QUANTUM MECHANICS H.W No 3

Salwa Al Saleh

PROBLEM (1)

Find the eigenvalues of the operator:

$$\hat{A} = \begin{pmatrix} 1 & i & 0 \\ -i & 2 & -i \\ 0 & i & 1 \end{pmatrix}$$

Can we diagonalise it?.

PROBLEM (2)

Is the operator d/dx acting on the L^2 Hilbert space hermitian? How about -id/dx?

PROBLEM (3)

Show that for a Hermitian operator \hat{T} the operator $\hat{U} = e^{i\hat{T}}$ is unitary.

PROBLEM (4)

Is the function $\cos kx$ an eigenfunction for the operator d/dx? What about the operator d^2/dx^2 ?

PROBLEM(5)

Show that for an operator \hat{A} commuting with the **Hamiltonian operator** \hat{H} we can write its time evolution as:

$$e^{i\hat{H}t}\hat{A}e^{-i\hat{H}t}$$

Hint: use Hadmard lemma This is known as Heisenberg equation

PROBLEM (6)

We define the expected value - average value- of an operator with respect to a state vector $|\psi\rangle$ as:

$$\langle \hat{A} \rangle \equiv \langle \psi | \hat{A} | \psi \rangle$$

Show that if $|\psi\rangle$ is expanded in terms of the eigenbasis of \hat{A} , then the expected value is the sum of the eigenvalues of the operator a_n , i.e.

$$\langle \hat{A} \rangle = \sum_{n} c_n a_n$$

for some constants c_n .

PROBLEM (7)

Recall that we defined the identity operator as the outer product of the basis:

$$I = \sum_i |i\rangle\langle i|$$

Using this definition, show that this operator sends the ket $|\psi\rangle$ to itself (does not change the ket), then show this for the Bra vector $\langle\psi|$.

PROBLEM(8)

Discuss why if $[\hat{A}, \hat{B}]|\psi\rangle \neq 0$ one cannot find a mutual eigenbasis to expand $|\psi\rangle$ with?