝑛
𝑢
𝑛
)
 ⋅

𝑓
𝑛
(𝜉)



≤ 2𝜀
𝜉
 ⋅

𝑓
𝑛



2

+ 2𝑒
𝜀𝑡|𝜉| 𝜉

 ⋅ (

𝜃
𝑛


∗

𝑢
𝑛

) ⋅


𝑓
𝑛
(𝜉)



≤ 2𝜀
𝜉
 ⋅

𝑓
𝑛



2

+ 2𝑒
𝜀𝑡|𝜉| 𝜉

 ⋅ (

𝜃
𝑛


∗

𝜃
𝑛


) ⋅


𝑓
𝑛
(𝜉)


.

(37)

Using the classical inequality

𝑒
𝜆|𝜉|

≤ 𝑒
𝜆|𝜉−𝜂|

𝑒
𝜆|𝜂|

, ∀𝜆 ≥ 0, (38)

we let

𝜕
𝑡


𝑓
𝑛



2

+ 2
𝜉


2𝛼
𝑓
𝑛



2

≤ 2𝜀
𝜉
 ⋅

𝑓
𝑛



2

+ 2
𝜉
 (

𝑓
𝑛


∗

𝑓
𝑛


) ⋅


𝑓
𝑛


.

(39)

Taking the norm in �̇�2−2𝛼, we obtain

𝜕
𝑡

𝑓𝑛


2

�̇�
2−2𝛼 + 2

𝑓𝑛


2

�̇�
2−𝛼

≤ 2𝜀
𝑓𝑛



2

�̇�
2−2𝛼+1/2 + 2∫

𝜉


2(2−2𝛼)+1

(

𝑓
𝑛


∗

𝑓
𝑛


) ⋅


𝑓
𝑛


𝑑𝜉

≤ 2𝜀
𝑓𝑛



2

�̇�
(2−2𝛼)+1/2

+ 2∫
𝜉


(2−2𝛼)+1−𝛼

(

𝑓
𝑛


∗

𝑓
𝑛


)
𝜉


2−𝛼 
𝑓
𝑛


𝑑𝜉.

(40)

By Cauchy-Schwarz inequality, we have

𝜕
𝑡

𝑓𝑛


2

�̇�
2−2𝛼 + 2

𝑓𝑛


2

�̇�
2−𝛼

≤ 2𝜀
𝑓𝑛



2

�̇�
(2−2𝛼)+1/2

+ 2[∫
𝜉


2((2−2𝛼)+1−𝛼)

(

𝑓
𝑛


∗

𝑓
𝑛


) 𝑑𝜉]

2
𝑓𝑛

�̇�𝑠𝑐+𝛼

≤ 2𝜀
𝑓𝑛



2

�̇�
(2−2𝛼)+1/2 + 2

𝑔𝑛 ⋅ 𝑔𝑛
�̇�(2−2𝛼)+1−𝛼

𝑓𝑛
�̇�2−𝛼

,

(41)

where

𝑔
𝑛
:= F
−1
(

𝑓
𝑛


) . (42)

Using product law (15) in the homogeneous Sobolev space
with 𝑠

1
= 2−2𝛼 < 1, 𝑠

2
= 2−𝛼, and 𝑠

1
+𝑠
2
= (2−2𝛼)+(2−𝛼) >

0, we obtain

𝜕
𝑡

𝑓𝑛


2

�̇�
2
−2𝛼

+ 2
𝑓𝑛



2

�̇�
2−𝛼

≤ 2𝜀
𝑓𝑛



2

�̇�
(2−2𝛼)+1/2 + 𝐶𝛼

𝑔𝑛
�̇�2−2𝛼

𝑔𝑛
�̇�2−𝛼

𝑓𝑛
�̇�2−𝛼

.

(43)

Then,

𝜕
𝑡

𝑓𝑛


2

�̇�
2−2𝛼 + 2

𝑓𝑛


2

�̇�
2−𝛼

≤ 2𝜀
𝑓𝑛



2

�̇�
(2−2𝛼)+1/2 + 𝐶𝛼

𝑓𝑛
�̇�2−2𝛼

𝑓𝑛


2

�̇�
2−𝛼 .

(44)

To estimate the term ‖𝑓
𝑛
‖
2

�̇�
(2−2𝛼)+1/2 , we use theHölder inequal-

ity and we get

𝑓𝑛


2

�̇�
(2−2𝛼)+1/2 ≤

𝑓𝑛


2(1−1/2𝛼)

�̇�
2−2𝛼

𝑓𝑛


1/𝛼

�̇�
2−𝛼 . (45)

The convex inequality 𝑎𝑏 ≤ 𝑎
𝑝
/𝑝+𝑏

𝑞
/𝑞, with 𝑝 = 2𝛼/(2𝛼−1)

and 𝑞 = 2𝛼, gives

𝜀
𝑓𝑛



2

�̇�
(2−2𝛼)+1/2 ≤ 𝐶

𝛼
𝜀
2𝛼/(2𝛼−1)𝑓𝑛



2

�̇�
2−2𝛼 +

𝑓𝑛


2

�̇�
2−𝛼 . (46)

Thus,

𝜕
𝑡

𝑓𝑛


2

�̇�
2−2𝛼 +

3

2

𝑓𝑛


2

�̇�
2−𝛼

≤ 𝐶
𝛼
𝜀
2𝛼/(2𝛼−1)𝑓𝑛



2

�̇�
2−2𝛼 + 𝐶𝛼

𝑓𝑛
�̇�2−2𝛼

𝑓𝑛


2

�̇�
2−𝛼 ,

(47)

where 𝑓
𝑛

is in C(R+, �̇�2−2𝛼(R2)) and ‖𝑓
𝑛
(0)‖
�̇�
2−2𝛼 =

‖𝜃
𝑛
(0)‖
�̇�
2−2𝛼 ≤ ‖𝜃

0
‖
�̇�
2−2𝛼 < 𝑐

𝛼
.
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Let 𝑇 > 0 and 𝜀 = (ln(2)/𝐶
𝛼
𝑇)
(2𝛼−1)/2𝛼; we set

𝑇
𝑛
:= sup {𝑡 ≥ 0;

𝑓𝑛
𝐿∞
𝑡
(�̇�
2−2𝛼
)
< 2𝑐
𝛼
} . (48)

For 0 ≤ 𝑡 < inf(𝑇, 𝑇
𝑛
), we have

𝜕
𝑡


𝑓
𝑛



2

�̇�
2−2𝛼 +


𝑓
𝑛



2

�̇�
2−𝛼 ≤ 𝐶

𝛼
𝜀
2𝛼/(2𝛼−1)

𝑓
𝑛



2

�̇�
2−2𝛼 . (49)

By Gronwall lemma, we get that, for all 𝑡 ∈ [0, inf(𝑇, 𝑇
𝑛
)),

𝑓𝑛(𝑡)


2

�̇�
2−2𝛼 ≤

𝑓𝑛(0)


2

�̇�
2−2𝛼𝑒
𝐶
𝛼
𝑡𝜀
2𝛼/(2𝛼−1)

≤

𝐽
𝑛
𝜃
0

2

�̇�
2−2𝛼

𝑒
𝐶
𝛼
𝜀
2𝛼/(2𝛼−1) inf(𝑇,𝑇

𝑛
)

≤

𝐽
𝑛
𝜃
0

2

�̇�
2−2𝛼

𝑒
𝐶
𝛼
𝜀
2𝛼/(2𝛼−1)

𝑇
.

(50)

For the given value of 𝜀, we have that, for all 𝑡 ∈ [0, inf(𝑇, 𝑇
𝑛
)),

𝑓𝑛(𝑡)


2

�̇�
2−2𝛼 ≤ 2


𝜃
0

2

�̇�
2−2𝛼

; (51)

thus,

sup
𝑡∈[0,inf(𝑇,𝑇

𝑛
))

𝑓𝑛(𝑡)
�̇�2−2𝛼

≤ √2

𝜃
0�̇�2−2𝛼

< 2𝑐
𝛼
. (52)

It follows that 𝑇
𝑛
> 𝑇 and, for all 𝑡 ∈ [0, 𝑇],


𝑓
𝑛
(𝑡)


2

�̇�
2−2𝛼 + ∫

𝑡

0


𝑓
𝑛
(𝜏)



2

�̇�
2−𝛼𝑑𝜏 ≤ 2


𝜃
0

2

�̇�
2−2𝛼

, (53)

which proves formula (22), and the proof of Proposition 8 is
finished.

Now we intend to study the behavior of the solution at
infinity. We claim to prove that, for all 𝑠 ≥ 2 − 2𝛼,

‖𝜃(𝑡)‖
�̇�
𝑠 = 𝑂(

1

𝑡
(𝑠−(2−2𝛼))/2𝛼

) , 𝑡 → ∞. (54)

We can suppose that 𝑠 > 2 − 2𝛼. We have

‖𝜃(𝑡)‖
2

�̇�
𝑠 = ∫

𝜉


2𝑠
𝜃(𝑡, 𝜉)



2

𝑑𝜉

= ∫
𝜉


2𝑠−2(2−2𝛼)

𝑒
−𝑡
1/2𝛼
|𝜉|𝜉



2(2−2𝛼)

𝑒
𝑡
1/2𝛼
|𝜉|
𝜃


2

𝑑𝜉

≤ 𝑡
−(2𝑠−2(2−2𝛼))/2𝛼

× ∫(
𝜉
 𝑡
1/2𝛼

𝑒
−1/(2𝑠−2(2−2𝛼))𝑡

1/2𝛼
|𝜉|
)

2𝑠−2(2−2𝛼)

×
𝜉


2(2−2𝛼)

𝑒
𝑡
1/2𝛼
|𝜉|
𝜃


2

𝑑𝜉

≤ 𝑀𝑡
−(2𝑠−2(2−2𝛼))/2𝛼

∫
𝜉


2(2−2𝛼)

𝑒
𝑡
1/2𝛼
|𝜉|
𝜃


2

𝑑𝜉,

(55)

where𝑀 := sup
𝑥>0

(𝑥𝑒
−(1/(2𝑠−2(2−2𝛼)))𝑥

)
2𝑠−2(2−2𝛼)

.
Using (22), we get

‖𝜃(𝑡)‖
2

�̇�
𝑠 ≤ 𝑀


𝜃
0

2

�̇�
2−2𝛼

𝑡
−(𝑠−(2−2𝛼))/𝛼 (56)

and the proof of Theorem 3 is finished.

Remark 9. (i) Combining Theorems 2 and 3, we can obtain,
for 2/3 ≤ 𝛼 ≤ 1 and 𝑠 ≥ 2 − 2𝛼,

‖𝜃(𝑡)‖
2

�̇�
𝑠 = 𝑜 (𝑡

−(𝑠−(2−2𝛼))/2𝛼
) , 𝑡 → ∞. (57)

Indeed, from (34), ‖𝜃(𝑡)‖
�̇�
2−2𝛼 < 𝑐

𝛼
, for all 𝑡 ≥ 0. For𝑇 > 0,

we consider the following system:

𝜕
𝑡
V + (−Δ)𝛼V + (𝑉 ⋅ ∇) V = 0 in R

+
×R
2
,

𝑉 := (−Δ)
−1/2

(−𝜕
2
V, 𝜕
1
V) ,

V (0, ⋅) = 𝜃 (
𝑇

2
, ⋅) in R

2
.

(58)

This system has a Leray unique solution V
𝑇
that satisfies, for

all 𝑡 > 0,

V𝑇(𝑡, ⋅)
�̇�𝑠

≤

√𝑀
V𝑇(0, ⋅)

�̇�2−2𝛼

𝑡
(𝑠−(2−2𝛼))/2𝛼

. (59)

From the uniqueness of the solution, we have V
𝑇
(𝑡, ⋅) = 𝜃(𝑡 +

𝑇/2, ⋅); then


𝜃(𝑡 +
𝑇

2
, ⋅)

�̇�𝑠
≤

√𝑀‖𝜃(𝑇/2, ⋅)‖
�̇�
2−2𝛼

𝑡
(𝑠−(2−2𝛼))/2𝛼

. (60)

For 𝑡 = 𝑇/2, we have

‖𝜃(𝑇, ⋅)‖
�̇�
𝑠 ≤

2
(𝑠−(2−2𝛼))/2𝛼√𝑀‖𝜃(𝑇/2, ⋅)‖

�̇�
2−2𝛼

𝑇
(𝑠−(2−2𝛼))/2𝛼

. (61)

Combining this inequality with the result of Theorem 2, we
obtain the desired result.

(ii) If 𝛼 ∈ (1/2, 2/3), we do not know if
lim sup

𝑡→∞
‖𝜃(𝑡)‖

�̇�
(2−2𝛼) = 0 holds. But this result depends on

the lower frequencies. Indeed, for 𝛿 > 0 and 𝜀 > 0, we have

∫

|𝜉|>𝛿

𝜉


2(2−2𝛼)
𝜃(𝑡, 𝜉)



2

𝑑𝜉

= ∫

|𝜉|>𝛿

𝜉


−2𝜀𝜉


2(2−2𝛼)+2𝜀
𝜃(𝑡, 𝜉)



2

𝑑𝜉

≤ 𝛿
−2𝜀

∫

R2

𝜉


2(2−2𝛼)+2𝜀
𝜃(𝑡, 𝜉)



2

𝑑𝜉

≤ 𝛿
−2𝜀

‖𝜃(𝑡)‖
2

�̇�
(2−2𝛼)+𝜀 .

(62)

ByTheorem 3, we obtain

∫

|𝜉|>𝛿

𝜉


2(2−2𝛼)
𝜃(𝑡, 𝜉)



2

𝑑𝜉 ≤ 𝑀

𝜃
0

2

�̇�
(2−2𝛼)

𝛿
−2𝜀

𝑡
−𝜀/𝛼

≤ 𝑀

𝜃
0

2

�̇�
(2−2𝛼)

(𝛿
2𝛼
𝑡)
−𝜀/𝛼

.

(63)

Then, for 𝛿 = 𝑡
−1/2𝛼+𝑎, 𝑎 > 0, we have

∫

|𝜉|>𝛿

𝜉


2(2−2𝛼)
𝜃(𝑡, 𝜉)



2

𝑑𝜉 ≤ 𝑀

𝜃
0

2

�̇�
(2−2𝛼)

𝑡
−𝑎𝜀/𝛼

,

lim sup
𝑡→∞

∫

|𝜉|>𝑡
−1/2𝛼+𝑎

𝜉


2(2−2𝛼)
𝜃(𝑡, 𝜉)



2

𝑑𝜉 = 0.

(64)
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Then, to prove the result,

lim sup
𝑡→∞

‖𝜃(𝑡)‖
�̇�
(2−2𝛼) = 0. (65)

It suffices to prove that

lim sup
𝑡→∞

∫

|𝜉|<𝑡
−1/2𝛼+𝑎

𝜉


2(2−2𝛼)
𝜃(𝑡, 𝜉)



2

𝑑𝜉 = 0. (66)

4. Proof of Theorem 4

First Step. Using the approximate system (24) and inequality
(17),

𝜕
𝑡

𝑓𝑛


2

𝐿
2 + 2

𝑓𝑛


2

�̇�
𝛼 ≤ 2𝜀

𝑓𝑛


2

�̇�
1/2 + 𝐶𝛼

𝑓𝑛
�̇�2−2𝛼

𝑓𝑛


2

�̇�
𝛼 .

(67)

Then,

∫

𝜉

𝑒
𝑡
1/2𝛼
|𝜉|


∧

𝜃 (𝑡, 𝜉)



2

𝑑𝜉

+ ∫

𝑡

0

∫

𝜉

𝑒
𝜏𝑡
−1+1/2𝛼
|𝜉|𝜉



2𝛼


∧

𝜃 (𝜏, 𝜉)



2

𝑑𝜉 𝑑𝜏 ≤ 2

𝜃
0

2

𝐿
2
.

(68)

Second Step. From relation (22), we deduce that

‖𝜃‖
2

�̇�
𝑠 ≤ ∫

𝜉

𝜉


2𝑠

𝑒
−𝑡
1/2𝛼
|𝜉|
𝑒
𝑡
1/2𝛼
|𝜉|
|F(𝜃)|

2
𝑑𝜉

≤ 𝑡
−𝑠/𝛼sup
𝑥≥0

𝑥
2𝑠
𝑒
−𝑥
⋅ 2

𝜃
0

2

𝐿
2

≤ 𝐶𝑡
−𝑠/𝛼

𝜃
0

2

𝐿
2
.

(69)

Then, the proof is achieved.

Remark 10. If 2/3 ≤ 𝛼 ≤ 1 and 𝑠 ≥ 0, we have

‖𝜃(𝑡)‖
2

�̇�
𝑠 = 𝑜 (𝑡

−𝑠/2𝛼
) , 𝑡 → ∞. (70)

5. General Properties of Global Solutions

Theorem 11. Let 𝜃 be a global solution of (S
𝛼
) such that

𝜃 ∈ C (R
+
, �̇�
2−2𝛼

(R
2
)) . (71)

Then, 𝜃 ∈ C
𝑏
(R+, �̇�2−2𝛼(R2)) ∩ 𝐿

2
([𝑇,∞), �̇�

2−𝛼
(R2)) for

some 𝑇 > 0. Moreover, for all 𝑠 ≥ 2 − 2𝛼,

‖𝜃(𝑡)‖
�̇�
𝑠 = 𝑜 (𝑡

−(𝑠−(2−2𝛼))/2𝛼
) , 𝑡 → ∞. (72)

Combining the energy estimate

‖𝜃‖
2

𝐿
2 + 2∫

𝑡

0

‖𝜃‖
2

�̇�
𝛼𝑑𝜏 ≤


𝜃
0

2

𝐿
2

(73)

and the conclusion ofTheorems 4 and 11, we get the following.

Theorem 12. Let 𝜃 be a global solution of (S
𝛼
) such that

𝜃 ∈ C (R
+
, 𝐻
2−2𝛼

(R
2
)) . (74)

Then, 𝜃 ∈ C
𝑏
(R+, 𝐻2−2𝛼(R2)) ∩ 𝐿

2
([𝑇,∞), �̇�

2−𝛼
(R2)) for

some 𝑇 > 0.
Moreover, for all 𝑠 ≥ 0,

‖𝜃(𝑡)‖
�̇�
𝑠 = 𝑜 (𝑡

−𝑠/2𝛼
) , 𝑡 → ∞. (75)

Remarks 13. (a) Let 𝛼 ∈ (1/2, 1] and let 𝜃 be a global solution
of (S
𝛼
) such that

𝜃 ∈ C (R
+
, �̇�
2−2𝛼

(R
2
)) . (76)

Using the Sobolev injection,

𝐿
𝑝
(R
2
) → �̇�

𝑠
(R
2
) , with 1

𝑝
+
𝑠

2
=
1

2
; 0 < 𝑠 < 1. (77)

We conclude that, for all 𝑝 ∈ [2/(1 − (2 − 2𝛼)),∞),

‖𝜃(𝑡)‖𝐿𝑝 = 𝑜 (𝑡
−(1−2/𝑝−(2−2𝛼))/2𝛼

) , 𝑡 → ∞. (78)

(b) Let 𝜃 be a global solution of (S
𝛼
) such that

𝜃 ∈ C (R
+
, 𝐻
2−2𝛼

(R
2
)) ; (79)

then, for all 𝑝 ∈ (2,∞),

‖𝜃(𝑡)‖𝐿𝑝 = 𝑜 (𝑡
−(𝑝−2)/2𝑝𝛼

) , 𝑡 → ∞. (80)

Using the classical interpolation inequality
𝑓
𝐿∞(R2)

≤ 𝐶 (𝑠)
𝑓


1−1/𝑠

𝐿
2
(R2)

𝑓


1/𝑠

�̇�
𝑠
(R2)

, 𝑠 ∈ (1,∞) , (81)

andTheorem 12, we get

‖𝜃(𝑡)‖𝐿∞ = 𝑜 (𝑡
−1/2𝛼

) , 𝑡 → ∞. (82)
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